

Model dependant

Infinite $\phi(\kappa) \alpha(\kappa^2)^{-11/6}$

Von Karman $\phi(\kappa) \alpha (\kappa^2 + (2 \pi/L_0)^2)^{-11/6}$

Equivalent (Tatarski) $D_{\theta}(L_{T}) = C_{\theta}^{2} L_{\theta}^{2/3} = \Delta \theta^{2}$ $C_{\theta}^{2} = a^{2} L_{\theta}^{4/3} (\text{grad } \theta)^{2}$ $D_{\theta}(r) = \int_{0}^{\infty} (1 - \frac{\sin(Kr)}{Kr}) K^{2} \Phi_{\theta}(K) dK$

10 - 300

AA covariance

G.S.M. (Calern, France)

Atmospheric Parameters Relevant to AO

To characterize r_0 , θ_{FCAO} , θ_{PCAO} , τ_{AO} , d_0 one needs to know vertical profiles of optical turbulence $C_N^2(h)$ and windV(h) with 0 < h < 20-30 km

Operational Profilers

Generalized Scidar Instrumented balloons **Prototype Profilers**

Single Star Scidar's Slodar

Other combinations

MASS + DIMM + V(h) from meteo model

S(r)

Single Star Scidar basic equation

$$C(\vec{r},\tau) = \sum_{i=1}^{N} C_i(\vec{r},h_i) * G(\vec{r},\sigma_{v_i}\tau) * S(\vec{r}) * \delta(\vec{r}-\vec{v_i}\tau)$$

 $C_{i}(\vec{r},h_{i})$ Autocorrelation for a layer at altitude i $G(\stackrel{\rightarrow}{r},\sigma_{v_i}\tau)$ Gaussian convolution due to wind variations Impulse response of the receiver $\delta(\vec{r}-\vec{v},\tau)$

Displacement due to wind speed

Single Star Scidar results

		SCIDAR	étoile simple				Ballons	
couche	h _i	σ_{v_i}	$C_n^2(h_i)\Delta h_i$	$ \vec{v}_i $	Direction	hi	$ \vec{v_i} $	Direction
	(km)	(m/s)	$(\times 10^{-14} \text{ m}^{1/3})$	(m/s)	(°)	(km)	(m/s)	(°)
0	0.2 ±0.1	0,2	25 ± 1.0	0,2	-	0.1	0.1	-
1	2.0 ± 0.2	0,8	07 ± 0.1	06	230	2,3	7	280
2	5.0 ± 0.5	0.6	04 ± 0.1	18	255	4.5	20	270
3	12.5 ± 1.5	0,4	03 ± 0.1	37	264	14	30	260
4	16.2 ± 1.0	0.5	02 ± 0.1	05	260	17,5	6	265

Single Star Scidar vs Generalized Scidar

Habib, Vernin, Benkhaldoun, Submitted to CRAS Paris

J. Vernin

Phase Structure Function at various baselines

Coulman, Vernin, 1991, Appl. Opt., **30**, 118

Which model for atmospheric turbulence?

• Verification of the atmospheric turbulence model

• Measurement of atmospheric parameters with the GI2T Interferometer

GSM Instrument

Jérome Maire LUAN

Verification of the atmospheric turbulence model

$$C_{\alpha}(x,0) = \frac{\lambda^2}{8\pi^2} \frac{\partial^2 D_{\phi}(x,0)}{(\partial x)^2}$$
 (F. Roddier, progress in Optics1981)

Optical Path Difference in an interferometer

$$\sigma_{\text{OPD}}(b) = \frac{\lambda}{2\pi} \sqrt{\left\langle \left| \varphi(\vec{r}) - \varphi(\vec{r}+b) \right|^2 \right\rangle} = \frac{\lambda}{2\pi} \sqrt{D_{\varphi}(b)}$$
$$D_{\varphi}(b) = 4\pi \int f W_{\varphi}(f) \left[1 - J_0(2\pi f b) \left[\frac{2J_1(\pi D f)}{\pi D f} \right]^2 df$$

. for the Von Karman model:

$$W_{\varphi}(f) = 0.0229 r_0^{-5/3} \left(f^2 + \frac{1}{L_0^2} \right)^{-11/6}$$

R. Conan Thèse de l'Université de Nice Sophia Antipolis (2000)

Estimation of the OPD & turbulence parameters with

Estimation of the turbulence parameters

GSM-GI2T observations and first results (06 June 2003)

Comparison ro GSM et GI2T

Comparaison LoGSM et GI2T

