

System Engineering

(Presented by P. Dierickx)

European Southern Observatory

What is it ?

System engineering

European Southern Observatory

Requirements must be verifiable

Top Level

Science cases into structured numbers

Other factors: budget, schedule

Requirements, NOT solutions (but somewhat pre-emptive)

Breakdown

- Level-1 (system), including constraints & guidelines
- Functional breakdown
- System architecture
- Product structure
- Budgets
 (error, reliability, etc.)

Level 1 (current content)

- 5 ENVIRONMENTAL CONDITIONS
- 6 REQUIREMENTS
- 6.1 Design guidelines
- 6.2 Optical characteristics
- 6.3 Optical quality
- 6.4 Atmospheric dispersion
 - <u>compensation</u>
- 6.5 Wavefront control
- 6.5.1 General
- 6.5.2 Wavefront sensing
- 6.5.3 Phasing
- 6.5.4 Accuracy
- 6.6 Structure & Kinematics
- 6.7 Interface to instruments
- 6.8 Local seeing, thermal control
- 6.9 Cleanliness
- 6.10 Enclosure

- 6.11 Operations
- 6.11.1 Reliability
- 6.11.2 Operational lifetime
- 6.11.3 Science operations
- 6.11.4 Maintenance
- 6.12 Site infrastructure
- 6.12.1 General
- 6.12.2 Site services
- 6.12.3 Offices, lodging
- 6.12.4 Visitor centre
- 6.13 Performance evaluation and monitoring
- 7 SITE CHARACTERIZATION, MONITORING AND
 - PRESERVATION
- 7.1 Site characterization
- 7.2 Site monitoring
- 7.3 Site preservation
- 8 SAFETY
- 8.1 General
- 8.2 Damages

Example

Star magnitude (v)	Seeing (arc seconds)	Wavefront RMS on-axis (μm)	Field of view (arc minutes, diameter)			
Single-conjugate adaptive optics						
13.5	0.4	0.180	N/A			
	0.6	0.200	N/A			
	0.8	0.230	N/A			
	1.2	0.300	N/A			
15.5	0.4	0.274	N/A			
	0.6	0.302	N/A			
	0.8	0.344	N/A			
Multi-conjugate adaptive optics						
13.5 (integrated over all guide stars)	0.4	0.252	3			
	0.6	0.234	3			
	0.8	0.302	3			

Adaptive wavefront control quality requirements (IR AO)

Failure / damage hierarchy

Cat.	Туре	Definition	Max. probability or rate of occurrence
I	Catastrophic	Complete loss of system or threat to personnel safety. OR Repair cost exceeds 10% of capital investment.	0
II	Catastrophic	System is out of operation for 2 months or more, OR <i>Repair cost exceeds 5% of capital investment,</i> whichever comes first.	0.01% over 30 years
111	Critical	System is out of operations for up to 2 months OR Repair cost exceeds 1% of capital investment, whichever comes first.	0.05% over 30 years
IV	Major	System is out of operation for up to 1 calendar week.	Once every 10 years
V	Significant	System is not able to allow science time for up to 1 calendar week.	Once every 5 years
VI	Minor	System is not able to allow science time for 24 hours.	3 times per year

Design constraints and guidelines

- Reliance on proven technology, materials and processes, from design to operations
- Max. reliance on serial production or standard parts
- Max. development time for critical technology
- Start of science as soon as possible after first light
 - With negligible engineering overheads
 - reduced pupil area, single conjugate IR AO with NGS
- Progressive loss of performance in case of failure
- Operation and maintenance considerations
 - Minimize system integration and operational resources
 - Maintenance; minimize operational complexity
 - System integrity and safety of human resources.

Product structure

Error budgets, offloading

Tools

- Design tools
- Analysis tools
- Configuration management tools (e.g. DOORS^(*))
- Maximum reliance on internationally recognized software
- Interoperability
- Devolution

(*) Dynamic Object-Oriented Requirements System

Integrated modelling

- A design and analysis tool
- Building on VLT/VLT-I experience
- Computing power
 - Use reduced models where appropriate
 - AO simulations already running
- And ...
 - Output = processed input
 - Does not generate information
 - Quality of input essential

63

Disturbances (characterization, assessment)

- Integral part of the design
 - Strong impact on system median performance
 - Strong impact on operations, maintenance
- Reliability and performance
 - > A continuous *but planned* struggle
 - Diagnostics, logs, traceability
 - Extensive analysis (design phase)
 - Single Point Failure List
 - Modular design
 - Favours progressive loss of performance
 - Preventive & corrective maintenance
 - Parallelization
- Incorporated in concept design (e.g. segments maintenance requirements), analysis available in crucial areas (e.g. impact of phasing failures)

Phasing failures

Example

- M2, 3 faulty segments,
 46 µm PtV piston + tilt
- > λ=2.0 μm
- Segment size 1.5-m
- Seeing neglected
- Random piston + tip-tilt residuals 0.16 µm PtV

NB: effect much fainter with M1 (1 segment = 1/3000th of pupil)

Piston each faulty segment by 100 mm ...