Measuring Cn2 vs. height using a single Rayleigh star

S. Esposito, R. Avila

AO-Site Mini-Workshop, ESO Garching 13th October

The geometry

Two subapertures on a single telescope AO-Site Mini-Workshop, ESO Garching 13th October

Some formulas

i identifies the atmospheric layers *k* the measurements at different times

$$\left\langle \left(\sum_{i=1}^{k} \vartheta_{1i} - \vartheta_{2i}\right)^{2} \right\rangle = m_{k} \qquad \left\langle \sum_{i=1}^{k} \left(\vartheta_{1i} - \vartheta_{2i}\right)^{2} \right\rangle$$

$$\left\langle \left(\vartheta_{1i} - \vartheta_{2i}\right)^{2} \right\rangle = 2\left(1 - \gamma_{12i}\right) \left\langle \vartheta^{2}_{1i} \right\rangle \qquad m$$

$$\sum_{i=1}^{k} 2\left(1 - \gamma_{12i}\right) \left\langle \vartheta^{2}_{1i} \right\rangle = m_{k}$$
A linear system with k measurements D/d, L0 Cn2

AO-Site Mini-Workshop, ESO Garching 13th October

$$\gamma \sim 10^3 * 0.1 * 10^3 * 0.01 = 10^3$$

$$\gamma \sim 10^2$$
 Considering optical losses

$$SNR = \theta / \gamma^{1/2}$$

 $10 \text{ pulses/s} \Rightarrow 100 \text{mW laser}$

 10^4 pulses ~ 16minutes

0.3m diameter subaperture

Optical Arrangement

1.5m tel.30m focal length

AO-Site Mini-Workshop, ESO Garching 13th October

Using different telescopes

☐ Separate the contribute of different layers □Discarding ground layer (affected by telescope jitter) □Correlation on large spatial scale

So.....

□ A technique is proposed to measure the Cn2 of several layers using a single laser beacon of 100mW average power.

□Can we apply this technique to several telescopes many meters apart to measure correlations at spatial scale of the order of 10 - 100 m?