

EUROPEAN SOUTHERN OBSERVATORY

Organisation Européene pour des Recherches Astronomiques dans l'Hémisphère Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

ESO - European Southern Observatory Karl-Schwarzschild Str. 2, D-85748 Garching bei München

Instrumentation Division CRIRES User Manual

Doc. No. VLT-MAN-ESO-14500-3486

Issue 1, Date 06/01/2006

Prepared for Review - INTERNAL USE ONLY

 Ralf Siebenmorgen 06.01.2006

 Prepared
 Date

 Signature

ii

Change Record

Issue/Rev.	Date	Section/Parag. affected	Reason/Initiation/Documents/Remarks
Issue 0.5	06/12/04	RSI	First draft

Abbreviations and Acronyms

AO	Adaptive optics
APD	Avalanche photo-diode
CRIRES	High-resolution infrared echelle spectrometer of the VLT
DM	Deformable mirror
DMD	Data management division
ESO	European Southern Observatory
ETC	Exposure time calculator
FC	Finding chart
FoV	Field of view
FWHM	Full width at half maximum
NIR	Near infrared
OB	Observing block
P2PP	Phase II proposal preparation
PSF	Point spread function
QC	Quality control
RTC	Real time computer
SM	Service mode
SR	Strehl ratio
TIO	Telescope and instrument operator
USG	User support group
VLT	Very large telescope
VM	Visitor mode
WF	Wave front
WFS	Wave front sensor

Wavelength range	$1-5\mu{ m m}$
Resolving power (2 pixels)	10^{5}
Slit width	0.2'' - 1''
Slit length	50"
Pixel scale	0.1''
Adaptive optics	60 actuator curvature sensing NACAO system
Calibration system	2 balckbodies, 2 spectral lamps, gas cells
Slit viewer	1k Aladdin III array, filters, $0.05''/pixel$ scale
Pre-disperser	ZnSe prism
Echele grating	40×20 cm, 31.6 lines/mm, 63.5^o blaze
Polarimetry	circular using Fresnel rhomb and Wollaston prism
Detector science array	4096×512 pixels using 4 Aladdin III detectors

This page was intentionally left (almost) blank

Contents

1	Intr	oduction	1
	1.1	CRIRES	1
	1.2	Science drivers	1
	1.3	Structure and scope of the User Manual	2
	1.4	Glossary	3
I	CR	RIRES hard ware	4
2	Inst	rument design	4
	2.1	Optics	4
	2.2	Mechanics	5
	2.3	Detectors	6
3	Ada	ptive optics system	8
	3.1	Introduction	8
		3.1.1 Atmospheric turbulence	8
		3.1.2 Adaptive Optics	8
	3.2	Hardware description	10
		3.2.1 The corrective optics	11
		3.2.2 The Wavefront Sensor	11
		3.2.3 Control loop	12
		3.2.4 Limitations	13
	3.3	AO performance	13
	3.4	Summary	13
II	0	bserving with CRIRES	L 5
4	Intr	oduction	15
	4.1	Atmospheric Transmission	15
	4.2	Background Emission	15
	4.3	Spectrophotometric Calibration	16
5	Perf	formance	17
	5.1	AO Guide Stars	17
	5.2	Spectrograph modes	21
	5.3	Detector characteristics	22
	5.4	System efficiency and throughput	23
	5.5	Stabillity	24
	5.6	Limiting magnitudes	25

	5.7	The Exposure Time Calculator	25
	5.8	Proposal form	26
~	_		07
6	Prep	baration of observing blocks	27
	0.1		27
	0.2		21
		6.2.1 Templates	28
		b.2.2 Observing Blocks – OBs	29
	6.0	6.2.3 P2PP	29
	6.3	Finding Charts	29
7	Obse	erving with CRIRES at the VLT	31
	7.1	Overview	31
	7.2	Visitor Mode Operations	31
	7.3	The influence of the Moon	31
	7.4	Target Acquisition	32
	7.5	Offset conventions and definitions	32
	7.6	Overheads	33
	C	RIRES data format	34
•			~ ~
8	I he	CRIRES data reduction cookbook	34
IV	R	eference Material	35
9	CRI	RES scientific calibration	35
10	CRI	RES template reference	36
	10.1	Acquisition Templates	37
	10.2	Parameter description:	38
	10.3	Science Templates	44
		10.3.1 CRIRES_obs_jitter	44
	10.4	Nighttime Calibration Templates TBW	45
	10.5	Daytime Calibration Templates TBW	45
11	CRI	RES wavelength configuration	46

1 Introduction

The high-resolution infrared echelle spectrometer of the VLT (CRIRES) is built by ESO. CRIRES provides in the $1 - 5\mu$ m spectral range a resolving power of 10^5 with a $0.2'' \times 50''$ slit. Signal to noise and spatial resolution is optimized with an adaptive optics (AO) system.

1.1 CRIRES

The cryogenic high resolution IR Echelle Spectrometer – CRIRES has been conceived for the VLT in order to exploit the enormously enhanced sensitivity provided by a dispersive instrument with a large detector array at an 8m telescope. The gain entails a quantitative and qualitative improvement of the observational capabilities. It can boost all scientific applications aiming at fainter objects, higher spatial (extended sources), spectral and temporal resolution. The cryogenic echelle will provide:

- High-resolution spectroscopy in the 1-5 μ m range at the VLT. This instrument employs the largest available grating for a spectral resolving power of 10^5 (for 2 pixel Nyquist sampling) with a 0.2" slit.
- Spectral coverage maximized through four 1024 x 1024 pixel InSb detector arrays in the focal plane.
- Spectral imaging using a 50" long slit
- Adaptive Optics to maximize SNR and spatial resolution.

Functionally, the instrument can be divided into four units.

- 1. The fore-optics section provides for field de-rotation, cold pupil and field stops, curvature sensing adaptive optics, and slit viewing.
- 2. The prism pre-disperser isolates one echelle order and minimizes the total amount of light entering into the high-resolution section.
- 3. The high-resolution section comprises the collimator, the echelle which is tilt-tuned for wavelength selection, the camera providing the 0.1''/pixel scale, and the detectors.
- 4. The calibration unit outside the cryogenic environment contains light sources for flux/wavelength calibration and detector flat-fielding.

1.2 Science drivers

The IR spectrograph will make previously inaccessible phenomena and objects available for spectroscopic studies. Some high lights are:

- Extra-solar planets:
 - radial velocities
 - spectroscopy of CO, CH_4

- Solar system:
 - Giant planets/Titan: H_3^+ , CH_4 , CH_3 , NH_3 , HCN, ...
 - Terrestrial planets: CO,HCL, HDO, H₂O, ...
 - Mars: imaging spectroscopy of CO depletion at 40km resolution
 - lo: volcanic activity (SO₂)
 - Pluto, Charon, Triton: CO, CH₄ search
 - Comets: H₂O abundance, temperatures, velocities
- Stars:
 - stellar evolution and nucleosynthesis: CNO abundance
 - stellar mass
 - stellar radii
 - stellar winds and mass loss
 - atmospheric structure and oscillations
 - magnetic field structure
- Star formation and ISM:
 - accretion and outflows
 - ISM chemistry and cloud structures: H_3^+ , H_2O , CH_4 , ...
- Extragalactic astronomy:
 - AGN: velocity structure of the broad and narrow line region, [FeII], H_2 lines in low extinction regions, H recombination
 - fine structure lines

1.3 Structure and scope of the User Manual

The CRIRES user manual is structured as follows:

- A technical description of CRIRES and its adaptive optics system (AO) is summarized in Sect.2 and Sect.3.
- Observing modes offered for this period and performance of the instrument are given in Part. II.
- A guide through phase I and phase II observation preparation is given in Sect. 6. An overview on how to observe with CRIRES at the VLT can be found in Sect. 7.
- Acquisition, observing and calibration templates are explained in Sect. 10.

This is the first issue of the CRIRES User Manual. It provides information required for the proposal preparation phase I. The manual will be up-dated for the proposal phase II when more comprehensive information is available on performance and observing templates. The manual reflects knowledge gathered during laboratory tests and is in this respect to be considered in some aspects to be preliminary. Therefore we strongly recommend to consult:

http://www.eso.org/instruments/crires/ for additional information and updates. Further support during proposal preparation and OB submission please contact ESO's User Support Group (usg-help@eso.org).

1.4 Glossary

Active optics is the active control of the primary and secondary mirror of the *telescope*. It is performed using a telescope guide star.

Adaptive optics is the correction of wavefront errors induced by atmospheric turbulence. The wavefront is measured from the AO guide star, and the corrections are sent to the deformable mirror within the *instrument*. Although, the instrument can run in closed loop without the active optics system, controlling the primary and secondary mirror. However, one gets better adaptive optics performance if the active optics system of the telescope is running.

Part I CRIRES hard ware

2 Instrument design

The CRIRES instrument design is presented by Moorwood et al. 2003, SPIE 4841, 1592; a summary is presented in the following subsections.

2.1 Optics

The optical layout of CRIRES is shown in Fig.1. Light enters from the direction of the telescope Nasmyth focus, either via the telescope or from a calibration unit consisting of an integrating sphere illuminated by continuum or line lamps for flat-fielding and wavelength calibration. There are four lamps: 3200 K (Halogen) and 1000 K blackbody and spectral lamps with Neon and Krypton. The integrating sphere provides uniform illumination of the entrance slit of the spectrometer and its flux can be adjusted by a moving baffle.

Higher accuracy wavelength calibration is achieved using sky lines or narrow absorption lines in the gas cells which can be inserted in the beam as shown. The gas cell turret also contains a Fresnel rhombus or quarter wave plate whose insertion can be combined with that of a Wollaston prism for measuring circular polarisation. The Fresnel rhombus is a two mirrors and a prism device which can be rotated to transform circular into linear polarisation, however, at the expense of a reduced filed of view: from nominal 50" to 5".

Following the calibration unit there is a 3 mirror de-rotator which is used to counteract the telescope field rotation when making long slit observations. In this way offsets of the source position due to different atmospheric diffraction in the optical and IR can be compensated and small mechanical instabilities can be corrected. The de-rotator allows to perform the nodding in the slit observing strategy.

Then comes the adaptive optics system used to concentrate the light at the 0.2" wide spectrograph slit. The AO system comprises a 60 element deformable mirror, mounted on a tip-tilt stage, on which is formed a pupil image by the two mirror relay optics; the dichroic window which transmits infrared light to the cryogenically cooled spectrograph while reflecting visible light to the wavefront sensor (WFS) which uses an avalanche photodiode (APD) detector and can be translated in x,y at ~ 0.5 Hz to maintain object centering as determined by the slit viewer. As far as possible, the design of the AO system and its individual components have been copied from the MACAO system developed by ESO for VLTI and the SINFONI instrument. Further details of the AO system can be found in Sect. 3 of this manual.

The spectrograph itself is housed in a vacuum vessel. Following the input window, a pupil image is formed at the position of a cold stop which limits parasitic background and where the Wollaston prism can be inserted. Light then either passes through the slit or is reflected to the slit viewing camera. Light passing through the slit enters the prism spectrometer where it is dispersed and then exits through an output slit sized to limit the wavelength range passing into the high resolution section to a single order. The high resolution spectrograph consists of a 40×20 cm, 31.6 lines/mm, 63.5° . blaze echelle grating plus a TMA (three mirror anastigmat) which acts first as a collimator and then as a camera to image the spectrum on the four Aladdin detectors which are used to make a 4096×512 pixel image of the spectrum.

Figure 1: Layout of the CRIRES optical design.

2.2 Mechanics

CRIRES is stationary at Nasmyth A focus of VLT Antu (UT1). The instrument is mounted in a vessel of 3m diameter and 1m height. Including support structure the total weight of the instrument is 6.2t. The warm part of the instrument is 2t and the cold parts 4.2t, respectively. The optics inside the cryo-vessel is cooled to ~ 65 K and the detectors to ~ 25 K.

A main design feature of CRIRES are its cryogenic mechanisms which are required for scanning the prism ($\sim 1^{\circ}$) and echelle grating ($\pm 6^{\circ}$), the two slits plus the slit viewer filter and Wollaston wheels. The scanning functions are driven by cryogenic stepper motors (baseline Phytron) and high precision screws and encoders. The main elements are the cryogenically cooled spectrograph in its vacuum vessel, the table mounted un-cooled pre-optics (calibration unit, field de-rotator, adaptive optics system) between it and the telescope Nasmyth adapter/rotator and the electronics racks. The instrument is mounted stationary on the platform primarily to ensure achievement of the high wavelength stability requirements by minimizing flexure and temperature variations. The vacuum vessel is made of austenitic stainless steel with a high internal reflectivity achieved by manual polishing followed by electro-polishing. Attached to it are two Leybold closed cycle coolers, the instrument mounted turbomolecular pump, connector flanges, pressure gauges, overpressure safety valve and the small temperature controlled cabinets housing the two sets of front end electronics for the detectors. Underneath is the support, the pre-vacuum pump and alignment structure which also provides access to a port in the lower lid of the vacuum vessel through which the grating unit can be accessed and removed. Inside, the mirror optics and most of the mechanical structure is made of Aluminum alloy. The TMA mirrors have a thin ($\sim 30 \mu$ m) nickel coating on the reflective surface which is diamond turned then conventionally polished and finally ion beam polished before gold coating. Although nickel coating is usually applied on both sides we have found by modeling that, although reducing bending, this increases the total wavefront aberration compared with plating

a single surface. The remaining mirrors are being nickel plated, diamond turned and hand post polished. The only non-reflecting optics in the system apart from the window is the ZnSe prism using for order sorting.

The thermal stability is stable within 0.1K and limit any variations of temperature gradients to $\leq 50 \text{ mK/m/hr}$. To counter drifts due e.g to the external diurnal temperature variations, however, active temperature control is also foreseen using heaters mounted on a ring whose temperature will be controlled to 0.1K and is connected to various points in the instrument by conducting braids. The pre-disperser collimator mirror is also equipped with piezos to allow fine active control of the spectrum position using atmospheric spectral lines for programs requiring the highest spectral resolution. In order to meet the stringent thermal and stray-light requirements the entire optical system is enclosed within a light shield plus two AIMg radiation shields with mirror finish quality. Care is also being taken (e.g by using an intermediate connector) to avoid light leaks at the penetrations of cables. Essentially the only light path into the high resolution section of the instrument is through the narrow order isolation slit at the exit of the prism pre-disperser.

Figure 2: Layout of the 4 Aladdin detector mosaic of the spectrometer array. The fifth Aladdin detector of the slit viewer camera is not shown.

2.3 Detectors

CRIRES uses 5 Raytheon 1024x1024 pixel InSb Aladdin arrays, one for the slit viewer and 4 in the spectrograph focal plane which provides a useful optical field of $135 \times 21 \text{ mm}$. The four science arrays are packed in a 4x1 format with a spacing between arrays of only 264 pixels. To do this, each array was removed from its original LCC package by Raytheon and glued on the ESO mount consisting of a multilayer, Aluminum–nitride, ceramic carrier. On the mount are a copper block for the cooling braid connections, a 3–point kinematic mount, a temperature sensor and a heating resistor.

Also there is a connector to the two layer Manganin boards which interface each detector to a preamplifier board equipped with 64 cryogenic operational amplifiers. As the slit is only 512 pixels

long there is no need to require 4 usable quadrants per array. The actual arrays selected will be optimally oriented as shown in Fig. 2. The array on the right is one remaining from the first, ESO funded, foundry run in the 90th and exhibits the lowest dark current measured so far in any array at ESO (14 electrons/hour with drift correction using dead pixels with open indium bumps) despite or maybe due to the presence of several pronounced cracks. This array has been included specifically to ensure the best possible noise performance at the shortest wavelengths. The arrays will be read-out using standard ESO IRACE controllers 4 having 64 channels (4×16) for the science arrays and 32 channels for the slit viewing camera.

3 Adaptive optics system

The adaptive optics system of CRIRES is discussed by Paufique et al. 2004, SPIE (5490–15). The multi-applications curvature adaptive optics system (MACAO) for CRIRES corrects a turbulent wavefront and provides diffraction limited images at the focal plane. The overall sensitivity thereby is improved by about a factor two for point-sources. To highlight the advantage of combining MACAO and CRIRES a PSF is shown in Fig.3 in AO open loop (uncorrected) and closed loop, where the PSF is reconstructed from wavefront measurements. The non–circular PSF in open loop is due to the very short integration time used.

Figure 3: PSF without (left) and with (right) AO correction for a short integration time.

3.1 Introduction

The following section provides only a introduction in the field of adaptive optics and atmospheric turbulences, and essentially taken from the NACO user manual. For further reading see for example: "Adaptive optics in astronomy", Rodier 1999, Cambridge University Press, or "Introduction to adaptive optics", Tyson 2000, Bellingham/SPIE.

3.1.1 Atmospheric turbulence

The VLT has a diffraction-limited resolution of $1.22 \cdot \lambda/D = 0.07$ arcsec at $\lambda = 2.2\mu m$. But the resolution is severely limited by atmospheric turbulence to $\lambda/r_0 \approx 1$ arcsec, where r_0 is the Fried parameter. It is directly linked to the strength of the turbulence and depends on the wavelength as $\lambda^{5/6}$. For average observing conditions, r_0 is typically 60cm at $2.2 \mu m$.

Temperature inhomogeneities in the atmosphere induce temporal and spatial fluctuations in the air refractive index and therefore cause fluctuations in the optical path. This leads to random phase delays that corrugate the wavefront (WF). The path differences are, to a good approximation, achromatic. Only the phase of the WF is chromatic. The correlation time of WF distortions is related to the average wind speed V in the atmosphere and is typically of the order of $r_0/V = 60$ ms at 2.2 μ m for V = 10m/s.

3.1.2 Adaptive Optics

A technique to overcome the degrading effects of atmospheric turbulence is real-time compensation of the deformation of the WF by adaptive optics (AO, Figure 4).

The wavefront sensor (WFS) measures WF distortions which are processed by a real-time computer (RTC). The RTC controls a deformable mirror (DM) to compensate the WF distortions. The DM is a continuous thin plate mirror mounted on a set of piezoelectric actuators that push and pull on the back of the mirror.

Because of the significant reduction in the WF distortions by continuous AO correction, it is possible to record near diffraction-limited images with exposure times that are significantly longer than the turbulence correlation time. The residual error from the WF compensation (WF error) directly determines the quality of the formed image. One of the main parameters characterizing this image quality is the Strehl ratio (SR), which corresponds to the amount of light contained in the diffraction-limited core relative to the total flux.

Figure 4: Principle of Adaptive Optics. Note that in practice, and contrary to this schematic design, CRIRES has no dedicated Tip-Tilt mirror, but performs low- and high-order corrections with a single deformable mirror (mounted on a tip-tilt stage).

An AO system is a servo-loop system working in closed loop. The DM flattens the incoming WF and the WFS measures the residual WF error.

A commonly used WFS is the Shack-Hartmann WFS (cf. NACO). However, CRIRES (as well as the other ESO MACAO systems) relies on a Curvature WFS. The curvature sensor is designed to measure the WF curvature (as opposed to the WF slope). This is achieved by comparing the plane irradiance distributions of two planes placed behind and before the focal plane. In practice, a variable curvature mirror (membrane) is placed in the telescope focus. By vibrating, inside and outside focus blurred pupil images can be imaged on a detector array (for CRIRES a lenslet array feeding avalanche photo-diodes, APDs. The modulation frequency of the membrane corresponds to the temporal sampling frequency of the WFS. The difference between the inside and outside pupil image measures the local WF curvature.

The performance of an AO system is related to the number of lenslet in the lenslet array, the number of actuators behind the DM, and the rate at which WF errors can be measured, processed and corrected (the server-loop bandwidth).

The performance of an AO system is also linked to the observing conditions. The most important parameters are the seeing, the brightness of the reference source used for WFS and the distance between the reference source and the object of interest.

In case of good conditions and a bright, nearby reference source, the correction is good and the resulting point spread function (PSF) is very close to the diffraction limit. A good correction in the K-band typically corresponds to a SR larger than 30%.

At shorter wavelengths (particularly in the J-band) or in the case of poor conditions or a faint, distant reference source, the correction is only partial - the Strehl ratio may only be a few percent.

3.2 Hardware description

The MACAO system for CRIRES is based on a 60 actuator deformable mirror, inserted in a socalled relay optics. These optics and the wavefront sensor optics are mounted on a breadboard, which is located between the Nasmyth focus and the spectrometer. It is about 1.5m wide and a top view of the warm optics overlayed by the optical path is shown in Fig. 5, the assembly of the deformable mirror is displayed in Fig. 6.

Figure 5: Top view of the warm optics of the MACAO – CRIRES system. From f/15 Nasmyth focus and after the optical derotator, one notice the deformable mirror and tip–tilt mount assembly. Light enters from the dichroic to the cold and warm part of the instrument. For the latter the wavefront sensor and some analysis tools are visible.

Figure 6: Assembly of the deformable mirror and tip-tilt mount (left) and of the gimbal mount (right).

3.2.1 The corrective optics

The wavefront correction is performed by a 60 electrodes bi-morph mirror developed by CILAS, with a pupil diameter of 60mm. The 60 electrodes sandwiched between two thin piezoelectric PZT layers with opposite polarization. The outside surface of the PZT layers are grounded and covered with 0.1mm glass layers, the mirror side being silver coated. Applying a voltage to one electrode produces a constant curvature over its surface. The geometry of the electrodes in the 4 central rings (40 electrodes) matches that of the lenslet array sub-apertures, while the 20 remaining electrodes are located outside the pupil and constrain the edge of the pupil to correct 0-curvature aberrations: tip-tilt, astigmatism, etc. The deformable mirror (DM) provides a stroke to compensate atmospheric aberrations up to a optical seeing of 1". In order to relax the use of the outer electrodes of the mirror, the tip-tilt error is slowly offloaded to a tip-tilt mount designed and built by LESIA, which provides a ± 240 " mechanical stroke, i.e. ± 3.6 " on the sky, with a 100Hz -3dB internal closed-loop bandwidth. The assembly of the DM and tip-tilt mount is shown in Fig.6.

3.2.2 The Wavefront Sensor

The following functions are sequentially implemented in the wavefront analyzer:

- Extraction of the reference star beam (field selector).
- Projection of the reference star image on the membrane mirror (imaging lens).
- Scan of the intra- and extra-pupil regions by modulation of the membrane mirror curvature.
- Creation of a pupil image centered on the lenslet array.
- Reduction of the flux (for bright reference stars) within the linear range of the APDs by means of neutral density filters.

- Re-imaging of the 60 sub-pupils on the 60 fiber cores by the lenslet array unit.
- Injection of the collected beams in the 60 APDs.

The scanning lens of the field selector is mounted on an XYZ table: the XY axes enable the guiding star to be selected in the $50'' \times 50''$ field-of-view, while the Z stage compensates for the VLT field curvature. The position of the field selector defines the reference for the pointing. The imaging lens is creating an image of the guiding star on the membrane mirror, which is mounted to an acoustic cavity. A voice coil is mounted to the other end of the cavity, and driven at 2.1kHz by the APD counter module to force an oscillation of the focus mode of the membrane mirror. The incidence angle of the beam on the membrane mirror depends on the position of the guiding star in the field. In order to keep the pupil image (obtained when the membrane mirror is flat) centered on the lenslet array, the membrane mirror is mounted on a 2 axis gimbal, which is co-ordinated with the field selector. For each (x, y) positions of the field selector the gimbal mount is moved so that the light is reflected to the same focus. A diaphragm in front of the membrane enables the field to be adjusted to the observing conditions (seeing and guiding reference size). The assembly of the gimbal mount is shown in Fig. 6.

The wavefront sensor box consists of 4 mirrors, which provide parallel beam to image the pupil on the lenslet array. First, the beam is collimated by a spherical mirror. It is then folded by a flat mirror and injected in the beam expander, which adapts its diameter to the lenslet array (14mm). The optical path of the wavefront sensor box is shown in Fig. 7.

Figure 7: The optical path of the wavefront sensor box.

The lenslet array intercepts the beam and divides the flux in 60 sub-aperture. Each sub-pupil is imaged on a fiber, with a 100 μ m core diameter. When the membrane mirror vibrates, the pupil image is projected on both sides of the lenslet array plane. The normalized difference between the intra- and extra-pupil flux collected by each sub-aperture is proportional to the local curvature of the wavefront, which provides the wavefront error. The fibers drive the signal from the fiber feed module to the APD cabinet, mounted to the instrument. The APD counts are recorded by the APD counter module, synchronously with the membrane signal. The front-end assembly of the fiber bundle is shown in Fig. 8.

3.2.3 Control loop

The oscillating membrane produces a signal modulated proportional to the local wavefront curvature. This signal, collected by avalanche photo-diodes (APD), is sent to the real time computer.

Figure 8: Front-end assembly of the 60 fibre bundle which guide the light to the sensors.

The RTC computes this modulation, and retrieves the voltages to be applied to the mirror and tip-tilt mount to optimally compensate for the local curvature measured. For this, an precise calibration of the system is required (membrane mirror synchronisation, membrane curvature, pupil alignment, interaction matrices being the main ones).

3.2.4 Limitations

The membrane mirror curvature represents an optical gain for the aberrations measurements. A way to increase the performance of the system is therefore to increase the curvature of this mirror. But increasing this requires increasing as well the field of view of the wavefront sensor optics and some other non-linear effects can degrade the estimate of the curvature. For the same reason, extended sources will affect the quality of curvature measurement, and lead to a different optimal gain. In some extreme cases, the system can be unable to close the loop (extended 6"planetary nebula with a faint blue white dwarf in the middle, or a faint star close to the Moon, for example). There is a trade-off to do, and an optimal optical gain to apply. This optimal gain will depend mainly on the seeing size, and marginally on the star magnitude and other factors. This optimal gain is tabulated in the configuration of the software and is transparent for the user.

3.3 AO performance

The performance achieved by the MACAO system of CRIRES has been evaluated by laboratory simulations. Two cases are distinguished: i) in closed loop with guide stars of various magnitudes and ii) in open loop, so without AO corrections. The optimization was done over the encircled energy on a 0.2" slit, representative of the available energy for the spectrograph. The lab results demonstrate a weak gain in J and a strong (factor ~ 2) increase of the fraction of the energy available for the spectrometer in the K and M band, respectively (Fig. 9).

3.4 Summary

The high-resolution infrared echelle spectrometer of the VLT (CRIRES) provides in the $1 - 5\mu$ m spectral range a resolving power of 10^5 (for 2 pixel Nyquist sampling) with a $0.2'' \times 50''$ slit. Signal to noise and spatial resolution is optimized with an adaptive optics (AO) system.

Figure 9: The fraction of energy available for the spectrograph in the 0.2'' slit, as a function of seeing is shown for the J (top left), K (top right) and M (bottom) band for guide star magnitudes V=10, 12, 16 and without AO correction.

CRIRES can be used without adaptive optics guide star, in which case the AO module just acts as relay optics and the spatial resolution is given by the natural seeing.

The full power of the instrument is achieved when an adaptive optics guide star is available. For best correction, the star should be brighter than $R \sim 11 \text{ mag}$. However, the AO can work (and will provide a moderate image quality improvement) with stars as faint as $R \sim 16-17 \text{ mag}$ in the best seeing conditions. Ideally, the AO guide star should be as close as possible to the scientific target (if not the science target itself), and usually closer than 10''. Depending on the atmospheric conditions (atmospheric coherence length) the AO guide star could be chosen as far as 30'' for the AO system to still provide a mild improvement of the encircled energy.

Part II Observing with CRIRES

4 Introduction

4.1 Atmospheric Transmission

The transmission of the Earth's atmosphere in the J, H, K, L and M bands is shown in Fig. 10. The amount of telluric absorption varies with zenith distance and precipitable water vapor.

Figure 10: Atmospheric transmission in the J, H, K,L and M bands. These graphs are based on FTS data at the McMath/Pierce Solar Telescope on Kitt Peak, produced by NSF/NOAO.

4.2 Background Emission

There are two regimes in the sky background emission. Below 2.2 μ m, the sky emission is dominated by OH emission, taking place at an altitude of 80 km. Detailed sky spectra with OH line identifications are available on the ISAAC web page. Beyond 2.2 μ m, the thermal background dominates. The thermal background consists of atmospheric and telescope emission.

4.3 Spectrophotometric Calibration

Calibration of spectroscopic data in the IR is a complicated procedure that requires care. It is generally done in three steps. The first step removes telluric features, with what is commonly called a telluric standard; the second step removes the spectral features of the telluric standard that are imprinted onto the science spectrum because of the first step; and the third step sets the absolute scale with what one may call a spectroscopic (flux) standard. In general the spectroscopic standard and the telluric standard are the same star, but this does not need to be the case.

The most prominent features in IR spectra are the telluric lines of the Earth's Atmosphere. Unfortunately, many of the telluric lines do not scale linearly with airmass, so it is necessary to observe a standard at the same airmass and with the same instrument setup as that used for of the science target. Furthermore, the strength of the telluric lines varies with time, so it is also necessary to observe the standard soon after or soon before the science target.

The spectrum of the telluric standard is divided directly into that of the science target. Ideally, the spectrum of the telluric standard should be known, so that features belonging to it can be removed. However, this is not normally the case, so one has to use standards in which the spectrum is approximately known.

In general, we use either hot stars or solar analogs as telluric standards and, generally, these stars are selected from the Hipparchus Catalog. The spectra of hot stars, those hotter than B4, are relatively featureless and are well fit by blackbody curves. So, by knowing the spectral type of the star, one uses a blackbody curve with the appropriate temperature to fit the continuum of the standard. The spectra of stars that are cooler than A0 start to have many more features and cannot be fit with a blackbody curve for wavelengths below 1.6 microns.

Unfortunately, hot stars do contain some features, usually lines of hydrogen and helium, that can be difficult to remove. If the region around the hydrogen and helium lines are of interest, then one can also observe a late type star, which should have weak hydrogen and helium lines. This star is then used to correct for the helium and hydrogen absorption in the spectrum of the hot star. Some hot stars also have emission lines or are in dusty regions. These stars should be avoided. The V-I color of the star can be used as an indicator of dust. For stars hotter than A0, it should be negative. And lastly, hot stars tend to lie near the galactic plane, so there may be situations where there are no nearby hot stars.

Solar analogs, (for the purpose of removing telluric features) are stars with spectral type G0V to G4V. These standards have many absorption lines in the IR, particularly in the J band. The features can be removed by dividing by the solar spectrum that has been degraded to the resolution of the observations. In addition to hot stars and solar analogs, IR astronomers have used other stellar types as telluric standards. For example, F dwarfs are commonly used.

Given the expected sensitivity for CRIRES (see below) we have scanned the Hipparchus Main Catalog to select potential spectroscopic standards using the following selection criteria: $\delta \leq 30^{\circ}$, stars B8 or earlier with $V \leq 4.0^{mag}$ and stars with spectral types B8-G0 with $V \leq 4.8^{mag}$. This left us with a list of 466 stars bright enough to be used up to $\lambda \approx 5\mu$ m (for wavelengths up to the L-band there are about 900 stars earlier then A1 which can be used). In some critical areas it will be necessary to measure stellar spectral templates and this is another good reason to restrict the number of grating settings supported by the observatory.

Please decide carefully about which star is best suited for your program. Although the observatory will automatically observe a telluric standard for service programs, we cannot guarantee that we will make the best choice, as this depends on the science users wish to do. If you think that a specific spectral type suits your program better than others, we recommend that you submit calibration

OBs.

The observatory selects telluric standards from four catalogs: the IRIS Photometric Standards, the MSSSO photometric standards, a composite list of bright spectroscopic standards and the Hipparchus Catalog. The majority of the standards come from the Hipparchus Catalog. Although, the Hipparchus Catalog is an excellent source of telluric standards for ISAAC, most of the stars in the catalog do not have IR magnitudes, which means that IR magnitudes have to be taken from 2MASS/DENIS or even inferred from the spectral type. Such an extrapolation leads to an uncertainty of 5-20% in the absolute flux calibration. If users wish to have a more certain absolute flux calibration, they should provide their own standards (and should have included these observations in their requested time in Phase 1). Alternatively, if the broad-band magnitudes of the object are known, the absolute flux calibration can be derived by convolving the measured spectrum with the broad-band filter curves. In this case, the IR magnitude of the standard is irrelevant, only the spectral type is important.

5 Performance

Compared with most infrared astronomy programs so far at the VLT, a larger fraction of the CRIRES science is likely to depend less on detection limit and more on the achievement of high signal to noise ratios on relatively bright objects (stars) and/or accurate radial velocities (e.g for detecting exo-planets).

Sensitivity expectations (before first light) for CRIRES are given in figure 11. Note that K-band performance (and off course L and M) are more or less limited by the thermal background whereas in J and H the detector performance is setting the limits. This means, that J and H band could profit from technical development in the field of detectors, whereas for $\lambda > 2\mu m$ the performance is no longer strongly affected by the detector characteristics. On the other hand in this field the point-source sensitivity approaches that of the lower resolution spectrograph ISAAC. In this wavelength regime some projects, which do not necessarily need the spectral resolution of CRIRES may still profit from the high spectral resolution, as this allows for a better discrimination against telluric interferences. In order to be able to realize these high sensitivity values in practice, however, possible sources of fringing (e.g interference filters) have had to be avoided and the requirement on the grating reproducibility is set to ~ 0.05 pixel in order to avoid limitations by flat field artifacts. If the wavelength reproducibility cannot be achieved "blind" it will be obtained by active spectrum control using sky lines as the reference. This means that the nominal velocity accuracy corresponds to this or $\sim 70 \text{m/s}$. Even higher accuracy is possible using the absorption gas cells although the actual gain depends strongly on the actual line density of the selected gas in the wavelength region of interest.

First light image of the sky is shown in Fig 13. The OH doubled at 1708.6nm is resolved at the resolution of CRIRES. This doubled still appears as a single line in the high resolution mode of ISAAC demonstrating the resolving power of CRIRES. In dispersion direction the FWHM is 2.8pixels.

5.1 AO Guide Stars

In CRIRES, the wavefront sensing occurs with the optical light ($<1\mu$ m).

The distance of the AO guide star:

Figure 11: Expected CRIRES sensitivity: S/N versus magnitude have been calculated for 1 hour integration time on a point source conservatively, based on the acceptance measurements of components and the expected detector performances. The graphs for H and K nearly overlap. During comissioningl we reached for $m_{\rm K}=13$ a S/N of 25.

Figure 12: First light

			Begin	End	Begin	End	Begin	End	Begin	End
NAME wave- length ID	Reference Wavelength nanometer [nm]	File name spectral reference	Detector # 1	Detector # 1	Detector # 2	Detector # 2	Detector # 3	Detector # 3	Detector # 4	Detector # 4
59/0/n	958.003	OH_Lines	943.523	948.517	949.899	954.698	955.962	960.560	961.754	966.145
59/0/i	958.003	OH_Lines	946.432	951.375	952.743	957.491	958.740	963.287	964.466	968.805
58/0/n	974.520	OH_Lines	959.796	964.875	966.280	971.160	972.445	977.121	978.334	982.799
58/0/i	974.520	OH_Lines	962.754	967.781	969.171	974.000	975.270	979.893	981.093	985.504
57/0/n	991.617	OH_Lines	976.641	981.806	983.235	988.199	989.506	994.262	995.496	1000.038
57/0/i	991.617	OH_Lines	979.649	984.762	986.177	991.088	992.380	997.082	998.302	1002.789
56/0/n	1009.324	OH_Lines	994.087	999.342	1000.796	1005.847	1007.176	1012.016	1013.272	1017.893
56/0/i	1009.324	OH_Lines	997.148	1002.350	1003.789	1008.786	1010.100	1014.885	1016.126	1020.692
55/0/n	1027.676	OH_Lines	1012.167	1017.516	1018.996	1024.137	1025.490	1030.415	1031.693	1036.397
55/0/i	1027.676	OH_Lines	1015.282	1020.577	1022.042	1027.127	1028.466	1033.336	1034.599	1039.246
54/0/n	1046.707	OH_Lines	1030.917	1036.363	1037.869	1043.103	1044.481	1049.496	1050.797	1055.586
54/0/i	1046.707	OH_Lines	1034.088	1039.479	1040.970	1046.149	1047.511	1052.470	1053.756	1058.488
53/0/n	1066.456	OH_Lines	1050.373	1055.920	1057.455	1062.786	1064.189	1069.297	1070.622	1075.500
53/0/i	1066.456	OH_Lines	1053.604	1059.095	1060.613	1065.887	1067.275	1072.325	1073.636	1078.455
52/0/n	1086.965	OH_Lines	1070.579	1076.230	1077.794	1083.225	1084.655	1089.859	1091.210	1096.179
52/0/i	1086.965	OH_Lines	1073.870	1079.464	1081.012	1086.385	1087.799	1092.945	1094.280	1099.191
51/0/n	1108.278	OH_Lines	1091.576	1097.336	1098.930	1104.466	1105.923	1111.228	1112.605	1117.670
51/0/i	1108.278	OH_Lines	1094.931	1100.633	1102.210	1107.687	1109.128	1114.374	1115.734	1120.739
50/0/n	1130.443	OH_Lines	1113.413	1119.286	1120.912	1126.557	1128.042	1133.452	1134.855	1140.021
50/0/i	1130.443	OH_Lines	1116.833	1122.648	1124.256	1129.841	1131.311	1136.659	1138.047	1143.150
49/0/n	1153.513	OH_Lines	1136.141	1142.133	1143.790	1149.549	1151.064	1156.582	1158.014	1163.283
49/0/i	1153.513	OH_Lines	1139.630	1145.561	1147.202	1152.899	1154.398	1159.854	1161.270	1166.476
48/0/n	1177.545	OH_Lines	1159.816	1165.930	1167.622	1173.499	1175.046	1180.677	1182.138	1187.516
48/0/i	1177.545	OH_Lines	1163.377	1169.430	1171.104	1176.918	1178.448	1184.016	1185.461	1190.774
47/0/n	1202.599	OH_Lines	1184.498	1190.741	1192.468	1198.468	1200.047	1205.797	1207.289	1212.779
47/0/i	1202.599	OH_Lines	1188.134	1194.314	1196.023	1201.959	1203.521	1209.206	1210.681	1216.106
46/0/n	1228.743	OH_Lines	1210.253	1216.630	1218.394	1224.523	1226.136	1232.009	1233.533	1239.141
46/0/i	1228.743	OH_Lines	1213.967	1220.279	1222.025	1228.089	1229.684	1235.491	1236.998	1242.539
45/0/n	1256.048	OH_Lines	1237.153	1243.670	1245.473	1251.736	1253.384	1259.386	1260.943	1266.675
45/0/i	1256.048	OH_Lines	1240.948	1247.399	1249.183	1255.380	1257.011	1262.945	1264.484	1270.148
44/0/n	1284.595	OH_Lines	1265.275	1271.938	1273.782	1280.186	1281.871	1288.007	1289.600	1295.460
44/0/i	1284.595	OH_Lines	1269.155	1275.751	1277.576	1283.912	1285.579	1291.646	1293.221	1299.011
43/-1/n	1299.404	OH_Lines	1278.837	1285.919	1287.881	1294.701	1296.498	1303.049	1304.751	1311.021
43/-1/i	1299.404	OH_Lines	1282.980	1289.994	1291.936	1298.688	1300.466	1306.947	1308.631	1314.831
43/1/n	1329.534	OH_Lines	1310.622	1317.156	1318.962	1325.227	1326.874	1332.863	1334.415	1340.117
43/1/i	1329.534	OH_Lines	1314.407	1320.872	1322.658	1328.854	1330.482	1336.399	1337.932	1343.563
42/-1/n	1330.350	OH_Lines	1309.300	1316.548	1318.556	1325.537	1327.376	1334.081	1335.823	1342.241
42/-1/i	1330.350	OH_Lines	1313.540	1320.719	1322.706	1329.617	1331.438	1338.071	1339.794	1346.140
42/1/n	1361.181	OH_Lines	1341.823	1348.511	1350.360	1356.773	1358.459	1364.589	1366.177	1372.015
42/1/i	1361.181	OH_Lines	1345.698	1352.315	1354.144	1360.485	1362.152	1368.209	1369.778	1375.542
41/-1/n	1362.806	OH_Lines	1341.249	1348.672	1350.728	1357.877	1359.761	1366.627	1368.411	1374.983
41/-1/i	1362.806	OH_Lines	1345.590	1352.942	1354.978	1362.056	1363.920	1370.713	1372.478	1378.977
41/1/n	1394.372	OH_Lines	1374.546	1381.396	1383.289	1389.857	1391.584	1397.862	1399.489	1405.468
41/1/i	1394.372	OH_Lines	1378.514	1385.292	1387.164	1393.659	1395.366	1401.570	1403.177	1409.081

Figure 13: First light image of the sky. The OH doubled at 1708.6nm is resolved at the resolution of CRIRES.

Two field selectors allow to pick the AO guide star within a $2' \times 1'$ field centered on the spectrograph field. However, only under good atmospheric conditions, a star at a distance >10'' will provide a significant image quality improvement. Under Excellent conditions, bright stars as far as 20'' - 30'' can still be used to provide a mild improvement of the image quality.

The brightness of the AO guide star:

The intra- and extra-focal pupil of the AO guide star is imaged on a lens-let array, and each lenslet fed to an Avalanche Photo Diode (APD) that ultimately forward its signal to the Real Time Computer (RTC).

The Flux on the APD is limited to 1 million counts (in order not to damage the devices) and thus, stars brighter than $R\sim11$ mag are dimmed by a set of neutral density filters (for up to \sim 9 mag). Hence, stars brighter than $R\sim2$ mag cannot be used as AO guide star. Stars brighter than $R\sim17$ mag will not improve further the performance of the AO system.

Good correction under average seeing are still obtained with stars as faint as $R\sim14$ mag. Any star fainter than this will require good to excellent atmospheric conditions to provide an image quality improvement.

Service mode: we do not recommend to prepare observations with an AO guide star fainter than $R \sim 14$ mag, unless you provide a very restricted constraint set that forces the observatory staff to observe your target under the very best atmospheric conditions (which in turn reduces dramatically your chances of seeing this observation ever performed).

Visitor mode: the above recommendation is also valid, but for cases in which you have selected a very faint AO guide star, you could, in parallel, prepare OBs with no AO acquisition, i.e. if the atmospheric conditions are not sufficient to close the AO loop on your guide star, you would fall back on the same observation without AO.

The color of the AO guide star:

The color of the guide star is important for two reasons:

1. The APD response curve extends from 450nm to 900nm and peaks around 650nm. Thus, the R band magnitude provides only a crude estimate of the number of photons that the wave front sensor (WFS) will collect. The B-R color provides a color term with which we can correct the R band magnitude to get a better estimate of this number. Very crudely, the magnitude computed by the RTC scales as:

 $RTC_{mag} = R_{mag} - 2.8 + 1.65 * (B-R)$

I.e. Blue stars will provide more photons to the WFS. The RTC estimates magnitudes for

stars with (B-R)~1.7 (e.g. K2V star).

2. The color is also essential for atmospheric refraction compensation. The WFS corrects the telescope guiding for the atmospheric refraction difference between its (optical) guiding wavelength and the (near-infrared) central wavelength of the spectrograph set-up. Once the response curve of the WFS is taken into account, the optical guiding wavelength can be derived from the (B-R) color as follows:

Guiding wavelength(nm) = 590 + 40*(B-R)

5.2 Spectrograph modes

At the nominal spectral resolution¹ of CRIRES typically 50 grating settings will be sufficient to cover the entire infrared spectrum accessible from the ground in the range of $0.95 \le \lambda \le 5.2 \mu m$.

Offered instrument	t wavelengths settings.
wavelength	wavelengths ID

However, for this period only a subset of discrete settings will be supported by the observatory for science observations.

- allowed instrument wavelengths settings which could be commissioned for this period are given in Tab. **??**.
- Set-ups will be done, by using the instrument model, to position the spectrum with the precision of typically a few pixels.
- In case that sky lines can be detected in starring frames they will be used to improve the absolute wavelength calibration by the pipeline. However, not for each setting one can expect to have sufficient sky lines. Therefore (in general) the absolute wavelength calibration is not better than given by the present instrument model (see item before). It is a goal of future commissioning runs to improve the absolute wavelength calibration.
- The *field-of-view* of the spectrograph is: slit width $\times 50''$. The nominal slit width is 0.4arcsec giving a resolving power of about 50,000. Using the smallest slit width of 0.2" (and hence higher spectral resolving power) is not recommended for the moment because of large slit losses of as much as a factor 3 compared to the nominal slit width.
- Caused by some bad detector characteristics we recommend to apply as observing strategy nodding of one or more (AB) cycles. Starring observation on one nodding position (A) is possible but shall be avoided because of detector glow effects which is strong for bright targets.

¹At the price of vignetting the resolving power can be ramped up to more than 10^5 . Such an operation is not excluded but not part of the baseline considerations for instrument calibration and operation.

5.3 Detector characteristics

CRIRES is equipped with four 1024×1024 pixel InSb detector arrays in the focal plane of the spectrograph. Observers shall use the ETC to optimize DIT, NDIT values. All other detector settings, voltages, best read out scheme, etc. are calculated for each setting automatically by the system. Some detector characteristics are summarized in the following Table and Figures.

Figure 14: Dark current (left) and conversion gain (right) of one of the four science detectors .

In Fig. 14 dark current and conversion gain of detector 2 is shown. The dark current is estimated from the slope of the signal in ADU or e^- as a function of integration time (s) for the linear region. Dark current of the four detectors 1, 2, 3, and 4 is 0.0527, 0.0317, 0.0369 and 0.0344 $[e^-/s]$, respectively. The conversion gain is measured by taking flat fields at different flux levels. One estimates the noise in a good, cosmetically clean, part of the individual detector arrays and plots the variance versus mean signal. The inverse slope is the conversion gain $[e^-/ADU]$. The conversion gain of the four detectors 1, 2, 3, and 4 is 7.737, 7.664, 7.689 and 8.077 $[e^-/ADU]$, respectively. Saturation levels for the science detector 1 and 2 is 16000ADU corresponding to a storage capacity of 120000e⁻. The cosmetic performance of the detectors is improving by lowering the detector temperatures. On the other hand as readout noise is lower for higher detector operating temperatures one needs to search for the optimal setting. In Fig. 15 the noise histogram and map of detector 2 is shown as a function of operating temperature. Best compromise is found operating detectors at at 27.5K.

|--|

Dark current	0.04 e ⁻ /s
Gain	8 e ⁻ /ADU
Read-out-noise	10 e ⁻ rms
Saturation level	120000e ⁻
Operating Temperature	27.5K

Read out settings

There are only two detector read-out parameters to be adjusted by the observer, DIT and NDIT. As the dark depend on DIT setting we recommend to use:

• In general if there are no starvation or saturation risk on medium bright stars use DIT = 30s.

Figure 15: For science detector 2 we show: on the left, the noise histogram for different operating temperatures (left) and on the right, the noise map at detector temperature of 32 (top), 30 (middle) and 26K (bottom). Note that the cosmetic quality improves by lowering the temperature while the read out noise increases. Best compromise is found operating the detectors at 27.5K.

- For short exposures on standard stars brighter than J,H,K ~ 8−10 mag, DITs of 1s and NDIT between 2 and many (≥ 10).
- for long exposures on faint targets in which no saturation risk is given, DIT depending on the frequency on which the sky is obtained, so for faint targets DIT of 120, 300, 600, and 900s may be used.

5.4 System efficiency and throughput

The overall efficiency of CRIRES is measured on spectrophotometric calibration standard stars. The photometric flux of such a star in Jy, F_{ν} , is converted to the flux in photons/s/pixel, F_{λ} . It holds, usnig SI units, that:

$$F_{\lambda} = \frac{c}{\lambda^2} F_{\nu} \cdot \frac{10^{-26}}{E_{\gamma}} \cdot A_{\text{Tel}} \Delta \lambda$$

where E_{γ} is the photon energy, A_{Tel} is the telescope are and $\Delta \lambda = \lambda/R$ is the dispersion in units of $\mu m/\text{pixel}$.

The conversion gain after multiplication by the interpixel capacitance of 0.9 yields 7.73 e^{-}/ADU . The overall efficiency is defined as the ratio of $e^{-}/s/pixel$ as measured on the detector divided by the theoretical expected photon flux (photons/s/pixel) arriving above the Earth's atmosphere. In Fig. 16 the overall efficiency as a function of slit width for order 26 at 2150nm is shown together with the peak efficiency versus slit width. Below a slit width of 0.3'' the efficiency in this measurement is below 3%. One of the main reason is that for short coherence times (2ms) the AO does not work effectively and most of the energy of the star is in the seeing disk not entering the spectrograph. Opening the slit to 0.7'' increases the throughput to 12% and for widely opened slit it reaches 17%. Repeating this measurement with better seeing conditions was not possible during the first comissionnig run. For this period we therefroe strongly encourage observers to use a slit width of 0.4'' at the expense of a reduced resolving power of 50000. In case the highest possible resolution of nominally 100000 is important to reach for a particular observing proposal a slit width of 0.2'' can be used only at the expense of drastically reduced efficiency and therefore much longer exposure times. This issue is subject to further instrument characterisations in future comissioning runs but can also not propserly considered in the ETC for the time being.

Figure 16: Overall system efficiency. The wavelength dependence of the efficiency for a particular wavelength setting is shown left for different slit widths. The peak efficiency as a function of slit widths is given on the right.

5.5 Stabillity

For wavelength calibration the stabillity and reproducibillity of the different mechanical functions of CRIRES are important. The positioning reproducibillity of the prism as a function of read out of the encoder shows a peak to peak variation of ± 1.5 pixels. This reproducibility can be reduced to an rms of 0.44 pixels by introducing the stabilisation times of 10s. In Fig.17 the positioning reproducibility of the prism is shown as a function of mean values of the encoder reads which are averaged over a period of 10s. Similar figures are found for the positioning reproducibility of the grating which shows a peak to peak variation of ± 2.5 pixels and by introducing stabilisation times a rms reproducibility of 1.1 pixels. A FFT analysis classifies thsoe oscillations to have white noise characteristics also we will analyse this performance in more detail in the future. The rms reproducibility of the positioning of the slit is 0.07 pixels and that of the piezo is 0.035 pixels. Demonstarting the superb stability of the piezo.

The good point is also that the oscillations noted by inspecting encoder values of the prism and grating are not directly coupled to the wavelength stabillity. For example if one analysis the stabillity of lines one find a rms fluctuation of 0.33 pixels.

In general the calibration strategy is that the absolut wavelength calibration is performed by cross correlation of the observered sky lines with information provided by catalogs such as HITRAN or OH

line lists. So wavelength calibration is aimed to be done from the data of a particular observations. In the moment we cannot granty that this strategy is working for all offered wavelengths settings.

Figure 17: Positioning reproducibility of a line centered on a specific detector pixel is shown as a function of mean values of the encoder reads. Mean values are computed by averaging over a period of 10s. The computed rms is 0.44pixels.

5.6 Limiting magnitudes

Limiting magnitudes (S/N=10 per spectral pixel, for a point source in 1h on source integration are:

Band Limiting Magnitudes (continuum)

For more detailed exposure time calculation, we encourage to use the exposure time calculator.

5.7 The Exposure Time Calculator

The CRIRES exposure time calculator can be found at:

http://www.eso.org/observing/etc

it returns a good estimation of the on source integration time necessary to achieve a given S/N, as a function of atmospheric conditions.

A few notes on *input parameters* :

• the parameters to be provided for the input target are standard. The input magnitude can be specified for a point source, for an extended source (in which case we compute an integration over

the surface defined by the input diameter), or as surface brightness (in which case we compute values per square arcseconds.

• if an AO guide star is used, do not forget to *tick the box AO* under instrument set-up, and provide the values for AO guide star distance, its R mag and (B-R) color. The two latter can be obtained from many of the online star catalogs (e.g. GSC II, USNO, UCAC, ...), and are used to compute how much photons will be available to the wavefront sensor (whose response curve ranges from 450nm to 900nm and peaks around 650nm).

• Results can be given as exposure time to achieve a given S/N or as S/N achieved in a given exposure time. In both cases, you are requested to input a typical DIT, which for long exposures will probably be anything between 300 and 900s, typically.

The *output from the ETC* summarize your input values and provides some output for which you should remember the following:

• The integration time is given on source: depending on your technique to obtain sky measurements, and accounting for overheads, the total observing time will be much larger.

• The S/N is given per spectral pixel, not per resolution element! i.e. to compute your S/N for a resolution element, make sure that you sum the right number of pixels (typically 2).

For more detailed information on ETC see online help provides as links from the ETC page.

5.8 Proposal form

For CRIRES proposals, no specific input to the ESO proposal form is needed.

In particular, as CRIRES can be used with and without AO guide star, your target list will not be checked for valid AO guide stars (as it is done e.g. for NACO). However, you are requested to state whether you will or will not use AO. Choices of set-ups are given below.

%\INSconfig{}{CRIRES}{no-AO}{provide HERE list of setting(s) (J,H,K,H+K, ?????)}
%\INSconfig{}{CRIRES}{NGS}{provide HERE list of setting(s) (J,H,K,H+K, ????)}
%

6 Preparation of observing blocks

This sections guides through some details in preparing CRIRES observing blocks during ESO proposal submission phase 2. Observations may either be submitted for service or visitor mode. Familiarize yourself with some general information about phase 2 and submission of OBs by consulting the following web pages:

http://www.eso.org/observing/observing.html
and
http://www.eso.org/observing/p2pp
and
http://www.eso.org/paranal/sciops

These web pages set the phase 2 policy and its information overrules this manual. Unlike other VLT instruments OB preparation for CRIRES does not require specific software preparation tools.

6.1 Information required

The following information is required for a successful creation of CRIRES observing blocks:

• Target coordinates: Also CRIRES has a slit viewer target coordinates should be as precise as possible.

• Observations with AO guide star: target coordinates are offset from the AO guide star coordinates, i.e. it is *strongly recommended* to obtain the AO guide star and target coordinates from the same catalog/reference system. Further, the AO guide star coordinate should be accurate enough such that it is visible during the acquisition performed. VLT absolute pointing accuracy is 1'' - 2''.

• Observations without AO guide star: there are two possibilities.: i) to specify the *telescope* guide star in the acquisition template, and provide target coordinates in the same reference system – this will guarantee a pointing accuracy of typically 0.1'' - 0.2''. Or ii) to point to a bright, nearby star and perform an offset from this star at the end of your acquisition. In this case, coordinates of science target and bright star shall be from the same reference system.

• Sky measurements: Using the long slit of CRIRES and by nodding with an amplitude smaller than the slit length (50'') the object is still in the slit while the sky is measured. Otherwise sky measurements have to be obtained from offset fields, and the acquisition templates allow for several option (see Sec. 10). The frequency of sky measurements depend on the band (more frequent in J, H, less in K) and on the accuracy on which one wants to subtract them. Sky variations are of order a few minutes. Thus sky measurements could vary from 120s to 600s. It is recommended to choose the same DIT, and vary NDIT only if noise characteristics are not important for your subtraction.

6.2 OBs and P2PP

CRIRES follows very closely the template design set by other VLT instruments such as ISAAC, SINFONI and NACO (see also Sect. 10).

6.2.1 Templates

Here we give an overview of the CRIRES templates. A more detailed description can be found in Sec. 10.

Acquisition

Two acquisition templates allow to distinguish between the cases of observing without AO $(.._acq_noAO)$ and with a Natural Guide Star (NGS) for AO corrections $(.._acq_NGS)$.

The former resembles other VLT acquisition templates, except for two particularities:

• It allows to flag whether the Deformable Mirror (DM) should be flatten after the telescope preset, before the observations – this is highly recommended in order to obtain the best image quality.

• It allows an end-offset to be made, i.e. to acquire a bright star and perform a known offset to the real target.

The acquisition for AO using a natural guide star has also a few particularities, concerning information on the AO guide star:

• It requires the absolute coordinates of the AO guide star. Unless you tick the box 'Target = AO Guide Star' in which case it will use the target coordinates as the one for the AO guide star.

• It also asks for the B-R color of the AO guide star. This is used to compute the guiding wavelength for the field selector holding the AO guide star. Which in turn is used to correct for atmospheric refraction effects. [Roughly speaking: the field selector takes over the function of the telescope guiding in AO mode by locking on the AO star; for longer observations at high airmass, or during acquisition, the offset due to atmospheric refraction at the different wavelength (visible on the AO system vs. NIR on the spectrograph) needs to be taken into account].

• Finally, it requires the FWHM of the AO Guide star in order to optimize a diaphragm in the AO system. This diaphragm is set as a function of the seeing such as to optimize the amount of light received from the object with respect to the amount of background light from the sky. If your object is a point source, leave this to zero (only the seeing will be taken into account). Only if your AO guide 'star' is significantly extended with respect to the seeing (i.e. comparable to the seeing value), this optimization parameter will have a noticeable effect.

Finally, both acquisition templates will usually acquire during the acquisition sequence a sky image to be subtracted from the object image (to enhance the contrast). If your object is bright in the NIR (e.g. K<10 mag), this is not needed and you can save a bit of time by setting the "Alpha and Delta offset to sky" to 0 – this will force the template to skip the sky measurement.

Observing

The observing templates are standard if you have observed with other NIR instruments at the VLT or NTT. They allow variations in the strategy of obtaining sky measurements.

Calibration

Darks, arc (wavelength calibration), and lamp (flat-field) exposures are taken during daytime as part of the calibration plan (see sect. 9).

If, for a particular reason, you wish to obtain arcs or lamps immediately after your exposure, you can attach the template .._cal_Nightcalib at the end of your OB. However, any kind of instrument

flexure in the spectral direction are very small.

If you wish to estimate exactly the image quality obtained on your AO guide star, you can insert in your OB the template ...cal_NGS immediately after your acquisition. This will set back the AO guide star into the spectrograph field of view and obtain an image of the NGS which can later be used for performance/PSF analysis.

Note that such an image is *not* taken by default during the acquisition (unlike for NACO for example).

Telluric standard stars are part of the calibration plan for all your observations. PSF standard stars are *not*. If you wish to observe a PSF standard star, prepare a corresponding OB with the template .._cal_PSF.

6.2.2 Observing Blocks – OBs

Any CRIRES science OB should contain one and only one acquisition template, followed by a number of science templates.

CRIRES foresees two cases in which calibration templates can be attached to such science OBs.

The special nighttime calibrations (.._cal_Nightcalib), that can be attached after every set-up in the OB, or preferably the OB should contain only one instrument set-up and the Nightcalib template be attached to the end of the OB.

And .._acq_NGS, to be attached typically right after the acquisition template in order to record an image of the AO Natural Guide Star.

6.2.3 P2PP

Using P2PP to prepare CRIRES observations does not require any special functions:. Also no file has to be attached except for the finding chart, all other entries are standard.

6.3 Finding Charts

In addition to the general instructions on finding charts and README files that are available at:

http://www.eso.org/observing/p2pp

the following is recommended:

- Ideally, the finding chart should show the filed in the NIR, or at least in the red, and the wavelength of the image should be specified in the FC or the README file.
- The AO guide star (if used) should be clearly marked.
- The bright star from which to offset (if used) should be clearly marked.
- The $0.2'' \times 50''$ field-of-view of the slit should be marked.
- The OB names for PSF calibration stars should be prefixed with the string PSF_.

• The magnitude of the brightest object in all fields, including standard stars, should be explicitly given in the README file (or otherwise indicated on the Finding Charts).

7 Observing with CRIRES at the VLT

7.1 Overview

As for all ESO/VLT instruments, users prepare their observations with the P2PP software. Acquisitions, observations and calibrations are coded via templates (Sec. 10) and two or more templates make up an Observing Block (OB). OBs contain all the information necessary for the execution of an observing sequence. CRIRES and the telescope are setup according to the contents of the OB. They are executed by the instrument operator.

The CRIRES Real-Time Display (RTD) is used to view the raw frame as well as the reconstructed images. During acquisition sequences, it is mostly used in slit viewer mode, for proper centering of the targets in the slit. Scientific exposures are typically checked in the raw frame display mode, in order to view spectral features. Beside an overview of the instrument set-up, the wavefront pupil as well as other information on the AO system can be displayed on a separate screen.

Daytime calibrations are executed the following morning by observatory staff.

7.2 Visitor Mode Operations

Information/policy on the Visitor Mode operations at the VLT are described at:

http://www.eso.org/paranal/sciops

The procedure for CRIRES does not deviate from the standard operations.

Visitors should be aware that about 30 minutes of their time will be taken for calibrations: for each scientific target for which the users do not observe a telluric standard, the observatory staff will do so.

7.3 The influence of the Moon

Moonlight does not noticeably increase the background in any of the CRIRES modes, so there is no need to request dark or gray time for this reason. However, it is recommended not to observe targets closer than 30° to the moon to avoid problems linked to the telescope guiding/active optics system. The effect is difficult to predict and to quantify as it depends on too many parameters. Just changing the guide star often solves the problem. Visitors are encouraged to carefully check their target positions with respect to the Moon at the time of their scheduled observations. Backup targets are recommended whenever possible, and users are encouraged to contact ESO in case of severe conflict (i.e. when the distance to the Moon is smaller than 30°). Visitors can use the tools that are available at http://www.eso.org/observing/support.html (select the link "airmass" which is under "User Support Tools") to help determine the distance between targets and the moon for given dates.

However, the moon may affect the quality of the adaptive optics correction, if the source used for wavefront sensing is fainter than R=15 mag. In these cases, reducing the lunar illumination (FLI) constraint to approximately 0.7 and increasing the distance to the Moon to approximately 50 degrees is generally adequate. Even here, it is important not to over-specify the constraints, as this reduces the chances of the Observing Block to be executed.

7.4 Target Acquisition

Schematic description of the sequence of events occurring during the target acquisition.

The acquisition sequence for observation with AO is the following:

- Preset the telescope to the target coordinates
- offset the telescope to the AO guide star
- Interactively allow to re-center the AO guide star
- Close the loop, and offset the telescope back to the target
- Interactively allow to re-center the target in the slit

The acquisition sequence for observation without AO is the following:

- Preset the telescope to the target coordinates
- Flatten the Deformable Mirror using the calibration fiber
- Interactively allow to re-center the target in the slit
- If requested, offset from the centered object (e.g. to point to a faint target)

7.5 Offset conventions and definitions

CRIRES follows the standard astronomical offset conventions and definitions.

All offsets are given in arc seconds, but the reference system can be chosen to be the sky (Alpha, Delta) or the Detector (X,Y).

For a position angle of 0, the reconstructed image on the RTD will show North up and East left. The positive position angle is defined from North to East.

Note that the templates use cumulative offsets!

That is, your position at a given time is derived from the *sum* of all offsets specified so far in the template.

For example, the series of offsets: 0, -10, 0, 10 brings you back to the original position for the last exposure. This could have been the definition of a series in which we define an exposure on object, followed by two sky exposures at -10'' of the original position, before pointing back on the object for the fourth exposure.

7.6 Overheads

Hardware Item	Action	Time
		(minutes)
Paranal telescopes	Preset	6
Paranal telescopes	Offset	0.25
CRIRES	Acquisition without AO	3
CRIRES	Acquisition with AO	2 + 4 * (DIT * NDIT)
CRIRES	Acquisition target (with/without AO)	4 + 4 * (DIT * NDIT)
CRIRES	Instrument setup (grating change)	2.5
CRIRES	Science exposure read-out (per $DIT > 1min$)	1
	Note: table needs to be updated! ???	

The telescope and instrument overheads are summarized below.

For acquisition with AO, DIT and NDIT refer to the ones requested for the AO natural guide star (NGS). Instrument set-up is usually absorbed in the telescope preset. Changing grating within an OB is *very slow* (2.5 min on average).

Acquisition without AO takes 3 minutes, mostly used to drive in the calibration fiber, close the AO loop once in order to flatten the deformable mirror, and drive out the fiber. In this way, the optimal image quality at the telescope preset is obtained.

Part III CRIRES data format

8 The CRIRES data reduction cookbook

The CRIRES pipeline has been/will be developed by ESO/DMD and uses the ESO/CPL library. The main observation templates are supported by the pipeline reductions. Raw images are recombined, spectra extracted and calibrated in wavelength. Sensitivity estimates based on standard star observations are provided.

More information will be found at: http://www.eso.org/observing/dfo/qc once the pipeline will be ready for distribution.

Part IV Reference Material

9 CRIRES scientific calibration

The calibration plan defines the default calibrations obtained and archived for you by the Paranal Science Operations. This is what you can rely on without asking for any special calibrations. CRIRES science calibrations plan includes the following measurements. AO calibration tasks are not mentioned.

Calibration	Purpose
	Darlie and had sized many instrumental hadrony d
CRIRES_spc_cal_Darks	RON gain bad pixel
CRIRES_spc_cal_Flats	Pixel to pixel gain variation, flats
CRIRES_spc_cal_Emis	Pixel to wavelength relation using emission lines
CRIRES_spc_cal_Abs	Pixel to wavelength relation using absorption lines
CRIRES_spc_cal_Dist	Fit parameters for distortion map
$CRIRES_spc_cal_StandardStar$	Photometric conversion, sensitivities
CRIRES_spc_cal_scale	Measure plate scale on binary stars
CRIRES_spec_cal_prism	Measure transmission profile of the prism

10 CRIRES template reference

All scientific and calibration observations with ESO instruments are prepared as observing blocks (OBs) with the phase 2 proposal preparation tool (P2PP). The scheduling of these OBs is then done on the site with the broker of observing block (BOB) and p2pp in visitor mode and with bob and the observation tool (OT) during service mode observation runs.

Observing blocks consist of the target information, a small number of user selected templates, the constraints sets and the scheduling informations. The observing templates which are described below are lists of keywords (parameters of the respective templates) to define the configuration and setup to be used for the respective observations.

Parameters are user defined or hidden to the user to simplify the appearance of the parameter lists. Hidden parameters cannot be changed by the users but by the instrument operators. Since the hidden parameters will be rarely changed during science observation runs we do not provide an explanation here in the template reference section.

Unlike for other instruments there are only a few templates available for CRIRES. There exists only one acquisition template which however is a rather complex tool box operated by the instrument operator. The user has only to specify input parameters. A summary of supported templates together with the short description is given in the following table:

acquisition templates	functionality	comment
CRIRES_ifs_acq_NGS	Interactive Natural Guide Star Ac- quisition	recommended
science templates		
CRIRES_ifs_obs_GenericOffset	IFS with user defined offsets	
night calibration templates		
$CRIRES_ifs_cal_StandardStar$	Standard star calibration observa- tion	calibration plan
day time calibration templates		
CRIRES_ifs_cal_Darks	Darks calibration	calibration plan

Most users can prepare the complete observation runs with templates marked as "recommended". The calibration templates marked as "calibration plan" are executed by the observatory staff without being specifically requested during the phase 2 observation preparation. The observatory will guarantee that these basic calibration observations are taken within the framework of the calibration plan.

A typical observation block with natural guide star adaptive optics in a normal field would consist of the following templates:

CRIRES_ifs_acq_NGS natural guide star acquisition CRIRES_ifs_obs_xxxx staring/nodding along/perpendicular to the slit

Calibration templates could be of interest in the case that special night time standards or calibrations are requested. Night time arcs and flats are typically not needed even though they are offered for the time being.

The usual rules for OBs apply: you can include only 1 acquisition template, it can be followed by several science templates, changes to set-up are possible between the science templates, offsets of more than typically 1 arcmin will imply the re-acquisition of the telescope guide star, i.e. produce a large overhead (unless you specify smartly your telescope guide star in the template).

10.1 Acquisition Templates

The purpose of an acquisition template is to point the telescope (preset) to a given celestial position. Four different CRIRES acquisition tasks are distinguished:

- 1. science target used for AO and SV. This should be the default option.
- AO and SV adjusted on bright compact object outside the slit and where science target (e.g. nebulosity) position is given as offsets from bright – compact object
- 3. no AO, calibration star is used and the slit is wide open (> 0.5 1")
- 4. no AO, on extended science object without bright compact object in the field.

The slit is, at the moment, mechanically frozen to a fixed slit width of 0.2" so that it cannot be moved as foreseen in task 3 above and is therefore omitted. All acquisition tasks required for CRIRES are implemented using a single interface which is driven by pop up windows. Starting from the usual BOB interface which is shown in Fig.18 there are four additional interactive windows as for the four main steps during the acquisition tasks. For each step the pop-up window gives a short description followed by a parameter section with default parameters. They can be overwritten by the IOP. After parameters are reviewed the IOP can execute them by clicking on SETUP. The window include a short message of the action describing the next acquisition step. The interface is coded so that the IOP is able to go to the next step but it also able to return back to the previous step without aborting the sequence. The four main acquisition steps are:

- Center NGS in open AO loop (Fig.19)
- Fine center NGS and close AO loop (Fig.19)
- Center target in closed loop (Fig.20)
- Adjust slit viewer guiding (Fig.20)

The main function of the acquisition template is to preset the telescope, to setup the instrument and to move the target to the center of the field of view. Furthermore the acquisition sequence will start, in case it is requested, the adaptive optics in closed loop mode or flatten the deformable mirror which is required to achieve good image quality in open loop (no AO). Optionally a sky subtraction frame can be taken in an offset field for faint targets. Finally some adjustment to the SV camera can be performed.

In the following the acquisition template keywords are described:

10.2 Parameter description:

CRIRES-0.01/CRIRES_acq.tsf								
To be specified:								
Parameter	Range <i>(Default)</i>	Label						
SEQ.TIME	603600 (NODEFAULT)	Total integration time (sec)						
TEL.TARG.ALPHA	ra ()							
TEL.TARG.DELTA	dec <i>(</i>)							
TEL.TARG.EQUINOX	(2000.0)							
TEL.TARG.ADDVELALPHA	(0.0)	RA additional tracking velocity						
TEL.TARG.ADDVELDELTA	(0.0)	DEC additional tracking veloc-						
		ity						
TEL.TARG.WCONJY	0300000 (1)	Source/Line flux in Jy or						
		${\sf Jy}/{\sf arcsec}^2$ at observing wave-						
		length						
TEL.TARG.HMAG	-210 (0.)	Source magnitude in H						
TEL.TARG.KMAG	-210 (0.)	Source magnitude in K						
TEL.TARG.VMAG	-215 (0.)	Source magnitude in V						
TEL.ROT.OFFANGLE	-235235 (0.)	PA on sky (deg)						
TEL.AG.GUIDESTAR	CATALOGUE SETUPFILE	Get Guide Star from						
	NONE (CATALOGUE)							
TEL.GS1.ALPHA	ra ()	Guide star RA						
TEL.GS1.DELTA	dec ()	Guide star DEC						
TEL.SKY.OFFALPHA	-120120 (0.)	Tel offset RA to sky (deg)						
TEL.SKY.OFFDELTA	-120120 (30.)	Tel offset Dec to sky (deg)						
SEQ.NGS.ISTARGET	1F <i>1</i>)	Target is AO GS						
SEQ.NGS.ALPHA	ra ()	RA of AO GS						
SEQ.NGS.DELIA	dec ()	Dec of AO GS						
SEQ.NGS.MAG	-225 (12)	AO GS magnitude in R						
SEQ.NGS.COLOR	-15 ()	AU GS B-R						
SEQ.NGS.FWHM	-010 (0)	AO GS FWHM (arcsec)						
	ia	Detector integration time (a)						
	ist)	Detector integration time (S)						
		Order /Sub order /Neminal						
INS.WLEIN	NONE (CATALOCUE)	Order/Sub-order/Nominal-						
	NONE (CATALOGUE)	Interlaced (e.g. Interlaced:						
	FLEV SKY STAT <i>(FLEV)</i>	19/2/1) Mode of de-rotation						
INS DROT POSANG	0 359 $(0, 0)^1$	Position Angle on sky						
Hidden parameters	0							
SEQ PRESET	$T \in (T)$	Telescope preset flag						
DPR CATG		Data product category						
DPR TYPE	OBIECT	Data product type						
		Data product type						

 1 North = 0 o ; East = 90 o

Parameter ranges for H,K magnitudes needs to be determined according to slit viewer detector starvation or saturation limits, respectively.

Parameter ranges for V magnitude needs to be determined according to AO requirements

INS.WLEN.ID: defines the optical configuration of the instrument and set up DIT and the detector read out mode. INS.WLEN.ID is given by three parameters: *order number, scanning number and mode.* Higher order numbers are at short wavelengths where it is not necessary to scan the order to get its full wavelength range. However, at larger wavelengths, respectively small order numbers, the detector cannot cover the full wavelength range of the order. In this case and to be able to measure the complete order one needs to apply a scanning strategy. For the highest wavelengths up to 5 scans are necessary. They are labeled by an interger number which is $\leq \pm 2$. Finally, INS.WLEN.ID includes the mode, which can be 'I' for interlaced or 'n' for normal. In normal mode there are gaps in spectral regions which coincide with physical gaps between the four individual detectors. To fill those gaps the inerlaced mode is applied. One example of INS.WLEN.ID is '59/0/n'. The observer is restricted to enter values of INS.WLEN.ID as described in Appendix X.

DIT and NDIT are Detector Integration Time and the number of DITs to be integrated before writing the data to the disk. NDIT is a user defined parameter and controls the total nitegration time but DIT is not. DIT is specified by the optical configuration which is given by INS.WLEN.ID.

RA, DEC, Equinox and Position angle on the sky define the respective celestial target coordinates. The position angle on the sky is given in the standard astronomical convention (N = 0, NE = 45, E = 90, ... in degrees). Note that for PA=0 (North up, East left), the slitlets are oriented East-West, i.e. you will coarsely sample the field in the North-South direction (250,100,25 mas per spaxel) and obtain a finer sampling of the field in East-West direction (125,50,12.5 mas per spaxel). Also, for PA=0 the slitlet number 1 will lie at the top of the detector (high y).

Differential tracking is only available for the telescope. There is no differential tracking between the natural guide star and the target. Accordingly the adaptive optics loop can be only closed on the moving target and not on background stars. The value is to be given in units of arcseconds/s. For service mode observations, an ephemerides file needs to be provided. Please consult the P2PP manual concerning the format and submission procedure.

Telescope guide stars are either selected from the "CATALOG"s available at the telescope, or selected by the users if the option "SETUPFILE" was selected.

Telescope offset RA, DEC to sky: These keywords define the position where the sky field is to be observed if set to values "! = 0". The sky exposure is taken before starting the interactive target identification. If the value is set to = 0, the step is skipped and the overhead time is shortened. It may not be the best choice to skip the sky for faint targets of J, H, K, H + K >> 15.

Please note: The coordinates of the telescope guide star, the target and the natural guide star of the AO system should be measured in the same consistent coordinate system with an accuracy of a small fraction of the CRIRES field of view. For bright natural guide stars (NGS) the AO system will detect in closed loop the small offsets of the NGS and correct it with a tip tilt movement of the deformable mirror.

NGS parameters: The parameters for the AO guide star are a logical flag (Science Target = AO Guide Star) and the coordinates of the AO guide star in RA and DEC (for the equinox we

presume the value given for the target coordinates). Furthermore the approximate size of the AO guide star (0 for point sources, only specify the size if you expect it to contributed significantly with respect to the seeing) and the approximate color of the AO guide star are to be selected. These parameters are required to properly setup the AO system with respect to aperture size of the WFS and differential atmospheric refraction between the visual light WFS and the IR spectrograph.

For any NGS fainter than 11 or 12 magnitudes it is mandatory that the telescope guide star coordinates are given by the user and aligned defined in the same reference system as the AO guide star (Telescope Guide Star Selection == SETUPFILE). The reason for this is that slight inaccuracies (~ 2") in the telescope and/or AO guide star coordinates could not be corrected for by the field selector - for brighter magnitudes the field selector 'drags' back and centers the AO guide star .

For normal field (not for globular clusters, not for the galactic center,...) the coordinates of the UCAC2 catalog should be accurate enough. The coordinates of the science target and NGS should be also known in the absolute celestial coordinate system in case of a UCAC2 telescope guide star.

Blind Offsets: In case of blind offset acquisitions the coordinates of the reference star must be entered into the target package of p2pp. The offsets are defined from the reference star to the target (positive offsets for targets North/East of the reference stars). The relative offset between reference star and target should be accurately known to about a small fraction of the field of view.

<u>F</u> ile	<u>C</u> onfigure <u>I</u> nterface <u>E</u> rrors	<u>H</u> elp
edit		
ı C	OBs: (file) -> bob -> CRIRES	
	Section blocks:	3
1		
	CRIRES_spec_acq_NGS CRIRES NGS acquisition	
	DET1	
	\rightarrow DIT = 1.0	
	$\sim NDIT = 1$	-
J.	CATG = ACQUISITION	
	TECH = SPEC	
z ê		
9-2	\rightarrow DROT MODE = FLEV	
	\rightarrow DROT.POSANG = 0.0	
<u>8</u> 1	\rightarrow SLIT.WIDTH = 1.0	
		7
		×
_R	Template log-messages	
ΩU	Done: Slit Viewer detector RTD initialised Sending Instrument Data	4
	Sending setup Checking guiding state	
	Checking Active Optics started	
5	Sky flat file:	
	Setting Slit viewer DCS guiding parameters: size = 404 pixels Communicating Sky Flat file to the Slit viewer DCS and RTD	
A Steh	Starting: CRIRES Interactive Acquisition	
	Check that a new image is displayed on RTD	
	Done: Close AO loop	
	Done: TCS offset 0.000,5.0 Check that a new image is displayed on RTD	
		Ļ
	, М	
		8
St	art Pause Abort Repeat	Reset status

Figure 18: BOB window interface of acquisition template .

Step 1: Center NGS - Open Loop

1. Adjust DIT, INT and FILTER for the Slit Viewer Detector. Check with the Slit Viewer RTD.

- 2. If needed, repeat sky flat and 1.
- 3. Center object via RTD: Click on the object via the Slit Viewer RTD

1. Slit Viewer Detector	2. Slit viewer Sky Flat	3. Center Object via RTD
DIT 5.000 NDIT 1	OFFA 0.0 OFFD 11.0	Click to center object
SV Filter	Take Sky Flat	
Action:		
Next step:	AU Loop will be close	d
SETUP	V RTD < Step B	ack Next Step ->
Step 2: Fin	e Center NGS -	Closed Loop
Step 2: Fin 1. Adjust DIT, INT and FILT 2. If needed, repeat sky flad 3. Center object via RTD: C	e Center NGS — TER for the Slit Viewer Detector. Check t and 1. Click on the object via the Slit Viewer F	Closed Loop
Step 2: Fin 1. Adjust DIT, INT and FILT 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector	e Center NGS – TER for the Slit Viewer Detector. Check t and 1. Click on the object via the Slit Viewer F 2. Slit viewer Sky Flat	Closed Loop with the Slit Viewer RTD. RTD 3. Center Object via RTD
Step 2: Fin 1. Adjust DIT, INT and FILT 2. If needed, repeat sky flad 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5.000 NDIT 1	e Center NGS – TER for the Slit Viewer Detector. Check t and 1. Click on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0	Closed Loop with the Slit Viewer RTD. RTD 3. Center Object via RTD
Step 2: Fin 1. Adjust DIT, INT and FILT 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5.000 NDIT 1 SV Filter	e Center NGS – TER for the Slit Viewer Detector. Check t and 1. Click on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat	Closed Loop with the Slit Viewer RTD. RTD 3. Center Object via RTD Click to center object
Step 2: Fin 1. Adjust DIT, INT and FILT 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5.000 NDIT 1 SV Filter	e Center NGS – TER for the Slit Viewer Detector. Check t and 1. Click on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat	Closed Loop with the Slit Viewer RTD. RTD 3. Center Object via RTD Click to center object
Step 2: Fin 1. Adjust DIT, INT and FILT 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5.000 NDIT 1 SV Filter	e Center NGS – TER for the Slit Viewer Detector. Check t and 1. Click on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat Offset to Target and Center	Closed Loop with the Slit Viewer RTD. 3. Center Object via RTD Click to center object Target.

Figure 19: Pop of window of step 1 and 2 during execution of acquisition template .

Step 3: Center Target - Closed Loop

1. Adjust DIT, INT and FILTER for the Slit Viewer Detector. Check with the Slit Viewer RTD.

2. If needed, repeat sky flat and 1.

3. Center object via RTD: Click on the object via the Slit Viewer RTD

1. Slit Viewer Detector	2. Slit viewer Sky Flat	3. Center Object via RTD
DIT 5.000 NDIT 1	OFFA 0.0 OFFD 11.0	Click to center object
SV Filter		
	I ake Sky Flat	
Action:		
Next step:	Adjust guiding window size	on KID.
SETUP	/ RTD <- Step B	ack Next Step ->
Step 4	: Slit viewer d	guiding
See F		
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat	ER for the Slit Viewer Detector. Check and 1.	with the Slit Viewer RTD.
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F	with the Slit Viewer RTD.
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F	with the Slit Viewer RTD.
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat	3. Center Object via RTD
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5. 000	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0	3. Center Object via RTD
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0	a with the Slit Viewer RTD. RTD 3. Center Object via RTD
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0	a with the Slit Viewer RTD. RTD 3. Center Object via RTD
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5. 000 NDIT 1 SV Filter	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat	3. Center Object via RTD
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5. 000 NDIT 1 SV Filter	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat	3. Center Object via RTD
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5. 000 NDIT 1 SV Filter Action: Adjust	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat guiding window size on H	RTD 3. Center Object via RTD I Click to center object Click to center object RTD when needed.
	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat guiding window size on H Continue with template	TD 3. Center Object via RTD
1. Adjust DIT, INT and FILTI 2. If needed, repeat sky flat 3. Center object via RTD: C 1. Slit Viewer Detector DIT 5. 000 NDIT 1 SV Filter Action: Adjust Next step:	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat guiding window size on F Continue with template	TD 3. Center Object via RTD Click to center object RTD when needed. e.
	ER for the Slit Viewer Detector. Check and 1. lick on the object via the Slit Viewer F 2. Slit viewer Sky Flat OFFA 0.0 OFFD 11.0 Take Sky Flat guiding window size on F Continue with template / RTD <- Step B	awith the Slit Viewer RTD. 3. Center Object via RTD I Click to center object RTD when needed. e. ack OK -> Continue

Figure 20: Pop of window of step 3 and 4 during execution of acquisition template .

10.3 Science Templates

Science observing templates provide various strategies for nodding between object and sky positions, for jitter offsets between images taken at the selected object and sky positions or offer the possibillity to perform staring observations. The template will automatically take exposures in an ABBA sequence with the respective A (object) and B (sky) positions randomly jittered with respect to each other. The common parameters of science templates are:

DIT and NDIT are the user defined integration time (for the exposures of the target) and the number of DITs to be integrated before writing the data to disk.

Number of AB or BA cycles: defines how often the AB cycle is repeated. Set to zero the template will just take exposures on source (position A), set to one will perform take a sequence AB, and set to two will do ABBA (object,sky, sky, object). For best sky subtraction the parameter should be set to values of one or larger.

10.3.1 CRIRES_obs_jitter

The science template CRIRES_obs_jitter follows the one of SINFONI called:

SINFONI_ifs_obs_FixedSkyOffset. It moves the telescope alternatively between 'object' and 'sky' positions (nodding) but in one dimension which is along the slit. The 'object' positions are randomly distributed (jittered) around the object (initial telescope position) and within a box whose dimensions are set by the parameter "Jitter box width" (in arcsec). The jitter is only performed along the slit. The size of the jitter box should be typically a few arcsec. If set to zero no jitter will be performed. The default parameters are those for staring observations.

The offsets are along the slit positions and are randomly distributed around a fixed offset position and defined by the parameter "INS.NODTHROW" from the original (target) telescope position. The dimension of the random positions are along the slit and set by the parameter "Jitter box width" around the initial 'sky' position, and therefore identical to those of the target jitter box.

The following two items are already defined by the acquisition task: i) Derotation can be done in sky or elevation mode and is given by INS.DROT.MODE. ii) The positon angle of the slit is given by TEL.ROT.OFFANGLE and is defined as the negative of the astronomical position angle (P.A.) on the sky: TEL.ROT.OFFANGLE = -P.A. and is measured counter clockwise from North to East.

CRIRES_obs_jitter	er IFS with jitter and nodding				
Parameters to be specified:					
Parameter	Range	Default	P2PP Label		
INS.WLEN.ID	isf	NODEFAULT	Wavelength ID: '58/1/n'		
SEQ.NDIT	110000	NODEFAULT	NDIT read-outs		
SEQ.JITTER.WIDTH	08	0	Jitter box width in arcsec		
SEQ.NABCYCLES	0100	0	Number of AB cycles, 0 for staring on		
			source		
INS.NODTHROW	060	0	Nodding offset along the slit (")		
Hidden parameters:					
SEQ.POISSON	1100	10			
SEQ.RETURN	TF	Т	Return to Origin ? (T/F)		
DPR.CATG	SCIENCE	SCIENCE	Data product category		
DPR.TECH	IFU,NODDING	IFU,NODDING	Data product technique		
DPR.TYPE	OBJECT	OBJECT	Data product type		

10.4 Nighttime Calibration Templates TBW

There are xxxx templates available to calibrate during the night. The StandardStar template is used to observe telluric standards of known JHK magnitudes to allow the removal of telluric features and to derive an estimate of the instrument response function for the flux calibration of the science data. This template would be typically used by the observatory staff spart of the calibration plan, unless there is a special request for a user selected standard. In that case, the user has to supply his/her own standard using this template. The PSF template is available to obtain an estimate of the instrument PSF by observing a user selected (typically bright) PSF reference star. The StandardStar and PSF templates are identical to the GenericOffset template in keyword content and function. There is furthermore an NGS template offered which will center the natural guide star (NGS) to the center of the image slicer to estimate the PSF by on-axis observations of the NGS. There are no parameters to be set in the template except the DIT, NDIT and a fixed sky offset. The template is only useful if target and NGS are not identical.

Attached lamp calibrations are also provided. These templates will read the exposure times and lamp setups from a local data base. Accordingly, there is only one parameter left over – the spectral dither flag – which defines whether spectrally dithered calibration should be taken or not.

10.5 Daytime Calibration Templates TBW

The day time calibration observations are typically prepared by the staff astronomers with an automatic tool (calobBuild) which will scan the headers of the frames taken during the nights. Based on this data it will then define and sort the required sequence of calibration exposures according to the CRIRES calibration plan. It is not foreseen that users will use any of the day time calibration templates below. We only present these templates to provide a reference between the data files and the respective templates.

11 CRIRES wavelength configuration

			Begin	End	Begin	End	Begin	End	Begin	End
NAME	Reference	File name	Detector							
wave-	Wavelength	spectral	# 1	# 1	# 2	# 2	# 3	# 3	# 4	# 4
ID	[nm]	rererence								
59/0/n	958.003	OH_Lines	943.523	948.517	949.899	954.698	955.962	960.560	961.754	966.145
59/0/i	958.003	OH_Lines	946.432	951.375	952.743	957.491	958.740	963.287	964.466	968.805
58/0/n	974.520	OH_Lines	959.796	964.875	966.280	971.160	972.445	977.121	978.334	982.799
58/0/i	974.520	OH_Lines	962.754	967.781	969.171	974.000	975.270	979.893	981.093	985.504
57/0/n	991.617	OH_Lines	976.641	981.806	983.235	988.199	989.506	994.262	995.496	1000.038
57/0/i	991.617	OH_Lines	979.649	984.762	986.177	991.088	992.380	997.082	998.302	1002.789
56/0/n	1009.324	OH_Lines	994.087	999.342	1000.796	1005.847	1007.176	1012.016	1013.272	1017.893
56/0/i	1009.324	OH_Lines	997.148	1002.350	1003.789	1008.786	1010.100	1014.885	1016.126	1020.692
55/0/n	1027.676	OH_Lines	1012.167	1017.516	1018.996	1024.137	1025.490	1030.415	1031.693	1036.397
55/0/i	1027.676	OH_Lines	1015.282	1020.577	1022.042	1027.127	1028.466	1033.336	1034.599	1039.246
54/0/n	1046.707	OH_Lines	1030.917	1036.363	1037.869	1043.103	1044.481	1049.496	1050.797	1055.586
54/0/i	1046.707	OH_Lines	1034.088	1039.479	1040.970	1046.149	1047.511	1052.470	1053.756	1058.488
53/0/n	1066.456	OH_Lines	1050.373	1055.920	1057.455	1062.786	1064.189	1069.297	1070.622	1075.500
53/0/i	1066.456	OH_Lines	1053.604	1059.095	1060.613	1065.887	1067.275	1072.325	1073.636	1078.455
52/0/n	1086.965	OH_Lines	1070.579	1076.230	1077.794	1083.225	1084.655	1089.859	1091.210	1096.179
52/0/i	1086.965	OH_Lines	1073.870	1079.464	1081.012	1086.385	1087.799	1092.945	1094.280	1099.191
51/0/n	1108.278	OH_Lines	1091.576	1097.336	1098.930	1104.466	1105.923	1111.228	1112.605	1117.670
51/0/i	1108.278	OH_Lines	1094.931	1100.633	1102.210	1107.687	1109.128	1114.374	1115.734	1120.739
50/0/n	1130.443	OH_Lines	1113.413	1119.286	1120.912	1126.557	1128.042	1133.452	1134.855	1140.021
50/0/i	1130.443	OH_Lines	1116.833	1122.648	1124.256	1129.841	1131.311	1136.659	1138.047	1143.150
49/0/n	1153.513	OH_Lines	1136.141	1142.133	1143.790	1149.549	1151.064	1156.582	1158.014	1163.283
49/0/i	1153.513	OH_Lines	1139.630	1145.561	1147.202	1152.899	1154.398	1159.854	1161.270	1166.476
48/0/n	1177.545	OH_Lines	1159.816	1165.930	1167.622	1173.499	1175.046	1180.677	1182.138	1187.516
48/0/i	1177.545	OH_Lines	1163.377	1169.430	1171.104	1176.918	1178.448	1184.016	1185.461	1190.774
47/0/n	1202.599	OH_Lines	1184.498	1190.741	1192.468	1198.468	1200.047	1205.797	1207.289	1212.779
47/0/i	1202.599	OH_Lines	1188.134	1194.314	1196.023	1201.959	1203.521	1209.206	1210.681	1216.106
46/0/n	1228.743	OH_Lines	1210.253	1216.630	1218.394	1224.523	1226.136	1232.009	1233.533	1239.141
46/0/i	1228.743	OH_Lines	1213.967	1220.279	1222.025	1228.089	1229.684	1235.491	1236.998	1242.539
45/0/n	1256.048	OH_Lines	1237.153	1243.670	1245.473	1251.736	1253.384	1259.386	1260.943	1266.675
45/0/i	1256.048	OH_Lines	1240.948	1247.399	1249.183	1255.380	1257.011	1262.945	1264.484	1270.148
44/0/n	1284.595	OH_Lines	1265.275	1271.938	1273.782	1280.186	1281.871	1288.007	1289.600	1295.460
44/0/i	1284.595	OH_Lines	1269.155	1275.751	1277.576	1283.912	1285.579	1291.646	1293.221	1299.011
43/-1/n	1299.404	OH_Lines	1278.837	1285.919	1287.881	1294.701	1296.498	1303.049	1304.751	1311.021
43/-1/i	1299.404	OH_Lines	1282.980	1289.994	1291.936	1298.688	1300.466	1306.947	1308.631	1314.831
43/1/n	1329.534	OH_Lines	1310.622	1317.156	1318.962	1325.227	1326.874	1332.863	1334.415	1340.117
43/1/i	1329.534	OH_Lines	1314.407	1320.872	1322.658	1328.854	1330.482	1336.399	1337.932	1343.563
42/-1/n	1330.350	OH_Lines	1309.300	1316.548	1318.556	1325.537	1327.376	1334.081	1335.823	1342.241
42/-1/i	1330.350	OH_Lines	1313.540	1320.719	1322.706	1329.617	1331.438	1338.071	1339.794	1346.140
42/1/n	1361.181	OH_Lines	1341.823	1348.511	1350.360	1356.773	1358.459	1364.589	1366.177	1372.015
42/1/i	1361.181	OH_Lines	1345.698	1352.315	1354.144	1360.485	1362.152	1368.209	1369.778	1375.542
41/-1/n	1362.806	OH_Lines	1341.249	1348.672	1350.728	1357.877	1359.761	1366.627	1368.411	1374.983
41/-1/i	1362.806	OH_Lines	1345.590	1352.942	1354.978	1362.056	1363.920	1370.713	1372.478	1378.977
41/1/n	1394.372	OH_Lines	1374.546	1381.396	1383.289	1389.857	1391.584	1397.862	1399.489	1405.468
41/1/i	1394.372	OH_Lines	1378.514	1385.292	1387.164	1393.659	1395.366	1401.570	1403.177	1409.081
40/-1/n	1396.885	OH_Lines	1374.795	1382.401	1384.508	1391.834	1393.764	1400.800	1402.628	1409.363
40/-1/i	1396.885	OH_Lines	1379.244	1386.777	1388.864	1396.116	1398.026	1404.988	1406.796	1413.456
40/1/n	1429.223	OH_Lines	1408.904	1415.924	1417.864	1424.596	1426.365	1432.799	1434.467	1440.594

40/1/i	1429.223	OH_Lines	1412.971	1419.917	1421.836	1428.492	1430.241	1436.599	1438.246	1444.297
39/-1/n	1432.712	OH_Lines	1410.061	1417.861	1420.021	1427.533	1429.512	1436.726	1438.601	1445.507
39/-1/i	1432.712	OH_Lines	1414.623	1422.348	1424.487	1431.923	1433.882	1441.020	1442.874	1449.703
39/1/n	1465.860	OH_Lines	1445.024	1452.223	1454.213	1461.115	1462.930	1469.528	1471.238	1477.521
39/1/i	1465.860	OH_Lines	1449.195	1456.317	1458.285	1465.111	1466.905	1473.425	1475.114	1481.318
38/-1/n	1470.425	OH_Lines	1447.184	1455.187	1457.403	1465.111	1467.142	1474.544	1476.467	1483.553
38/-1/i	1470.425	OH_Lines	1451.865	1459.791	1461.986	1469.616	1471.626	1478.950	1480.852	1487.859
38/1/n	1504.425	OH_Lines	1483.045	1490.432	1492.473	1499.557	1501.419	1508.189	1509.944	1516.391
38/1/i	1504.425	OH_Lines	1487.324	1494.633	1496.653	1503.657	1505.497	1512.188	1513.921	1520.288
37/-1/n	1510.177	OH_Lines	1486.314	1494.531	1496.806	1504.720	1506.806	1514.406	1516.381	1523.657
37/-1/i	1510.177	OH_Lines	1491.120	1499.258	1501.512	1509.346	1511.410	1518.930	1520.883	1528.078
37/1/n	1545.075	OH_Lines	1523.120	1530.705	1532.802	1540.075	1541.987	1548.940	1550.742	1557.362
37/1/i	1545.075	OH_Lines	1527.514	1535.020	1537.093	1544.286	1546.176	1553.046	1554.826	1561.363
36/-1/n	1552.138	OH_Lines	1527.618	1536.061	1538.399	1546.531	1548.674	1556.483	1558.513	1565.989
36/-1/i	1552.138	OH_Lines	1532.556	1540.918	1543.234	1551.284	1553.405	1561.132	1563.139	1570.532
36/1/n	1587.982	OH_Lines	1565.421	1573.216	1575.370	1582.844	1584.809	1591.954	1593.805	1600.609
36/1/i	1587.982	OH_Lines	1569.937	1577.649	1579.780	1587.171	1589.113	1596.173	1598.002	1604.721
35/-1/n	1596.497	OH_Lines	1571.283	1579.964	1582.369	1590.731	1592.935	1600.966	1603.052	1610.740
35/-1/i	1596.497	OH_Lines	1576.360	1584.959	1587.341	1595.619	1597.800	1605.746	1607.810	1615.412
35/1/n	1633.341	OH_Lines	1610.138	1618.155	1620.370	1628.057	1630.078	1637.425	1639.329	1646.327
35/1/i	1633.341	OH_Lines	1614.782	1622.714	1624.905	1632.506	1634.504	1641.765	1643.646	1650.555
34/-1/n	1643.466	OH_Lines	1617.516	1626.451	1628.926	1637.532	1639.800	1648.065	1650.213	1658.125
34/-1/i	1643.466	OH_Lines	1622.742	1631.592	1634.043	1642.562	1644.807	1652.985	1655.109	1662.933
34/1/n	1681.367	OH_Lines	1657.485	1665.736	1668.016	1675.928	1678.008	1685.571	1687.531	1694.733
34/1/i	1681.367	OH_Lines	1662.265	1670.429	1672.684	1680.508	1682.564	1690.037	1691.974	1699.086
33/-1/n	1693.283	tbd	1666.552	1675.756	1678.305	1687.170	1689.506	1698.020	1700.232	1708.383
33/-1/i	1693.283	tbd	1671.935	1681.051	1683.576	1692.352	1694.664	1703.088	1705.276	1713.336
33/1/n	1732.302	tbd	1707.700	1716.200	1718.549	1726.700	1728.843	1736.634	1738.653	1746.072
33/1/i	1732.302	tbd	1712.624	1721.035	1723.358	1731.418	1733.536	1741.235	1743.230	1750.556
32/-1/n	1746.214	tbd	1718.654	1728.144	1730.772	1739.912	1742.320	1751.098	1753.379	1761.783
32/-1/i	1746.214	tbd	1724.204	1733.603	1736.206	1745.254	1747.638	1756.323	1758.579	1766.889
32/1/n	1786.421	tbd	1761.053	1769.817	1772.240	1780.644	1782.853	1790.887	1792.969	1800.619
32/1/i	1786.421	tbd	1766.130	1774.802	1777.198	1785.509	1787.693	1795.631	1797.688	1805.243
31/-1/n	1802.562	tbd	1774.118	1783.912	1786.624	1796.057	1798.543	1807.602	1809.956	1818.629
31/-1/i	1802.562	tbd	1779.846	1789.546	1792.232	1801.571	1804.031	1812.995	1815.323	1823.899
31/1/n	1844.029	tbd	1817.846	1826.892	1829.392	1838.067	1840.347	1848.639	1850.788	1858.685
31/1/i	1844.029	tbd	1823.086	1832.037	1834.510	1843.088	1845.342	1853.536	1855.659	1863.457
30/-1/n	1862.667	tbd	1833.282	1843.399	1846.202	1855.947	1858.515	1867.874	1870.306	1879.266
30/-1/i	1862.667	tbd	1839.199	1849.220	1851.995	1861.643	1864.185	1873.445	1875.851	1884.711
30/1/n	1905.477	tbd	1878.424	1887.770	1890.354	1899.317	1901.673	1910.240	1912.460	1920.619
30/1/i	1905.477	tbd	1883.838	1893.086	1895.642	1904.505	1906.834	1915.300	1917.494	1925.551
29/-1/n	1926.919	tbd	1896.527	1906.991	1909.890	1919.969	1922.625	1932.305	1934.820	1944.087
29/-1/i	1926.919	tbd	1902.646	1913.011	1915.882	1925.860	1928.489	1938.067	1940.555	1949.719
29/1/n	1971.161	tbd	1943.177	1952.845	1955.517	1964.788	1967.226	1976.088	1978.384	1986.824
29/1/i	1971.161	tbd	1948.778	1958.344	1960.987	1970.155	1972.564	1981.322	1983.591	1991.925
28/-1/n	1995.763	tbd	1964.291	1975.127	1978.128	1988.566	1991.316	2001.340	2003.945	2013.541
28/-1/i	1995.763	tbd	1970.628	1981.361	1984.333	1994.666	1997.388	2007.307	2009.883	2019.372
28/1/n	2041.535	tbd	2012.554	2022.566	2025.333	2034.935	2037.459	2046.637	2049.015	2057.756
28/1/i	2041.535	tbd	2018.354	2028.261	2030.998	2040.493	2042.988	2052.058	2054.407	2063.039
27/-1/n	2069.708	tbd	2037.077	2048.312	2051.424	2062.246	2065.098	2075.491	2078.192	2088.141
27/-1/i	2069.708	tbd	2043.647	2054.776	2057.858	2068.571	2071.394	2081.678	2084.349	2094.188
27/1/n	2117.119	tbd	2087.066	2097.449	2100.318	2110.275	2112.892	2122.409	2124.876	2133.940

nnn <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>											
ZhY-r111.919hd											
hert-rayjata, sam, sam, sam, sam, sam, sam, sam, sa	27/1/i	2117.119	tbd	2093.081	2103.354	2106.193	2116.038	2118.626	2128.031	2130.467	2139.418
hert-res191.9.10191.9.	26/-1/n	2149.345	tbd	2115.465	2127.131	2130.362	2141.597	2144.558	2155.349	2158.153	2168.484
ahr/1m19m.3m19m.3m19m.3m19m.3m19m.3m20m.	26/-1/i	2149.345	tbd	2122.287	2133.842	2137.041	2148.165	2151.095	2161.772	2164.546	2174.761
ahr/1402190.141101.04210.040210.040210.040200.040<	26/1/n	2198.514	tbd	2167.307	2178.088	2181.068	2191.407	2194.125	2204.008	2206.569	2215.981
bit bit<	26/1/i	2198.514	tbd	2173.553	2184.220	2187.168	2197.392	2200.079	2209.845	2212.375	2221.670
25.47.10253.507100.101.000201.701 <th< td=""><td>25/-1/n</td><td>2235.357</td><td>tbd</td><td>2200.128</td><td>2212.258</td><td>2215.617</td><td>2227.301</td><td>2230.379</td><td>2241.600</td><td>2244.515</td><td>2255.257</td></th<>	25/-1/n	2235.357	tbd	2200.128	2212.258	2215.617	2227.301	2230.379	2241.600	2244.515	2255.257
BATAMBBA-MABBA-MABBA-MABPA-M	25/-1/i	2235.357	tbd	2207.221	2219.236	2222.563	2234.129	2237.176	2248.279	2251.162	2261.785
28.14.0286.46.1190.190.40280.46.8280.47.80280.47.80280.48.0280.40.0 <td>25/1/n</td> <td>2286.416</td> <td>tbd</td> <td>2253.963</td> <td>2265.175</td> <td>2268.274</td> <td>2279.026</td> <td>2281.852</td> <td>2292.130</td> <td>2294.794</td> <td>2304.582</td>	25/1/n	2286.416	tbd	2253.963	2265.175	2268.274	2279.026	2281.852	2292.130	2294.794	2304.582
altaltbitbitalta	25/1/i	2286.416	tbd	2260.458	2271.552	2274.617	2285.250	2288.044	2298.201	2300.832	2310.498
24/-1/10238500104/002999200231.51023152002307620230430024100024600024600024/1/1133816401dd23463002365157240934023094202387300248740024873002487400248730024874002487300248740024874002487400248740024874002487400248740024874002487400248740024874002487400248740024874002487400248740024874002587	24/-1/n	2328.540	tbd	2291.851	2304.484	2307.983	2320.150	2323.356	2335.043	2338.079	2349.266
24/1/102381.6401042373.6302387.840 <td>24/-1/i</td> <td>2328.540</td> <td>tbd</td> <td>2299.238</td> <td>2311.751</td> <td>2315.216</td> <td>2327.262</td> <td>2330.435</td> <td>2341.998</td> <td>2345.002</td> <td>2356.065</td>	24/-1/i	2328.540	tbd	2299.238	2311.751	2315.216	2327.262	2330.435	2341.998	2345.002	2356.065
24/14281.400104.002054.01206.010206.030200.010209.050200.010	24/1/n	2381.640	tbd	2347.835	2359.514	2362.742	2373.941	2376.886	2387.591	2390.366	2400.562
23/11/n 2428.33 thd 239.55 240.73 241.04 242.42 245.67 245.74 2371/n 249.33 thd 249.93 thd 249.93 241.43 241.43 241.44 245.63 243.49 243.49 243.49 243.49 244.34 246.47 243.49 231.140 245.143 140.4 245.04 246.49 240.49 <t< td=""><td>24/1/i</td><td>2381.640</td><td>tbd</td><td>2354.601</td><td>2366.157</td><td>2369.349</td><td>2380.425</td><td>2383.335</td><td>2393.915</td><td>2396.656</td><td>2406.725</td></t<>	24/1/i	2381.640	tbd	2354.601	2366.157	2369.349	2380.425	2383.335	2393.915	2396.656	2406.725
23/112428.331042399.262429.312428.302428.492428.402428.402428.402428.402480.40248	23/-1/n	2429.833	tbd	2391.555	2404.735	2408.385	2421.080	2424.424	2436.617	2439.784	2451.456
злии ценл. ценл. <td< td=""><td>23/-1/i</td><td>2429.833</td><td>tbd</td><td>2399.262</td><td>2412.317</td><td>2415.932</td><td>2428.499</td><td>2431.810</td><td>2443.873</td><td>2447.007</td><td>2458.549</td></td<>	23/-1/i	2429.833	tbd	2399.262	2412.317	2415.932	2428.499	2431.810	2443.873	2447.007	2458.549
231/12485.13bidd2466.922466.90247.33248.972467.97247.97250.07251.1.33	23/1/n	2485.138	tbd	2449.863	2462.050	2465.418	2477.104	2480.177	2491.348	2494.243	2504.883
22/1/m511.4914d.2470.442484.392484.34201.098250.495518.69252.01253.4922/1/m2511.49140.2470.40249.53247.54250.404260.40426	23/1/i	2485.138	tbd	2456.923	2468.981	2472.313	2483.870	2486.907	2497.947	2500.807	2511.314
221/14 511.493 thd 247.403 2492.59 2464.47 210.068 251.360 252.70 250.018 150.01 250.108 250.108 250.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 260.302 270.32 270.40 270.402	22/-1/n	2511.493	tbd	2470.043	2484.295	2488.246	2501.998	2505.625	2518.859	2522.301	2534.997
2 2 5 2 5	22/-1/i	2511.493	tbd	2478.409	2492.532	2496.447	2510.068	2513.660	2526.761	2530.168	2542.729
22/1/1 259.189 thd 253.42 255.46 257.40 267.457 268.48 140 2591.72 260.897 261.897 261.898 263.497 <td>22/0/n</td> <td>2569.189</td> <td>tbd</td> <td>2530.699</td> <td>2543.973</td> <td>2547.645</td> <td>2560.404</td> <td>2563.763</td> <td>2575.990</td> <td>2579.163</td> <td>2590.840</td>	22/0/n	2569.189	tbd	2530.699	2543.973	2547.645	2560.404	2563.763	2575.990	2579.163	2590.840
221/1n 263.88 thd 281.72 2603.97 2604.97 261.80 261.97 263.08 263.07 263.08 263.07 263.08 264.08 263.08 <td>22/0/i</td> <td>2569.189</td> <td>tbd</td> <td>2538.427</td> <td>2551.568</td> <td>2555.204</td> <td>2567.828</td> <td>2571.150</td> <td>2583.241</td> <td>2586.378</td> <td>2597.918</td>	22/0/i	2569.189	tbd	2538.427	2551.568	2555.204	2567.828	2571.150	2583.241	2586.378	2597.918
221/14 262.08.95 thd 259.07.9 261.07.9 262.07.9 262.07.9 262.07.9 262.07.9 262.07.9 263.07.9 <td>22/1/n</td> <td>2626.885</td> <td>tbd</td> <td>2591.726</td> <td>2603.897</td> <td>2607.257</td> <td>2618.898</td> <td>2621.954</td> <td>2633.050</td> <td>2635.922</td> <td>2646.456</td>	22/1/n	2626.885	tbd	2591.726	2603.897	2607.257	2618.898	2621.954	2633.050	2635.922	2646.456
21-1/m 2631.236 thd 2637.632 2602.750 2604.88 2611.370 2615.070 2635.05 2647.28 2637.92 2707.92	22/1/i	2626.885	tbd	2598.736	2610.772	2614.094	2625.597	2628.616	2639.573	2642.408	2652.802
21/11/1 2631.320 tbd 2696.580 2611.370 2615.470 2632.470 2631.301 2647.400 2631.301 2647.400 2631.301 2663.400 2673.400 2763.400 <td>21/-1/n</td> <td>2631.236</td> <td>tbd</td> <td>2587.823</td> <td>2602.750</td> <td>2606.888</td> <td>2621.291</td> <td>2625.090</td> <td>2638.950</td> <td>2642.555</td> <td>2655.852</td>	21/-1/n	2631.236	tbd	2587.823	2602.750	2606.888	2621.291	2625.090	2638.950	2642.555	2655.852
211/1/n 261.511 265.121 266.121 266.324 266.323 266.324 276.324 276.344 276.344 276.344	21/-1/i	2631.236	tbd	2596.585	2611.377	2615.477	2629.743	2633.505	2647.226	2650.794	2663.949
21/1/1 261.5.31 thd 2653.07 2673.07 2674.08 2601.06 2603.08 2704.28 2704.26 <	21/0/n	2691.531	tbd	2651.212	2665.116	2668.964	2682.329	2685.847	2698.655	2701.979	2714.211
211/10 2751.827 tbd 2714.93 2727.74 2731.26 2743.45 2743.45 2743.45 2743.45 2743.45 2743.45 2751.82 2761.72 <	21/0/i	2691.531	tbd	2659.307	2673.073	2676.881	2690.106	2693.586	2706.252	2709.538	2721.626
211/11 2751.827 tbd 2722.33 2734.94 2783.42 2750.47 2750.42 2761.72 2763.74 2763.74 2763.74 2763.74 2763.74 2774.74 2774.74 2737.74 2737.74 2757.53 2756.52 271.74 2774.74 <	21/1/n	2751.827	tbd	2714.987	2727.741	2731.261	2743.459	2746.661	2758.287	2761.296	2772.335
20/-1/n2762.976thd2717.406273.075273.748275.538275.538277.174274.88278.8820/-1/i2762.976thd272.604274.131274.64342761.4092765.3582779.712783.5702783.7720/0/n2826.108thd2783.7762798.374280.2141281.446280.140283.587287.0772849.9220/1/n2869.108thd279.275280.728280.728280.740284.611282.622841.563284.5032845.01285.76720/1/n2889.240thd285.246287.150287.164288.128289.128290.25299.185291.72820/1/1298.616thd285.2642877.151281.722287.631291.422293.29291.202294.7219/-1/n2908.616thd287.031286.662287.151281.722287.631291.82291.123296.92294.63291.9119/1/n2908.616thd287.33294.523294.619296.92296.72296.73296.73296.73296.7419/1/n3041.05thd293.23295.452295.66297.32297.121291.18294.75307.1119/1/n3041.05thd300.34301.44301.83305.74305.74305.74305.74305.74305.7519/1/n3041.05thd300.94307.74304.74304.84305.94305.74304.72 <t< td=""><td>21/1/i</td><td>2751.827</td><td>tbd</td><td>2722.333</td><td>2734.945</td><td>2738.425</td><td>2750.478</td><td>2753.642</td><td>2765.123</td><td>2768.093</td><td>2778.984</td></t<>	21/1/i	2751.827	tbd	2722.333	2734.945	2738.425	2750.478	2753.642	2765.123	2768.093	2778.984
207-1/1 2763.97 thd 2726.64 2743.14 2746.44 2761.40 2763.54 2797.74 2783.76 2783.77 2783.77 2783.77 2783.77 2783.74 2802.414 2816.44 2801.41 283.150 283.767 2873.77 2803.77	20/-1/n	2762.976	tbd	2717.406	2733.075	2737.418	2752.538	2756.525	2771.074	2774.858	2788.815
200/n286.108thd278.77279.37280.214281.414281.414280.141280.141283.358287.77284.77200/11286.108thd279.275280.72281.02284.11282.26284.153<	20/-1/i	2762.976	tbd	2726.604	2742.131	2746.434	2761.409	2765.358	2779.761	2783.506	2797.315
20/0/12826.108thd2792.752806.722810.72284.101282.826284.156284.501285.74720/1/1289.240thd285.549285.740286.740286.740288.141286.814296.025299.182291.7720/1/1289.240thd285.264287.150287.516287.823291.142293.204296.323291.7719/-1/1290.616thd280.620287.715281.722287.63291.122292.723293.202294.7219/-1/1290.616thd280.620287.753281.720296.767291.122296.79290.202294.7919/-1/1290.616thd280.792285.650291.12296.79290.202294.79294.7919/0/1297.851thd293.293295.452295.660297.325297.712291.112296.99296.99296.9919/0/1304.108thd293.923295.452295.660297.325297.712291.112294.79306.1019/1/1304.108thd300.34304.44301.842301.83305.73297.712291.112294.79304.1019/1/1304.108thd309.99307.74304.94305.93<	20/0/n	2826.108	tbd	2783.776	2798.374	2802.414	2816.446	2820.140	2833.587	2837.077	2849.920
201/1012889.240thd2850.5492863.9432867.640280.451283.814289.6025289.185291.7720/1/112889.240thd2858.2642871.502875.164287.823281.146290.203290.632291.732291.122290.632291.732291.12	20/0/i	2826.108	tbd	2792.275	2806.728	2810.726	2824.611	2828.265	2841.563	2845.013	2857.705
20/1/12889.240tbd285.2642871.5002875.1642887.8232891.462903.2042906.323291.77619/-1/12908.616tbd2860.622877.1512881.722897.63291.122292.79293.022294.7519/-1/12908.616tbd293.233295.6552949.91296.667291.122292.79293.023294.7519/0/1297.851tbd293.233295.4522958.662973.25297.121291.112294.73296.93295.7619/1/1304.085tbd293.233295.4522958.662973.25297.121291.123296.363306.37306.37306.37306.37307.1119/1/1304.085tbd293.233295.4522958.662973.25297.121291.18294.75306.37307.7519/1/1304.085tbd300.346301.449301.342303.35305.76305.78305.78307.7419/1/1307.481tbd300.342307.74302.41305.80303.73304.25308.74309.7518/1/1307.481tbd303.02307.73302.41305.74305.74305.74307.74304.42307.74304.7418/1/1307.481tbd303.02307.73302.41305.74305.74303.74314.74314.74314.74314.7418/1/1310.12tbd310.53318.57318.45314.74314.7	20/1/n	2889.240	tbd	2850.549	2863.943	2867.640	2880.451	2883.814	2896.025	2899.185	2910.778
19/-1/n 2908.616 tbd 2800.662 2877.51 2807.62 2907.63 2917.138 2921.120 2930.20 2944.75 19/-1/i 2908.616 tbd 2870.341 286.680 2891.209 2906.967 2911.122 2926.279 2930.220 2944.75 19/0/n 2974.851 tbd 2930.239 2945.65 2949.911 2964.681 2968.59 2991.118 2994.75 3008.10 19/0/n 2974.851 tbd 2930.239 2954.452 2958.660 2973.275 2977.121 291.118 2946.395 3008.10 19/0/n 3041.085 tbd 3000.346 3014.49 3018.342 3031.830 3035.372 3048.229 3051.755 3063.776 19/1/n 3041.085 tbd 300.940 3022.416 3026.264 303.959 3043.029 3055.789 3059.73 3071.71 18/-1/n 3070.481 tbd 3019.879 3042.101 3058.40 3073.125 3089.118 3093.276 3106.67 18/0/n 3140.120 tbd 3030.923 3147.33 3123.031 <td>20/1/i</td> <td>2889.240</td> <td>tbd</td> <td>2858.264</td> <td>2871.509</td> <td>2875.164</td> <td>2887.823</td> <td>2891.146</td> <td>2903.204</td> <td>2906.323</td> <td>2917.762</td>	20/1/i	2889.240	tbd	2858.264	2871.509	2875.164	2887.823	2891.146	2903.204	2906.323	2917.762
19/-1/12908.616tbd2870.3412886.6802891.2002906.9702911.1202926.2702930.2202947.45119/0/n2974.851tbd2930.2302954.6522949.9112964.6812968.5632991.1182947.5512967.5722971.1212911.182947.5513008.4703008.4703018.4203018.3203031.8303035.3723048.2023051.5563063.76719/1/13041.085tbd3008.470302.4163028.2623031.8303043.0203055.7803051.7633071.4118/-1/13070.481tbd3019.979307.2783042.1013068.4703063.3773079.4723083.6743093.7718/-1/13070.481tbd3030.0923047.3333052.1123068.7403073.1253089.118303.2763108.67418/0/n3140.120tbd3030.0923047.3333052.1123068.7403073.4253089.1483123.023138.4873148.4293152.3733166.75718/0/13140.120tbd3102.532318.5893123.03313.4873148.4293123.033267.6418/1/13209.760tbd3175.723181.633185.7443199.78321.873322.868326.949323.76718/1/13209.760tbd3175.783181.633184.743199.78321.873324.84321.711325.753326.46717/-1/13251.455tbd3197.87321.630322.463323.703	19/-1/n	2908.616	tbd	2860.662	2877.151	2881.722	2897.631	2901.828	2917.138	2921.120	2935.806
19/0/n 2974.851 tbd 2930.293 2945.659 2949.911 2964.681 2982.723 2986.396 2999.91 19/0/i 2974.851 tbd 2939.239 2954.452 2958.660 2973.275 2977.121 2991.118 2994.750 3068.10 19/1/n 3041.085 tbd 3000.346 3014.449 3018.342 3031.830 3035.372 3048.229 3051.556 3063.767 19/1/i 3041.085 tbd 3008.470 3022.416 3026.264 3039.594 3043.092 3055.789 3059.073 3071.11 18/-1/n 3070.481 tbd 301.979 3037.278 3042.101 3058.890 3063.317 3079.472 3083.674 3099.173 18/-1/i 3070.481 tbd 3030.092 3047.333 3052.112 3068.740 3073.125 3089.118 3093.276 3108.674 18/0/n 3140.120 tbd 3093.090 3118.589 3123.031 3134.451 3144.429 3152.307 3164.674 18/1/i 3209.760 tbd 3166.742 3181.633 3185.744	19/-1/i	2908.616	tbd	2870.341	2886.680	2891.209	2906.967	2911.122	2926.279	2930.220	2944.751
19/0/i 2974.851 tbd 2939.239 2954.452 2958.660 2973.275 2977.121 2991.118 2949.750 3008.10 19/1/n 3041.085 tbd 3000.346 3014.449 3018.342 3031.830 3035.372 3048.229 3051.556 3063.767 19/1/i 3041.085 tbd 3000.346 3014.449 3018.342 3031.830 3035.372 3048.229 3051.556 3063.767 19/1/i 3041.085 tbd 3008.470 3022.416 3026.264 3039.594 3043.092 305.789 3059.073 3071.11 18/-1/n 3070.481 tbd 3019.879 3037.278 3042.101 3068.740 3073.125 3089.118 3093.276 3108.674 3093.173 3079.472 3083.674 3093.125 3081.118 3093.276 3166.57 3166.57 18/0/n 3140.120 tbd 3102.532 3118.589 3123.031 3138.457 3142.516 3157.291 3161.24 3175.22 18/1/n 3209.760 tbd 3167.52 3181.633 3185.744 3199.987 323.766	19/0/n	2974.851	tbd	2930.293	2945.659	2949.911	2964.681	2968.569	2982.723	2986.396	2999.914
19/1/n 3041.085 tbd 3000.346 3014.449 3018.342 3031.830 3035.372 3048.229 3051.556 3063.76 19/1/i 3041.085 tbd 3008.470 3022.416 3026.264 3039.594 3043.092 3055.789 3059.073 3071.11 18/-1/n 3070.481 tbd 3019.879 3037.278 3042.101 3058.890 3063.317 3079.472 3083.674 3099.173 18/-1/i 3070.481 tbd 3030.092 3047.333 3052.112 3068.740 3073.125 3089.118 3093.276 3108.667 18/0/n 3140.120 tbd 3093.090 3109.308 3113.796 3129.386 3133.489 3148.429 3152.307 3166.572 18/0/n 3140.120 tbd 3102.532 3118.589 3123.031 3138.457 3142.516 3157.291 3161.124 3175.22 18/1/n 3209.760 tbd 3167.72 3181.633 3185.744 3199.987 3243.844 3260.962 3228.756 3211.479 3252.86 3228.757 3241.47 377.71 3255.84	19/0/i	2974.851	tbd	2939.239	2954.452	2958.660	2973.275	2977.121	2991.118	2994.750	3008.109
19/1/i 3041.085 tbd 3008.470 3022.416 3026.264 3039.594 3043.092 3055.789 3059.073 3071.11 18/-1/n 3070.481 tbd 3019.879 3037.278 3042.101 3058.890 3063.317 3079.472 3083.674 3099.17 18/-1/n 3070.481 tbd 3030.092 3047.333 3052.112 3068.740 3073.125 3089.118 3093.276 3108.670 18/-1/n 3140.120 tbd 3093.090 3109.308 3113.796 3129.386 3133.489 3148.429 3152.307 3166.572 18/0/n 3140.120 tbd 3102.532 3118.589 3123.031 3138.457 3142.516 3157.291 3161.124 3175.22 18/1/n 3209.760 tbd 3166.742 3181.633 3185.744 3199.987 3203.726 3217.303 3220.817 323.702 18/1/n 3209.760 tbd 3175.321 3190.046 3194.110 3208.185 3211.879 325.286 3287.572 3241.47 17/-1/n 3251.445 tbd 3208.696	19/1/n	3041.085	tbd	3000.346	3014.449	3018.342	3031.830	3035.372	3048.229	3051.556	3063.764
18/-1/n 3070.481 tbd 3019.879 3037.278 3042.101 3058.890 3063.317 3079.472 3083.674 3099.17 18/-1/i 3070.481 tbd 3030.092 3047.333 3052.112 3068.740 3073.125 3089.118 3093.276 3108.67 18/0/n 3140.120 tbd 3093.090 3109.308 3113.796 3129.386 313.489 3148.429 3152.307 3166.57 18/0/i 3140.120 tbd 3102.532 3118.589 3123.31 3138.457 3142.516 3157.291 3161.124 3175.227 18/1/n 3209.760 tbd 3165.742 3181.633 3185.744 3199.987 3203.726 3217.303 3220.817 3230.707 18/1/i 3209.760 tbd 3175.321 3190.046 3194.110 3208.185 3211.879 3225.286 3228.755 3241.477 17/-1/n 3251.445 tbd 3197.887 3226.945 3232.003 3249.603 3254.244 3271.171 3275.72 <td>19/1/i</td> <td>3041.085</td> <td>tbd</td> <td>3008.470</td> <td>3022.416</td> <td>3026.264</td> <td>3039.594</td> <td>3043.092</td> <td>3055.789</td> <td>3059.073</td> <td>3071.119</td>	19/1/i	3041.085	tbd	3008.470	3022.416	3026.264	3039.594	3043.092	3055.789	3059.073	3071.119
18/-1/i 3070.481 tbd 3030.092 3047.333 3052.112 3068.740 3073.125 3089.118 3093.276 3108.66 18/0/n 3140.120 tbd 3093.090 3109.308 3113.796 3129.386 3133.489 3148.429 3152.307 3166.57 18/0/i 3140.120 tbd 3102.532 3118.589 3123.031 3138.457 3142.516 3157.291 3161.124 3175.227 18/1/n 3209.760 tbd 3166.742 3181.633 3185.744 3199.987 3203.726 3217.303 3220.817 3233.70 18/1/i 3209.760 tbd 3175.321 3190.046 3194.110 3208.185 3211.879 3225.286 3228.755 3241.47 17/-1/n 3251.445 tbd 3197.887 3216.303 3221.408 329.177 3243.864 3260.962 3265.409 3281.85 17/-1/i 3251.445 tbd 3208.668 3226.945 3232.003 3249.603 3251.244 3271.171 3275.72 3291.86 17/0/n 3324.833 tbd 3275.038 <td< td=""><td>18/-1/n</td><td>3070.481</td><td>tbd</td><td>3019.879</td><td>3037.278</td><td>3042.101</td><td>3058.890</td><td>3063.317</td><td>3079.472</td><td>3083.674</td><td>3099.171</td></td<>	18/-1/n	3070.481	tbd	3019.879	3037.278	3042.101	3058.890	3063.317	3079.472	3083.674	3099.171
18/0/n 3140.120 tbd 3093.090 3109.308 3113.796 3129.386 3133.489 3148.429 3152.307 3166.57 18/0/i 3140.120 tbd 3102.532 3118.589 3123.031 3138.457 3142.516 3157.291 3161.124 3175.222 18/1/n 3209.760 tbd 3166.742 3181.633 3185.744 3199.987 3203.726 3217.303 3220.817 3233.70 18/1/i 3209.760 tbd 3175.321 3190.046 3194.110 3208.185 3211.879 3225.286 3228.755 3241.457 17/-1/n 3251.445 tbd 3197.887 3216.303 3241.408 329.177 3243.864 3260.962 3265.409 3281.837 17/-1/i 3251.445 tbd 3208.696 3226.945 3232.003 3249.603 3254.244 3271.171 3275.572 3291.80 17/0/n 3324.833 tbd 3275.038 3292.210 3296.962 313.468 317.812 333.631 337.706 3352.640 17/0/i 3324.833 tbd 3285.035	18/-1/i	3070.481	tbd	3030.092	3047.333	3052.112	3068.740	3073.125	3089.118	3093.276	3108.609
18/0/i 3140.120 tbd 3102.532 318.589 3123.031 3138.457 3142.516 3157.291 3161.124 3175.22 18/1/n 3209.760 tbd 3166.742 3181.633 3185.744 3199.987 3203.726 3217.303 3220.817 3233.70 18/1/i 3209.760 tbd 3175.321 3190.046 3194.110 3208.185 3211.879 3225.286 3228.755 3241.47 17/-1/n 3251.445 tbd 3197.887 3216.303 3221.408 3239.177 3243.864 3260.962 3265.409 3281.85 17/-1/i 3251.445 tbd 3208.696 3226.945 3232.003 3249.603 3254.244 3271.171 3275.572 3291.80 17/0/n 3324.833 tbd 3275.038 3292.210 3296.962 3313.468 3317.812 333.631 3347.071 3352.640 17/0/i 3324.833 tbd 3285.035 3302.037 3306.740 3323.072 3343.013 347.071 3362.00 17/1/n 3398.221 tbd 3352.653 3368.427 3	18/0/n	3140.120	tbd	3093.090	3109.308	3113.796	3129.386	3133.489	3148.429	3152.307	3166.575
18/1/n 3209.760 tbd 3166.742 3181.633 3185.744 3199.987 3203.726 3217.303 3220.817 3233.70 18/1/i 3209.760 tbd 3175.321 3190.046 3194.110 3208.185 3211.879 3225.286 3228.755 3241.475 17/-1/n 3251.445 tbd 3197.887 3216.303 3221.408 3239.177 3243.864 3260.962 3265.409 3281.81 17/-1/i 3251.445 tbd 3208.696 3226.945 3232.003 3249.603 3254.244 3271.171 3275.572 3291.80 17/0/n 3324.833 tbd 3275.038 3292.210 3296.962 3313.468 3317.812 333.631 337.736 352.84 17/0/i 3324.833 tbd 3285.035 3302.037 3306.740 3323.072 3327.370 3343.013 347.071 362.00 17/1/n 3398.221 tbd 3352.653 3368.427 3372.781 3387.869 3391.830 3406.212 3409.934 3423.565	18/0/i	3140.120	tbd	3102.532	3118.589	3123.031	3138.457	3142.516	3157.291	3161.124	3175.224
18/1/i 3209.760 tbd 3175.321 3190.046 3194.110 3208.185 3211.879 3225.286 3228.755 3241.47 17/-1/n 3251.445 tbd 3197.887 3216.303 3221.408 3239.177 3243.864 3260.962 3265.409 3281.81 17/-1/i 3251.445 tbd 3208.696 3226.945 3232.003 3249.603 3254.244 3271.171 3275.572 3291.86 17/0/n 3324.833 tbd 3275.038 3292.210 3296.962 313.468 3317.812 333.631 337.736 3352.84 17/0/i 3324.833 tbd 3285.035 3302.037 3306.740 3323.072 3343.013 347.071 362.000 17/1/n 3398.221 tbd 3352.653 3368.427 3372.781 3387.869 391.830 3406.212 3409.934 3423.55	18/1/n	3209.760	tbd	3166.742	3181.633	3185.744	3199.987	3203.726	3217.303	3220.817	3233.708
17/-1/n 3251.445 tbd 3197.887 3216.303 3221.408 3239.177 3243.864 3260.962 3265.409 3281.81 17/-1/i 3251.445 tbd 3208.696 3226.945 3232.003 3249.603 3254.244 3271.171 3275.572 3291.86 17/0/n 3324.833 tbd 3275.038 3292.210 3296.962 3313.468 3317.812 333.631 337.736 3352.84 17/0/i 3324.833 tbd 3285.035 3302.037 3306.740 3323.072 3343.013 347.071 3362.00 17/1/n 3398.221 tbd 3352.653 3368.427 3372.781 3387.869 3391.830 3406.212 3409.934 3423.55	18/1/i	3209.760	tbd	3175.321	3190.046	3194.110	3208.185	3211.879	3225.286	3228.755	3241.475
17/-1/i3251.445tbd3208.6963226.9453232.0033249.6033254.2443271.1713275.5723291.8017/0/n3324.833tbd3275.0383292.2103296.962313.468317.812333.6313377.363352.8417/0/i3324.833tbd3285.0353302.0373306.7403323.0723327.3703343.0133347.0713362.00017/1/n3398.221tbd3352.6533368.4273372.7813387.8693391.8303406.2123409.9343423.563	17/-1/n	3251.445	tbd	3197.887	3216.303	3221.408	3239.177	3243.864	3260.962	3265.409	3281.812
17/0/n 3324.833 tbd 3275.038 3292.210 3296.962 3313.468 3317.812 3333.631 3337.736 3352.84 17/0/i 3324.833 tbd 3285.035 3302.037 3306.740 3323.072 3343.013 3347.071 3362.001 17/1/n 3398.221 tbd 3352.653 3368.427 3372.781 3387.869 3391.830 3406.212 3409.934 3423.563	17/-1/i	3251.445	tbd	3208.696	3226.945	3232.003	3249.603	3254.244	3271.171	3275.572	3291.801
17/0/i 3324.833 tbd 3285.035 3302.037 3306.740 3323.072 3327.370 3343.013 3347.071 3362.007 17/1/n 3398.221 tbd 3352.653 3368.427 3372.781 3387.869 3391.830 3406.212 3409.934 3423.567	17/0/n	3324.833	tbd	3275.038	3292.210	3296.962	3313.468	3317.812	3333.631	3337.736	3352.843
17/1/n 3398.221 tbd 3352.653 3368.427 3372.781 3387.869 3391.830 3406.212 3409 934 3423 56	17/0/i	3324.833	tbd	3285.035	3302.037	3306.740	3323.072	3327.370	3343.013	3347.071	3362.001
	17/1/n	3398.221	tbd	3352.653	3368.427	3372.781	3387.869	3391.830	3406.212	3409.934	3423.591

			1							
17/1/i	3398.221	tbd	3361.740	3377.339	3381.643	3396.553	3400.466	3414.669	3418.343	3431.819
16/-1/n	3455.110	tbd	3398.229	3417.787	3423.209	3442.081	3447.058	3465.218	3469.941	3487.360
16/-1/i	3455.110	tbd	3409.708	3429.090	3434.461	3453.153	3458.082	3476.059	3480.733	3497.968
16/0/n	3532.635	tbd	3479.729	3497.974	3503.022	3520.560	3525.176	3541.983	3546.344	3562.395
16/0/i	3532.635	tbd	3490.351	3508.414	3513.411	3530.764	3535.331	3551.951	3556.263	3572.125
16/1/n	3610.160	tbd	3561.717	3578.486	3583.114	3599.154	3603.365	3618.656	3622.613	3637.132
16/1/i	3610.160	tbd	3571.378	3587.960	3592.536	3608.387	3612.548	3627.647	3631.554	3645.881
15/-2/n	3644.994	tbd	3582.400	3603.897	3609.861	3630.635	3636.119	3656.143	3661.356	3680.599
15/-2/i	3644.994	tbd	3595.059	3616.370	3622.281	3642.866	3648.298	3668.130	3673.291	3692.340
15/-1/n	3727.094	tbd	3668.500	3688.676	3694.264	3713.695	3718.816	3737.478	3742.326	3760.191
15/-1/i	3727.094	tbd	3680.296	3700.280	3705.814	3725.052	3730.119	3748.585	3753.381	3771.046
15/1/n	3809.194	tbd	3755.050	3773.754	3778.924	3796.862	3801.579	3818.728	3823.173	3839.507
15/1/i	3809.194	tbd	3765.887	3784.395	3789.509	3807.249	3811.911	3828.859	3833.250	3849.382
15/2/n	3891.294	tbd	3842.193	3859.228	3863.923	3880.170	3884.429	3899.867	3903.855	3918.464
15/2/i	3891.294	tbd	3851.945	3868.779	3873.417	3889.461	3893.664	3908.897	3912.831	3927.235
14/-2/n	3906.556	tbd	3839.546	3862.560	3868.944	3891.184	3897.055	3918.490	3924.070	3944.669
14/-2/i	3906.556	tbd	3853.098	3875.912	3882.239	3904.276	3910.092	3931.321	3936.846	3957.236
14/-1/n	3993.717	tbd	3930.957	3952.567	3958.553	3979.366	3984.850	4004.838	4010.031	4029.165
14/-1/i	3993.717	tbd	3943.591	3964.996	3970.924	3991.529	3996.957	4016.734	4021.871	4040.792
14/1/n	4080.878	tbd	4022.843	4042.890	4048.432	4067.660	4072.715	4091.097	4095.862	4113.371
14/1/i	4080.878	tbd	4034.459	4054.297	4059.778	4078.793	4083.791	4101.957	4106.664	4123.956
14/2/n	4168.039	tbd	4115.350	4133.628	4138.667	4156.101	4160.671	4177.239	4181.520	4197.200
14/2/i	4168.039	tbd	4125.816	4143.879	4148.857	4166.073	4170.584	4186.932	4191.154	4206.614
13/-2/n	4208.742	tbd	4136.654	4161.413	4168.282	4192.207	4198.522	4221.580	4227.583	4249.740
13/-2/i	4208.742	tbd	4151.231	4175.775	4182.583	4206.289	4212.545	4235.382	4241.325	4263.257
13/-1/n	4301.487	tbd	4233.926	4257.189	4263.632	4286.038	4291.941	4313.458	4319.049	4339.645
13/-1/i	4301.487	tbd	4247.526	4270.569	4276.949	4299.131	4304.974	4326.264	4331.794	4352.160
13/1/n	4394.231	tbd	4331.696	4353.298	4359.269	4379.987	4385.435	4405.243	4410.377	4429.245
13/1/i	4394.231	tbd	4344.213	4365.589	4371.496	4391.985	4397.370	4416.946	4422.018	4440.652
13/2/n	4486.975	tbd	4430.120	4449.842	4455.279	4474.092	4479.024	4496.905	4501.525	4518.449
13/2/i	4486.975	tbd	4441.415	4460.905	4466.276	4484.855	4489.723	4507.367	4511.924	4528.612
12/-2/n	4561.918	tbd	4483.930	4510.717	4518.148	4544.030	4550.861	4575.805	4582.297	4606.263
12/-2/i	4561.918	tbd	4499.699	4526.252	4533.617	4559.262	4566.030	4590.732	4597.160	4620.883
12/-1/n	4660.759	tbd	4587.605	4612.795	4619.772	4644.032	4650.424	4673.722	4679.775	4702.075
12/-1/i	4660.759	tbd	4602.330	4627.282	4634.190	4658.208	4664.535	4687.586	4693.574	4715.625
12/1/n	4759.601	tbd	4691.804	4715.223	4721.696	4744.158	4750.064	4771.541	4777.107	4797.566
12/1/i	4759.601	tbd	4705.375	4728.549	4734.953	4757.167	4763.005	4784.230	4789.730	4809.934
12/2/n	4858.442	tbd	4796.685	4818.105	4824.011	4844.447	4849.805	4869.231	4874.251	4892.642
12/2/i	4858.442	tbd	4808.957	4830.126	4835.960	4856.142	4861.431	4880.601	4885.553	4903.687
11/-2/n	4927.739	tbd	4840.417	4870.379	4878.696	4907.686	4915.342	4943.318	4950.605	4977.525
11/-2/i	4927.739	tbd	4858.104	4887.815	4896.061	4924.794	4932.381	4960.097	4967.315	4993.972
11/-1/n	5033.059	tbd	4950.666	4979.001	4986.856	5014.190	5021.398	5047.694	5054.532	5079.751
11/-1/i	5033.059	tbd	4967.289	4995.366	5003.147	5030.219	5037.357	5063.387	5070.155	5095.104
11/0/n	5138.378	tbd	5061.406	5087.950	5095.295	5120.810	5127.526	5151.978	5158.324	5181.677
11/0/i	5138.378	tbd	5076.859	5103.139	5110.409	5135.657	5142.300	5166.481	5172.755	5195.833
11/1/n	5243.698	tbd	5172.764	5197.310	5204.088	5227.577	5233.745	5256.146	5261.945	5283.225
11/1/i	5243.698	tbd	5186.917	5211.194	5217.894	5241.109	5247.203	5269.327	5275.052	5296.053
11/2/n	5349.018	tbd	5284.944	5307.219	5313.351	5334.539	5340.085	5360.160	5365.340	5384.200
11/2/i	5349.018	tbd	5297.623	5319.621	5325.675	5346.582	5352.053	5371.847	5376.952	5395.628