

Interferometric Measurements of the Outer Scale

Andreas Quirrenbach Sterrewacht Leiden

Phase (or Delay) Structure Functions for $L_0 = 10$ m

Why Measurements with an Interferometer?

- Quantity of Interest for adaptive optics on large telescopes is the power of phase fluctuations on scales up to 100 m
- Instruments such as Generalized Seeing Monitors extrapolate from small scales
- 1 Extrapolation is model-dependent
- Interferometry provides direct access to fluctuations on scale of interest

Optical Pathlength Fluctuations versus Baseline Length (SUSI)

Theoretical Power Spectra of Interferometer Delay

ESO Workshop October 2003

Typical Delay Structure Function from Palomar Interferometer

ESO Workshop October 2003

Palomar Analysis

- Degeneracy between outer scale and baseline crossing time
- Solution: joint analysis of delay structure function and angle tracking data
- Caveat: typical power law slopes less than Kolmogorov value

Slope of Palomar Delay Power Spectra

ESO Workshop October 2003

Outer Scale Measurements with Palomar Testbed Interferometer

Andreas Quirrenbach

leiden.

Mark III (Mount Wilson) Data

Effect of Multiple Layers

 Each layer has outer scale of 30 m
Lower curves offset in plot by 2 decades

ESO Workshop October 2003

Observations on two Different Baselines (12 m and 31.5 m)

ESO Workshop October 2003

12

Conclusions

- Need good fringe tracking (long continuous time series)
- Multiple baselines, truly simultaneously if possible
- Combination with independent seeing monitor gives additional information
- Interferometry is useful for calibration of "small" instruments (GSM etc.)