

Adaptive Optics

(Presented by N. Hubin)

Overview

Adaptive Optics concepts and performances

- Single Conjugate Adaptive Optics (SCAO)
- Ground Layer Adaptive Optics (GLAO)
- Multi Object Adaptive Optics (MOAO)
- Multi-Conjugate Adaptive Optics (MCAO)
- High Contrast Adaptive Optics (EPICS)

Demonstrators & pathfinders

- MCAO demonstrator (MAD)
- High Order Test bench (HOT)
- VLT Adaptive Optics Facility
- VLT Planet Finder
- Required field tests on Laser Guide Star issues
- Enabling technology roadmap
 - Deformable mirrors & wavefront sensor detectors
 - Real Time Computers & algorithms
 - Lasers and beam transport/projection

ADAPTIVE OPTICS CONCEPTS & PERFORMANCE

Single Conjugate AO concept

On-axis, NIR, medium Strehl ratio AO using NGSs

- Visible Shack-Hartmann WFS
- IR pyramid WFS
- 97² sub-apertures
- Zero noise 582² pixels CCD
- Low noise 194² pixels IR detector
- 500 Hz update frequency
- 2' patrolled field
- 98² actuators
- 2.5 m Deformable Mirror at M6
- Computing power:
 - > 2000 x NAOS
 - > Or 10 x VLT AO Facility

SCAO Wavefront sensor pick-up arm

Patrolling pick-up arm in the Adapter-rotatorSame wavefront unit (s) for all 6 focal stations

Single Conjugate AO performance *

Ground Layer AO concept

3 - 6' FoV Near IR Seeing Reducer using NGSs

- 6 Visible Shack-Hartmann WFSs
- 97² sub-apertures (id. SCAO)
- 6' Patrolled FoV
- Zero noise 582² pixels CCD
- **500 Hz update frequency**
- 2.5 m Deformable Mirror at M6
- 3-6' and narrow FoV modes
- Computing power:
 - > 10 x VLT AO Facility
 - > 0.3 10^4 x AOF with full reconst.

Ground Layer AO performance*

Multi-Conjugate AO concept

1-2' FoV, Near IR, medium Strehl ratio AO using NGSs

- 6 Visible Shack-Hartmann WFSs
- 97² sub-apertures (SCAO)
- 6' Patrolled FoV
- Zero noise 582² pixels CCD
- 500 Hz update frequency
- 2.5 m Deformable Mirror at M6
- 3.5 m Deformable Mirror at 7km
- 145² actuators over meta-pupil
- Computing power 10⁴ x VLT AOF
- 1' corrected FoV

Multi-Conjugate AO performance*

Log stretch

Multi Conjugate AO Point Spread Functions

Multi Conjugate AO Point Spread Functions

NGS flux: 1 ph / subap / frame

Multi-Object AO concept

Multi narrow field AO over 6' FoV using NGSs

14

- 10 Vis. WFSs patrolling 6', f=500Hz
- 1st stage GLAO using M6 DM
- 10 kact. MDMs for WFSs & IFUs
- Optimized correction in N directions
- Linear MDMs; pseudo closed loop
- Computing power 3 10⁵ x NAOS x10

ONERA

Multi-Object AO performance

EPICS:

Earth-like Planets Imaging Camera Spectrograph

- Primary science goal: Rocky planets in habitable zone up to 25 pc in VIS and NIR
- Goal: contrast of 2×10⁻¹⁰ at 50 mas
 - > Need high Strehl Ratio \rightarrow large number of actuators: 1.7x10⁵
 - > Need high halo rejection \rightarrow fast correction
- \rightarrow Double stage system
 - > Shack-Hartmann 500² at 1 kHz, Fourier reconstructor
 - > Pyramid 150² at 3 kHz, Matrix-Vector reconstructor
- Computationally feasible with OWL/SPARTA + ~10 years
- Very tight error budget for systematic errors control
 - Need active correction of non common-path errors at 0.3 nm rms (similar achieved with HCIT) for spat. freq. 10 – 75 cycles/pupil

EPICS Adaptive Optics performance (AO only)

Reduction of Co-phasing residuals after XAO

Laser Guide Star Adaptive Optics: GLAO

- Use single LGS on ELT
 Cone effect Low Strehl ratio
 - Ground layer Correction
 - ➤"High" sky coverage
- 1st analysis shows promising results
- Assumed ELT LGSs issues solved (spot elongation,...)

Multi Conjugate AO with Laser Guide Stars

Demonstrators and Pathfinders

MAD: The GLAO & MCAO demonstrator

Demonstrate Ground Layer and Multi Conjugate AO

Star Oriented 3 SH WFSs
Layer Oriented pyr. WFS
Study control algorithms
3 D turbulence generator
MAD status:

- >SCAO
- ➢GLAO loop: 06.05
- ►MCAO loop:10.05
- ➤Layer oriented: 2Q '06
- ≻On-sky 3Q '06
- Study calibration issues:
 Non-common aberrations
 Interaction matrix

European Southern Observatory

MAD design & implementation

MAD preliminary results

MCAO closed loop of MAD

HOT: High Order Test bench

Demonstrate Extreme AO & High contrast imaging

- Study optimum wavefront sensor for high contrast imaging
 - Spatially filtered SH WFS with weighted centre of Gravity
 - Pyramid WFS in diffraction regime w &w/o modulation
- Study error sources & final contrast: misregistration, aliasing,..)
- Study Point Spread Function characteristics & residual aberrations
- Investigate coronagraph concepts
- Study pupil segmentation effect on final PSF after AO correction
- Validate new components:
 - Micro Deformable mirrors
 - New low noise CCD for WFS
 - ESO Real Time computer platform
 - New control algorithms
 - Focal plane WFS
 - Super polished filters for differential imaging

VLT AO Facility: A Pathfinder for OWL

G

- Concept of Active/Adaptive Telescope
- Four Sodium Laser Guide Stars
- 2 GLAO syst. (GALACSI, GRAAL)
 - > 10' NIR seeing reducer (HAWK-I)
 - > 1' visible seeing reducer (MUSE)
- Laser Tomography AO: Sr(v)~10%
- Enabling technologies:
 - 1.1 m convex aspherical Deformable M2, 1170 act.
 - 2 mm Zerodur thin shell
 - Raman fibre laser
 - ≻~0 noise, 240² pix., 1kHz WFS-CCD
 - Computing power 200 x NAOS
- Laboratory testing facility (ASSIST)

VLT Planet Finder: An XAO Pathfinder for OWL

Planet detection with contrast 10⁻⁵ at 0.1" separation

- Detection
 - Extreme AO (SR ~ 90% in H band)
 - Coronagraphy (contrast at 0.1" separation)
 - Differential imaging (residual halo)
- Characterization
 - Integral Field Spectroscopy
- Visible Channel
 - Imaging / Polarimetry (SR 90% in H at 65% in R)

Observatory

- WFS spot aberrations: Optical corrector in WFS
- Fratricide effects: Number of launch telescopes, Pulsed lasers
- Low order with NGS: In some cases, helped by outer scale NEW LGS CONCEPTS BETTER SUITED FOR ELTS NEEDED?

Enabling technology roadmap

Large Deformable mirrors: from VLT to OWL

High density Deformable Mirror roadmap

VLT Planet Finder

- 41² act. Piezo DM (1370)
- 4.5 mm pitch; 10 KHz
- 8 µm stroke

OWL Planet Finder & MOAO

- 10k & 100 k actuators
- 1 mm pitch; 3-5 KHz
- 1-5 µm stroke
- WF error: 1-10 nm rms

- 19 actuators; continuous membrane
- 1mm pitch
- 4.5 µm mech. stroke for 60V
- WF error: 1.5nm rms

Funded by OPTICON

- 2k actuators with 1mm pitch
- 5-10 µm mechanical stroke
 - 1-2 µm inter-actuator stroke
- 10 nm rms

Real-Time Computers roadmap

- SPARTA-for-OWL concept shows <u>feasibility</u> of the RTC for OWL projecting the current architecture for VLT 2^{ng} Gen AO
- Even better architecture will be available at that time Gigabit Ethemet

System	Size (grad. * act. * freq)	G-FMAC	Ratio	
SCAO	13800*7600@500Hz	52	1	5
GLAO	13800*7600@500Hz	52	1	5
	82800*7600@500Hz	314	6	
MOAO	14400*7600@500Hz	54	1	5
	43200*7600@500Hz	164	3	
MCAO	82800*24000@500Hz	993	19	S
XAO	400.000*200.000@1kHz	80000	1500	$\overline{\ensuremath{\mathfrak{S}}}$
	35000*18000@3 kHz	2000	40	

SCAO@52 GMAC achievable in 3-4Y Moore's law in 10 Y factor 100 SCAO@52→ 5200

G-FMAC: Giga Floating Point Multiply accumulate

- All RTCs but X-AO possible with standard methods (Matrix Vector Multiply)
- New algorithms reducing computing power needed for X-AO
- Can be retrofitted to the other systems to lower their cost
- Current portfolio of methods:

Method/gain	98x98	250x250	500x500	Precision	f(D)
Direct sparse	1-50	7-340	10 - 1300	Perfect	$\propto \frac{D^2}{}$
					$k \cdot \alpha$
Iterative Multi-grid	1-30	4-200	15-800	High	$\propto D^2$
- PCG					N_{iter}
Iterative FD-PCG	45-230	250-1250	1250-5000	High	D^2
& Fourier-domain					$\infty \frac{1}{\log(D^2)}$
Local & hierarchic	~600	~3700	~15000	low	$\propto k$

PCG: Pre-conditioned Conjugate Gradients

Laser Guide Stars enabling Technologies

Components being developed:

Fiber laser sources (Raman and Sum-frequency [LLNL]) (IPF Technologies, Volius)

- Explore actual limit of "classical" Laser schemes for GLAO, LTAO, MCAO & MOAO systems
- Study promising novel LGS-AO concepts & field test (FP6, FP7)
- Science cases instrument & AO designs trade-offs
- Fully design SCAO with M6 adaptive mirror
- NGS- LGS design trade-offs for GL-LT-MC-MO AO
- Pursue AO key technologies roadmap (FP7, OWL Phase B):
 - Large & micro deformable mirrors
 - Visible & NIR WFS detectors
 - Lasers & beam projectors
 - New control algorithms and Real Time Computers
- Feedback from VLT AO systems & demonstrators
- Explore fundamental limits of EPICS with HOT

- Several AO concepts studied; performance evaluated
- LGSs NGSs trade-off to be explored further
- Ground Layer & Multi-Conjugate Demonstrators on-track
- VLT AO Facility & Planet Finder pathfinders for OWL
- EPICS design study calls for several bread boards (HOT)
- LGS-ELT demonstrators needed
- Aggressive roadmap for AO key technologies (OPTICON, FP6)
 - CCD, IR WFSs
 - Large & µ DMs (two competitive M6 feasibility studies; CfT out)
 - Control & algorithms
 - Lasers
- Strong involvement of the AO community; THANKS....!
- Active preparation of a FP7 AO R&D program (2007-2014)
- **33%** of the OWL R&D effort for AO