EUROPEAN SOUTHERN OBSERVATORY

VERY LARGE TELESCOPE

[ 1
VLT Software
Programming Standards
Doc. No. VLT-PRO-ESO-10000-0228
Issue 1.0
Date 10/03/93
L _J
Prepared G.Filippi 10/03/93
Name Date Signature
Approved . . . .. G-Raffl -
Name Date Signature
Released . . . . . M.Tarenghi .
Name Date

Signature



ii

VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

Change Record

Issue/Rev.

Date

Section/Parag. affected

Reason/Initiation/Documents/Remarks

1.0

10/03/93

All

First issue

iii



iv

VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

Contents

1 INTRODUCTION

1.1 Purpose . . . . e e e e e e
1.2 Scope . . o e e e

1.2.1 Statement of Applicability . . . . . . . .. ... o
1.3 Applicable Documents . . . . . . . . . oL
1.4 Reference Documents . . . . . . . . .
1.5 Glossary . . . . o o o e e e e e
1.6 Abbreviations and Acronyms . . . . . .. oL L o e
1.7 Editorial Conventions . . . . . . . . . .. e

Software Module

2.1 OVerview . . .. e e e e e e e e e e e
2.2 Definition Of A Module . . . . . . . . . .
2.3 Module Name . . . . . . . . e e e e
2.4 The Module Interface Description . . . . . . . . . . . . . . ... .. . .. ... ...,
2.4.1 General Formatting Rules . . . . . . .. ... .. o o oL
2.4.2 Production of the Documentation . . . ... ... ... ... ... .......
2.4.3 Program Template . . . . . . . ...
2.4.4 Procedure Template . . . . . . . . . . . . .. e
2.5 Interface File . . . . . . . e e
2.6 Directory Structure . . . . . . . . . . L e e e
2.6.1 Module Directory Tree . . . . . . . . . . o e
2.7 README . . . . e e e
Naming Conventions
3.1 General Rules . . . . . . . e
3.2 File o e e e
3.2.1 Path . . . . . e
3.2.2 Filecname . . . . . . .. e
3.2.3 Filetype . . . e
3.3 C-language Items . . . . . . . .
3.3.1 Functions . . . . . . . e e e e e e e
3.3.2 MacCros . . . . o o e e e e e e e e
3.3.3 Constants . . . . . . . . e
3.3.4 Local Variables . . . . . . . . . . . . e
3.3.5 Global Variables . . . . . . . . . . . . e
3.3.6 DataType . . . . . e e e
3.3.7 Structure Members and Union Members . . . . . . . . . .. ... ... .....
3.3.8 Enumerators . . . . . . . .. e e e e e e
3.4  Operating System Environmental Variable . . . . . . ... ... .. .. 0000
C Language
4.1 CCompiler Version . . . . . . . . . . e e e e e e e
4.1.1 UNIX Applications . . . . . . . . . . . e e
4.1.2 VxWorks Applications . . . . . . . . .. ...
4.2 File Templates . . . . . . . . e e e e e e e e
4.2.1 Sourcefile (.c)-main . . . ... L
4.2.2 Source file (.c) - function/s . ... ... L L o
423 Include file (Ch) ... 000

4.3 Source Readability . . . . . . . ..

17
17
18
18
18
19
19
19
20
20
20
20
21
21
21
21



vi

B

C

VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

4.3.1 Indentation and Spacing . . . . . . . ...
4.3.2 Comments . . . . . . . ot i e e e
4.3.3 Naming Conventions . . . . . . . . . . . e
4.4 Allowable Data Types . . . . . . . . . e e e e e e e
4.5 Language Sensitive Editor . . . . . . . ... Lo
4.6 Forbidden Instructions . . . . . . . . . . L L e
4.7 Mandatory Practices . . . . . . . . L L
4.8 Suggested Practices. . . . . . . . L L e
4.9 Error Return . . . . . . L e e e

Script Files

5.1 Standard Shell . . . . . . e
5.2 File Template . . . . . . . . L e
5.3 Readability . . . . . . oL
5.3.1 Indentation and Spacing . . . . . . . .. ...
5.3.2 Comments. . . . . . . o e e e
5.3.3 Local Variable Naming . . . . . . . . . . ... .
5.4  Forbidden Instruction/commands . . . . . . .. ... .. L L
5.5 Mandatory Practice . . . . . . . . . e
5.6 Suggested Practice . . . . . . . . L e
5.7 Returns Values . . . . . . . . e
Make
6.1 Make Version . . . . . . . L e e
6.2 Makefile Structure . . . . . . L e
UNIX
7.1 Callable Interface for System Calls . . . . . .. .. ... . 0 oL
7.2 OS ULty . . . . o o e e e e
7.3 Signal Treatment . . . . . . . . . L
VxWorks

Media for Deliverable Software

A1 Media Format . . . . . . . . . e e e e e
A2 Media Labeling . . . . . . . . e
A.3 Software Format . . . . . . . . . . . . e e e

Test Tools

VLT Directory Structure

W W W
-1 =1 =1 =1

w

51

55
55
55
55

57

59



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228 1

1 INTRODUCTION

1.1 Purpose

This document lists the programming standards to be used in the design and development of the
VLT Software.

The main aim in defining standards is to create a frame where each development can be done inde-
pendently but with a common style in order to make future maintenance easier. Maintainability is
an essenlial requirement in a project of the dimensions of the VLT Software, carried on by different
development groups, both internal and external to FSO, on a long development and operation period
and in a critical logistic situation.

Both commercially available and specially developed tools are foreseen to allow the checking of stan-
dards by the developer, during the implementation phase, and to be used as part of the acceptance
of software, during the test phase. While it is essential lo aulomate checking of the application of
standards as much as possible, where an automatic tool is not available, manual inspection will be
used.

The document is organized in sections, each one dealing with a specific topic. The present edition
copes with the following arguments:

e Organization of a Software module (section 2)
e Naming conventions (section 3)

e C language (section 4)

Script files (section 5)

Make (section 6)
e UNIX (section 7)
e VxWorks (section 8)

e Format and media for deliverable software (section A)

In the document, must and shall are used to indicate mandatory practices, should and may are used,
for recommendations and guidelines, respectively.

The intended audience of this document are software designers and developers and it is assumed that
the reader has a good knowledge of UNIX and C-language. Although not required, familiarity with
the VLT Project, in general, and with the classification of software, as described in [3] and [4] is
suggested.

1.2 Scope

This document covers the general organization of software and the use of the basic programming
environment: UNIX and the C-language.

It is not within the scope of the Programming Standards to specify design rules. As a reminder,
there follows a list of some of the standardization design principles:

— the use of services and utilities provided by the CCS (including rules for command naming,
error messages, etc.).



2 VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

— the use of services and utilities provided by the LCU Common SW (including rules for command
naming, error messages, etc.).

— the common model of software organization for some typical application (instruments, drivers,
etc.).

— the use of standardized software as building blocks for applications (sequencer, CCD, etc.).

For more information, please refer to the appropriate documentation, as indicated by the design
specification of each application.

This document applies to all software belonging to the VLT Software ! that will be developed by
ESO or by external contractors at both workstation (WS) and Local Control Unit (LCU) levels.

For External Software, compatibility with the present document is not required, but a general
evaluation of the maintainability of such software should be part of the Design Review. In this
case, the Programming Standards can be used as a reference term to measure the deviation of the
examined software with respect to the majority of the VLT Software.

Being part of the external software, embedded software for transputers, microcontrollers, etc., is
not included in the scope of the document. On a project specific basis, this document can be used
as a reference to produce analogous standards for such environments.

All the aspects concerning SW Configuration Control, and use of SCCS tool, are covered by the
Software Configuration Control Plan [5] (currently in preparation). Nevertheless some parts of the
Programminf Standards are influenced by Configuration Control matter and the necessary concepts
are anticipated here.

1.2.1 Statement of Applicability

The standards in the following section are applicable to all software defined in the scope of this
document. At the beginning of each section, possible restrictions in the application of the standards
are stated.

Any additional limitation to those described by this document shall be defined during the design
phase and approved during the design review(s). The limitation/extension shall be documented by
explicit reference to the sections of the present document that are not applicable.

For software developed under contract, any limitation/extension shall be subject to contractual
negotiation. Additional/alternative standard(s) can be used under the condition of being explicitly
approved by ESO. The additional/alternative standards shall be clearly identified by referring to
existing document(s), either private or in the public domain.

Therefore, in the Technical Proposal (for contracted software only), in the Functional Specification
and in the Detailed Design of any specially developed software, one of the following shall appear:

1. ”The provisions in the VLT-PRO-ESO-10000-0238 VLT Programming Standard, issue date
(if any) and in
reference — scope of applicability — possible restrictions
reference — scope of applicability — possible restrictions

shall be applied in the design and development of the software.”

2. ”The provisions in the VLT-PRO-ESO-10000-0238 VLT Programming Standard, issue date as
at section(s):

"More about software classification can be found in [3] 2.3.1 and [4]) 1.7.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228 3

(section reference) (section title)
(section reference) (section title)

(if any) and in
reference — scope of applicability — possible restrictions
reference — scope of applicability — possible restrictions

shall be applied in the design and development of the software.”

3. 7All the provisions in the VLT-PRO-ESO-10000-0238 VLT Programming Standard, issue date
with the exception of the following section(s):
(section reference) (section title)
(section reference) (section title)
(if any) and in
reference — scope of applicability — possible restrictions
reference — scope of applicability — possible restrictions

shall be applied in the design and development of the software”

4. ”The provisions in the following Standard(s):
reference — scope of applicability — possible restrictions
reference — scope of applicability — possible restrictions

shall be applied in the design and development of the software.”

1.3 Applicable Documents

The following documents of the exact issue shown form a part of this document to the extent specified
herein. In the event of conflict between the documents referenced herein and the contents of this
document, the contents of this document shall be considered as a superseding requirement.

[1] ANSI Standard X3.159-1989 — Programming Language C,

[2] IEEE Std. 1003.1-1990 — Portable Operating Interface (POSIX)—Part 1: System Application
Program Interface (API) [C language]

1.4 Reference Documents

The following documents contain additional information and are referenced in the text.

[3] VLT-PLA-ESO-00000-0006, 2.0 21/05/92 — VLT Software Management Plan

[4] VLT-SPE-ESO-10000-0011, 2.0 30/09/92 — VLT Software Requirements Specification

[5] VLT-PLA-ESO-00000-0004, 2.0 (in preparation) — VLT Software Configuration Control Plan
[6] D.Lewine, 1991, O’Reilly & Associates, Inc. — POSIX Programmer’s Guide

[7] B.Kernighan, D.Ritchie, 1988, Prentice Hall — The C Programming Language - Second edition



4 VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

1.5 Glossary

The glossary used in this document is consistent with the IEEE definitions and with those in section
2.3.1 of SMP [3]. When a term is essential to understanding, the meaning is introduced in the section
before it is used.

In addition, the following terms, related to Configuration Control matter, are used:

version
A couple of numbers separated by a dot (release.level) identifying one of the implementation
of the functionality of a software module, namely:

release the progressive numbering of major changes in the module life. Although backwards
compatibility is a general requirement, a new revision may represent changes in the module
interface.

level the progressive numbering inside a release of minor changes. A new level normally
means changes in the implementation without involving the interface. Backwards compat-
ibility with implementation having the same release number should be a design constraint.

The version number applies to all files belonging to that implementation of the module. Ac-
cording to SCCS rules, the first implementation of a module has version 1.1.

<configuration control prologue>
a commentary section at the beginning of each file containing all information (data, version,
author, change explanation, etc.).

The format will be defined in the issue of the present document.

SCCS
a tool, normally present in any UNIX implemention, that allows control of write access to
source files, and monitoring of changes made to those files. SCCS allows only one user at a
time to update a file, and records all changes in a history file.

1.6 Abbreviations and Acronyms

The following abbreviations and acronyms are used in this document:

BNF Backus Naur Form

CCS Central Control Software
CRF Change Request Form

DAT  Digital Audio Tape (DAT)
DFD Data Flow Diagram

GUI Graphical User Interface

HOS High-level Operation Software
HW hardware

IEEE  Institute of Electrical and Electronics Engineers (USA)
INS Instrumentation Software



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

LCU Local Control Unit

OLDB On-Line Data Base
0S Operating System

POSIX Portable Operating System Interface

RDB Relational Data Base
ROS Remote Operations Software

SCCS  Source Code Control System (a UNIX tool)
SCCM  Software Configuration Control Manager
SQL Structured Query Language

SW software

TBD To Be Defined
TCS Telescope Control Software

VLT Very Large Telescope

WS Work Station

1.7 Editorial Conventions

The following styles are used:

bold

in the text, for commands, filenames, pre/suffixes as they have to be typed.

talic
in the text, for parts that have to be substituted with the real content before typing.

teletype
for examples.

<name>
in the examples, for parts that have to be substituted with the real content before typing.

bold and italic are also used to highlight keywords.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228 7

2 Software Module

2.1 Overview

Strictly speaking, the definition of module does not belong to Programming Standards, but it is
a useful concept for both technical and managerial reasons and many of the rules in the following
sections use it.

This section defines a software module, the organization of the development and the documentation
of the interface.

2.2 Definition Of A Module

A software module is a piece of software (code and documentation) able to perform functions and
having an interface available to an external user to access the functions provided.

technically a module is a way to organize functions in homogeneous groups. The interface hides the
implementation and system dependencies from the user.

managerially the module is the basic unit for planning, project control, and configuration control.

There is no rule to define how big a module shall be. Common sense and programming experience
should be enough to identify what can be gathered and treated as a unique item. Examples of
modules are: a driver for a specific board (the driver itself, install utility, configuration data file, etc.),
the message system of CCS (library, utilities for debug and display, etc.), the sequencer (sequence
interpreter, editor, etc.).

2.3 Module Name

Each module is identified by a name. The module_name can be made up to minimum two maximum
six, suggested four, characters (a-z, 0-9) and shall be unique in the VLT project. Names equal or too
similar to UNIX names shall be avoided. The case cannot be used to build different names: i.e., the
following are referring to the same module: xyz, XYZ, xYz.

The module_name is used in the naming of all elements that belong to the software module according
to the rules in section 3. The usage of the module_name in uppercase/lowercase depends on the type
of element: file, procedure, type, etc.

The module name is defined during the design phase. In the Design Review the proposed names
are checked against the existing names and, if ok, accepted. The module naming management is
supported by a file, accessible by any user, listing the existing names and the attributes of each one
(description, available version(s), status, error code range). The file is kept updated by the SCCM.

2.4 The Module Interface Description
A module offers services in the form of programs and/or procedures:

program can be the product of a compilation, such as a C-program, or the input to an interpreter
(script file, SQL file, etc.). A program is invoked by means of a ”"run string” composing the
name of the program and, optionally, parameters. The run string can be issued interactively
by a user or programmatically by another process already running, e.g., from the start-up
procedure. Each program shall be documented according to the format in section 2.4.3.



8 VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

procedures (or routines), normally organized in librar(y/ies), are pieces of code, performing an
independent action and available, via binding, to other entities. Each procedure shall be doc-
umented according to the format in section 2.4.4.

The services that a module offers can be accessed:

— by activating one of the programs provided by the module and passing information to it via
one or more of the following: parameters in the run string, interactive input, setting of op-
erating system environmental variables, writing/reading data in the OLDB, sending/receiving
messages.

— by binding the routines provided by the module library to other programs.

2.4.1 General Formatting Rules

For each item, program or procedure, an independent entry in the documentation shall be provided.
The documentation of each item is a list of sections, having a title and a text.

Similarly to UNIX documentation, NAME, SYNOPSIS and DESCRIPTION sections are always
present and mandatory. Depending on the item type, other sections are present, some mandatory
and some optional. Furthermore, on a module basis, other sections can be added according to specific
need. Should this happen, it shall be stated in the Software Design Documentation.

If any mandatory section is empty, its header is kept with one of the following: ”Not Applicable” or
”None”.

If any optional section is empty, its header is omitted.

A common remark. The one-line description, under the NAME section, should containing the essen-
tial keywords to identify the functionality performed because the apropos search feature of xman
is based on such keywords.

2.4.2 Production of the Documentation

All the necessary information shall be present in the source files. Appropriate programs will be
available to extract comments from source files (standard templates are defined later on in this
document for both C-source and script file) or to format message or error definition files (standard
templates will be defined in the CCS user manual). In case such programs are not available, the
documentation shall be manually prepared according to the rules described here.

The extracted information is then formatted to be includable in the user documentation and to be
displayable via "man/xman” utilities (nroff format). In both cases, the Unix Manual-like appearance
is used.

Similarly to UNIX documentation, VLT man/xman pages will be organized in "sections”. The rules
for that will be provided in the next issue of the present document.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228 9

2.4.3 Program Template

program_name

NAME

program_name — brief description

SYNOPSIS

(How to invoke the program and the possible options.)
program_name <optl> <opt2> .

DESCRIPTION

Detailed explanation of functionality and option(s).

FILES

The file(s) used by the program.
For each file: name, access (read, write, modify), description of the usage.

ENVIRONMENT

The environmental variable(s) accessed by the program.
For each variable: name, access (read, write, modify), description of the usage.

The OLDB table(s)/variable(s) used to exchange information with other modules (i.e., OLDB
table(s)/variable(s) belonging only to the module shall not be documented here).

For each variable or group of related variables: name, access (read, write, modify), description
of the usage.

COMMANDS

(The list of commands that the program can receive from other processes)
< COMMAND NAME> brief description of the action performed

RETURN VALUES

the possible return status and error values.

CAUTIONS

(optional) warnings, if any (i.e., special setup of hardware or software required, etc.)

EXAMPLES

(optional) examples, suggestions of how to use the program.

SEE ALSO

(optional) references to related information (other utilities, documents, etc.)

BUGS

(optional) known problems, if any, or planned improvements.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

2.4.4 Procedure Template

procedure_name 2

NAME

procedure_name — brief description of procedure

SYNOPSIS
The C binding (in the form of the ANSI C new style function definition).
If required, the header file(s) that must be included.

DESCRIPTION
Detailed explanation of functionality and arguments.

For each procedure argument a brief description, including allowed values and access (read,
write, modify). Arguments shall be listed in the same order as in the synopsis.

FILES

The file(s) used by the procedure. For each file: name, access (open, close, read, write, update),
description of the usage.

ENVIRONMENT

The environmental variable(s) accessed by the procedure. For each environmental variable:
name, access (read, write, modify), description of the usage.

The OLDB table(s)/variable(s) accessed by the procedure and used to exchange information
with other modules (i.e., OLDB table(s)/variable(s) belonging only to the module shall not be
documented here). For each table/variable: name, access (read, write, modify), description of
the usage.

RETURN VALUES

The possible return status and error values.
CAUTION

(optional) warnings, if any (i.e., special setup of hardware or software required, etc.)
EXAMPLES

(optional) examples, suggestions of how to use the procedure.

SEE ALSO

(optional) references to related information (other utilities, documents, etc.)

BUGS

(optional) known problems, if any, or planned improvements.

2 . . . .
(according to the naming convention, see section 3.)



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

2.5

Interface File

The interface file, a C-include file named mod.h, contains all the definition needed for the program-
matic use of the module.

The include file is used by:

the module user programmer(s) that find in it the definition of all procedures, type declarations,
constants, etc., to perform consistency checks at compile time. Including the interface file it is
not needed, neither allowed, to redefine locally, function prototypes, data type, etc.

the module implementer programmer(s) to perform consistency checks between the external
definition and the current implementation.

In detail, the interface file shall contain:

header files used by the module implementation.

constant declarations.

data type declarations.

functions prototypes, according to the so called ANSI ”"new style” format.

possible message definitions, via inclusion of the definition file modMessages.h written accord-
ing to CCS Message System syntax.

possible error definitions, via inclusion of the definition file modErrors.h written according to
CCS Error System syntax.



VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

Template for interface file

file name: mod.h

<Configuration Control prologue>
#ifndef MOD_H
#define MOD_H

/*
* Module MOD - Interface File
*/

/*
* header files
*/

/*nonex*/

/*
* constants
*/
#define modMAX_TIME_TO_WAIT 100

/*
* data types
*/
typedef enum {
modSTART_MOTOR=1,
modSTOP_MOTOR,
modREACH_PARK_POSITION
} modWHAT;

typedef struct {

} modTIME;

/*
* macros
*/

# include modMacros.h

/*
* functions prototypes

*/

integer modDoAction (modWHAT *modAction, modTIME *modWhen) ;

integer modWait (int modTimeToWait);

/*
* message definitions

*/



VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

#include modMessages.h

/*
* error definitions
*/

#include modErrors.h

#endif /*!MOD_H*/



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

2.6 Directory Structure

The complete directory structure of the VLT software is not within the scope of this document, but
is part of the System Software Design Description document (see [3] 4.2.6).

Appendix C provides a preliminary description of the VLT Directory Structure.

2.6.1 Module Directory Tree

For development and management reasons there is a need to have the possibility to access several
different versions of the same module. Each version has the same structure but a different root
(modROOT stands hereunder as the full path of a root).

REMARK: including the appropriate modROOT in your path definition, allows you to switch easily
from one environment to another.

Each area shall have the the following minimum subdirectory tree:

<modROO0T>/
[ === include/ (%)
[-===-= src/ (%)
[-===—- object/ (optional)

[— oldb/ (%) (optional)
[— forms/ (%) (optional)

[-===—- test/ (*)

[-===—- R (optional)
[-===-- o (optional)

(*) these directories have the SCCS subdirectory.

The content of each subdirectory is:

include/ (**)

include files

src/
C-source files and scripts.

object/ (**)
object files, only for VxWorks applications.

oldb/ (*¥)
OLDB definitions, if any.

doc/
documentation files, at least the User Manual and the Maintenance Manual (source and print-
able formats).

test/
test software: source, executable, input data, reference output data, etc.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

bin/ (**)

scripts and executables (used during development and test).
1ib/ (**)

libraries (used during development and test).

man/ (**)

on-line documentation

tmp/
local scratch area for temporary files (e.g., during test).

.

any other module specific directory.

(**) the contents of these directories are copied at installation time to the system directory tree.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

2.7 README

For each module a README file shall be present in src/.
The README file shall contain a brief description of the module.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

3 Naming Conventions
Naming conventions help:

— make identification of objects easier
— improve consistency across the system

— avoid conflicts

This section defines naming rules for:

o [iles:
Path
Filename

Filetype

e C-language items:
Functions
Macros
Constants
Variables
Data type
Structure and union members

Enumerators

e Operating system environmental variable
Rules to name the following will be provided in the CCS documentation.

e On-line Data Base table
e On-line Data Base variable
e Commands

e Error description

Naming conventions are not applicable to special objects, like Makefiles, README;, etc., for which
naming rules are already established.

3.1 General Rules

Each name must not exceed 31 characters long and, considering uppercase and lowercase letters being
equivalent, must be unique in the VLT scope. The allowed set of characters is: a-z, A-Z, 0-9, 7"
(low line or underscore).

Each name is formed by two parts:

[<master_area>]<description>



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

master_area
intended to organize names in a one-level hierarchy system. The grouping criteria are in the
following table:

for objects that belong to master_area is
the same software module the module name (see 2.3)
the same physical part of the VLT system the part name

(can be an equipment or a smaller part) | (refer to the HOS/Access Configuration
and Control documentation for the rules
for naming physical parts)
the whole VLT "VLT” (but can be omitted, if there is
no ambiguity with other environments)

description
describes the content of the object with which the name is associated. As a general requirement,
it must be meaningful and readable. Abbreviations should be avoided

The examples hereunder use a module called MOD and an equipment called T1.

3.2 File

A file is identified by:

<path><file_name>.<file_type>

3.2.1 Path

The path shall always be relative to an environmental variable that represents the logical root of
the domain to which the file belongs.

3.2.2 File_name

The description should represent the content/role of the file.

No restriction in the use of lowercase/uppercase and underscore, though uppercase words should only
be used for acronyms or aliases.

A file can belong to: a module, an equipment, the whole system.

For some files additional conventions are defined:

1. files containing C source code the following rules shall be applied:

if a C-source file contains the main(), the file name is the program name. This rule, when
applicable, supersedes the following rules.

if a C-source file contains a single procedure, the file names matches the procedure name.

if a C-source file contains more than one procedure ?, the file name comprises the significant
words common to all procedure names in the module.

3This case should be used only when procedures are closely related and are very simple. The general rule is one
procedure per file (see 4.2.2).



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

2. header files of a module: mod.h, modErrors.h, etc.

Examples:

mod.h

modHelp

mod.c
modTerminalManagement.c
modControlExposure.c
modTestInputData
ChangeNotice
T1_Error.log
VLT_standard_copyright

3.2.3 File_type

The file type identifies the type of file, e.g., c-source, include, LaTeX file, VLT defined standard type,
etc.

The following file types are mandatory and their use is restricted to the specified cases:

emply  executable

.C C language source

.h C language include (or header)
.0 object code

.a library

.tex LaTeX source

.ps Postscript file

The use of specific software tools can impose additional rules.

3.3 C-language Items

REMARK: VxWorks, OSF/MOTIF and RTAP are going to be used for development. Although
similarities exist among the three, each one uses a different naming style. The following standard
does not completely follow any of them.

When used, the ”master_area” is the "module_name” and is always lowercase.

3.3.1 Functions

description is formed by two parts: the action (a verb) and the object (a noun) of the action. Each
word forming the description is capitalized.

modStartExposure
modMoveSlit
modCloseSession
modReadTachoSpeed
modSetTime

A function can belong to only one module. Theoretically, there are two types of functions, depending
on the external accessibility to them:



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

public: functions accessible by other modules, i.e., functions belonging to the programmatic interface
of the module, and documented in the User Manual.

private: functions accessible only by other module functions, i.e., functions not belonging to the
programmatic interface of the module and documented in the Maintenance Manual.

3.3.2 Macros

Macros with parameter(s) follow the same convention as for a function (see 3.3.1).

Macros without parameters follow the same convention as for the constants (see 3.3.3).

3.3.3 Constants

description is the literal representation (THOUSAND) or the logical meaning (MAXCOLUMN) of
the constant.

The description is in UPPERCASE, multiple words are separated by an underscore (_).

A constant can belong to a module or be of general use.

Examples:

modMAX_EXPOSURE_TIME
modSLIT_X_PARK_POSITION
modSLIT_Y_PARK_POSITION

TIME_TO_START

The POSIX constants (such as NULL, TRUE, FALSE, etc.) and the ones defined in the general VLT
definition file ("vltstd.h”) shall NOT be redefined at application level.

3.3.4 Local Variables

master_area is empty.

The description is the content of the variable. Each word except the first one is capitalized:
Examples:

exposureTime
slitPreviousPosition
counter

sessionld
tachoSpeed

time

3.3.5 Global Variables

The description is the content of the variable. Each word is capitalized:
Examples:

modExposureTime



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

modLocalTime

3.3.6 Data Type

The description is the type identification. Types can be elementary types (integer, char, etc) or
complex, like structures and unions.
The description is in UPPERCASE, multiple words are separated by an underscore (_).
A type can belong to a module or be of general use.
Example:
modSLIT_POSITION

The POSIX types (such as FILE, etc.) and the ones defined in the general VLT definition file
("vltstd.h”) shall NOT be redefined at application level.

3.3.7 Structure Members and Union Members

Same as for local variables (see 3.3.4).

3.3.8 Enumerators

Same as for constants (see 3.3.3).

3.4 Operating System Environmental Variable

The description shall represent the content of the variable.
The whole name is in UPPERCASE. Different words are separated by an underscore (_)

An operating system environmental variable can belong to: a module, an equipment, the whole
system and be used across different applications (do not confuse with local variables used inside
script files, see 5.3.3).

Examples:
MOD_ROQT

T1_STARTUP_MODE
VLT_SYSTEM_ROOT

Some variables (such as HOME, USER, etc.) are already defined by the operating system and others
by the general VLT startup procedure and can not be redefined at application level.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

4 C Language

This section is applicable to all C-language code, both for UNIX and VxWorks target environments.
Should differences exist, the two cases are treated separately.

4.1 C Compiler Version
4.1.1 TUNIX Applications

All VLT code written in C shall conform to the ANSI C standard ([4]) 7.1.3) as defined in:

[1] Programming Language C, ANSI Standard X3.159-1989.

More information can be found in:

B.Kernighan, D.Ritchie, 1988, Prentice Hall — The C Programming Language - Second edition [7].

TBD: qualified compilers for each development platform (SUN and HP) and the standard run string
with the default options.
At present the GNU C Compiler version 1.39 shall be used

4.1.2 VxWorks Applications

GNU C Compiler as from the standard VxWorks version.

TBD: standard run string with the default options.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

4.2 File Templates

For C development, files can be grouped into two categories: source files (.c) and include files, also

called header files (.h).

The source file can contain:

- a single procedure (a special case is the main()).

- a group of closely related procedures, each of which would be too small for an independent file.

For those functions that form a library, it is recommended to have one file per function. The benefit
is that the executables that link with such a library will take from the library only the modules that
are really necessary.

As a rule of thumb, each file should range between three to ten pages.

4.2.1 Source file (.c) - main

Each main requires a separate file called program_name.c. Only signal catching functions and local
functions can be inserted in this file. Any function, structure, etc. belonging to a software module
shall be accessed including the appropriate include file.

Each main source file shall be structured according to the template at page 25.

4.2.2 Source file (.c) - function/s

A function, also called a procedure or subroutine, is an elementary piece of code provided to other
user programs. The interface of each function is defined by the function name, the parameter(s), the
return value and by the effect(s) that the execution of the function has on the computing environment.

Each source file containing one or more function(s) shall be structured according to the template at
page 28.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

Template for main

file name: program_name.c

<configuration control prologue>
[k stk stk o ok sk ok ok sk sk ok stk o ok stk stk stk sk sk ok stk stk ok stk ok stk stk sk sk ok skokok sk sk ok stk ok ok

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

NAME
<program_name> - <brief description of program>

SYNOPSIS
<program_name> [<par_1> [<par_2> . . . [<par_n>]]]

DESCRIPTION
<detailed explanation of the functionality>

FILES
<file_1> <access> <meaning and purpose of the file>

Kfile_2> <ACCESS > .ttt ittt ittt e e e e e e

ENVIRONMENT
<var_1> <access> <meaning and purpose of the variable>

<var_2> - Yot of =Y ¥ = DO

COMMANDS
<Command_1> brief description of the action performed

RETURN VALUES
<ret_value_1> <message> <diagnostic of the error>



26 VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

*
*  CAUTIONS (optional)
X ..
x ..
*
*  EXAMPLES (optional)
x ..
x ..
*
*  SEE ALSO (optional)
x ..
X ..
*
*  BUGS (optional)
TN
TN
*
K
*/
#define POSIX_SOURCE 1
/*
* System Headers
*/
#include <..... >
#include <..... >
/*
* Local Headers
*/
#include "......... " /* ... .. x/
#include "......... " /* ... .. x/
/*
* Signal catching functions
*/
/*
*Local functions
*/
/*

* Main



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

*/

int main (int argc, char *argv[])
{

..... code

..... code

..... code

..... code

..... code

}



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

Template for single procedure or group of procedures

file name: procedure.c or procedure_family.c

<configuration control prologue>
[ 3k stk stk sk sk ok stk ok stk sk ok stk stk sk sk kb ok stk ok sk o sk skok stk sk sk ko ok sk sk sk ok sk ok ok ok

* NAME

* <name>{[,<name>]} - <brief description of procedure(s)>
*

* SYNOPSIS

* <ret_type> <name> (argl, arg2, ..., arg-n)

*

* [<ret_type> <name> ( ... )]

*

* #include "...... h"

*

(more than one function can be described here -
see ad example the man page of documentation of "printf")

DESCRIPTION
<detailed description of the function(s) performed>

<arg-n> <description and grammar rules for the n-th argument>

FILES
<file_1> <access> <meaning and purpose of the file>

Kfile 2> <ACCESED 1ttt ittt ittt ettt e e e e e e

ENVIRONMENT
<var_1> <access> <meaning and purpose of the variable>

<var_2> D Yol of =1 1= DN

RETURN VALUES
<ret_value_1> <message> <diagnostic of the error>

EOEE I R K BT O B B B R K R R . RN B B B BN R R R I R



VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

*
*  CAUTIONS (optional)
X ..
X ..
*
*  EXAMPLES (optional)
X ..
x ..
*
*  SEE ALSO (optional)
x ..
X ..
*
*  BUGS (optional)
x ..
X ..
*
*/
#define POSIX_SOURCE 1
/*
* System Headers
*/
#include <..... >
#include <..... >
/*
* Local Headers
*/
#include "......... " /*
#include "......... " /*
/*
* Function definition
*/

<ret_type> <name>(
<typl> <argil>,
<typ2> <arg2>,
>



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

/*___o0o___x/



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

4.2.3 Include file (.h)

The following rules are mandatory:

1. Include files must not contain executable code.

2. In order to ensure that it will be included only once, wrap each include file in the following
way:

file: name.h

#ifndef NAME_H
#define NAME_H

#endif /*!NAME_H*/

3. Provide an in-line comment for each item in the header file.

4. Organize the header file in sections of homogeneous items: constants, macros, function proto-
types, type declarations, etc.

5. ANSI-C excludes the use of a sizeof(), a cast, or an enumeration constant in constant-
expressions of conditional compilation(#if).
About the use of sizeof see also 4.7 3.

6. Use only #ifdef (or #if define) to check whether a symbol is defined.

When using header files:
— use explicit < > brackets for system include file (POSIX) and quoted form for local file.

#include <stdio.h>
#include "mod.h"

— do not use full pathname for #include directives, but the compiler directive -I.

NO ABSOLUTE PATH IS ALLOWED.
The complete header file template follows:



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

#ifndef NAME_H

#define NAME_H

<configuration control prologue>

/) 43k sk ok ok ok sk sk sk o o o o ok sk sk sk ok o ok o ok o sk o o ok sk sk o o ok sk sk sk s o ok sk sk sk ok o ok ok sk sk s o o ok sk sk sk ok o sk sk sk o o o ok ok ok o
*  <name.h> - <brief description of the purpose of this .h file>

/*

e

*/

.................... /* ... ... %/
.................... /* ... ... %/
.................... /* ... ... %/
/*

e

*/

.................... /* ... ... %/
.................... /* ... ... %/
.................... /* ... ... %/

#endif /*!NAME_Hx/



VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

4.3 Source Readability

The following are guidelines.

4.3.1 Indentation and Spacing

1. write only one statement per line.

Exceptions can be accepted when the repetition of the same group of statements per line
improves readibility:

argv[i++] = 2; argv[i++] = 99; /* set the even and odd elements */
argv[i++] = 4; argv[i++] = 97;
. use blanks around all binary operators, except ”.” and 7 .->";

. in compound statements, put braces ({}) in a separate line and alligned with indented state-
ments;

If a compound statement is more than 20 lines, the closing brace should have an in-line comment
to indicate which block it delimits.

} /% ool
. use a blank after commas (arguments list, values, etc.), colon, semicolon and control flow
keywords:

procedure(argl, arg2);

for (i = 0, j = strlen(s) - 1: i<j; i++, j--)
if (....0)

while (....)

. do not use blanks between an identifier and any of 7 (7, ”)”, "[”, "]":

procedure(argl, arg2);

ali]l = 1;

z[i] = a + (sin(x) + cos(b[il))
printf("%4d", (a + b))

. line up continuation lines with the part of the preceding line they continue:

a= (b +c) *
(c + d)

if ((a b) &&



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

(c == d))

printf("%d %s",
(a + D),
”abcd”)

7. The indent step is 4 characters. The following templates * show how to indent the most frequent
structures:

(a) typedef struct

typedef struct {

| ;
(b) if

if (....)
{
}

else
{
}

(c) else-if

if (....)
{
}

else if (....)
{
}

else if (....)
{
¥

else
{

4The proposed style corresponds to the one used by many source code analyzers.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

(d) switch

switch (....)

or, if suitable:

switch (....)

while (....)

for (...; ...; ...)

(g) do-while
do



VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

T
while (....);

4.3.2 Comments

Both block-style comments and in-line comments are acceptable.

1. block-style comment

Each block is preceded by an empty line and has the same indentation as the section of code
to which it refers.

A block-style comment should always appear at the beginning of each relevant segment of code.

. in-line comment

.................... /¥ ... ... %/
.................... /¥ ... ... %/
.................... /¥ ... ... %/

Brief comments on the same line of the statement that they describe. They can start on
columns (33+n*4) n=0, 1, 2, 3... (33, 37, 41, 45, etc.). There must be at least 4 spaces between
the code and the start of the comment. Comments on contiguous lines must be aligned on the
same column.

In-line comment should not be broken in multiple lines:

AVOID THIS!

Use in-line comment to document variable usage and other small comments. Prefer block-style
comments to describe the computation process.

4.3.3 Naming Conventions

See section 3.3.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

4.4

TBD.

4.5

TBD

4.6

Allowable Data Types

A set of authorized types will be defined after the implementation of CCS.

Language Sensitive Editor

Forbidden Instructions

The ”old style” function declaration:

power (base, n)
int base, n;

is not allowed anymore. Use instead ANSI-C style (see [7] page 26 and page 217 A8.6.3):

4.7

int power (int base, int n)

Mandatory Practices

Structures and unions must always be passed to or returned by functions using pointers.

global variables are not allowed outside the scope of the module.

In case of shared libraries the restrictions with global ”initialized data” shall be taken into
consideration. When building a shared library it is recommended to segregate the declarations
of exported initialized data from the sources for each object, and to place them in separate
source files.

. Let the compiler work out lengths: use sizeof rather that declaring the length of a structure

or of an array explicitly.
About the use of sizeof in include file see also 4.2.3 5.

. Use cast explicitly when conversion is necessary.

Access to data shall be independent of its physical size and alignment.

Provide a default for switch statement. Even when you expect one of the cases to catch all
answers, have it diagnose as a catastrophic error if the condition was not expected.

Assumptions should not be made about the order of parameter evaluation. Always explicitly
code your desired order of evaluation of subexpression. Some machines evaluate the parameters
from right to left, others evaluate them from left to right. For example:

func(x * i, y / i, i++);



10.

11.

12.

13.

14.

4.8

10.

11.

VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

. To avoid machine-dependent fill methods, do not apply the right-shift (>>) or left-shift (<<)

operators to signed operands, and do not use shifts as a divide/multiply.

. Uninitialized automatic variables shall never be used. ’lint’ (see B) will detect them.

Data types must not be mixed across function boundaries. Type cast should be used.

Function prototypes, constant, type definitions, etc. are accessed including the appropriate .h
file. Redefining them is not permitted.

If the return value of a function would never be used, the function shall be declared as a void
function.

Pointer assignment shall be between pointers with the same data type. Avoid treating pointers
as integers or vice-versa.

To check the validity of a pointer compare it to cast(NULL). Do not use the integer 0.

Suggested Practices

. Beware of side effects in macro parameters. Don’t use auto increment or decrement on ar-

guments to a macro; if the macro references the argument more than once, then the incre-
ment/decrement happens again also.

. Avoid the use of goto statements. If necessary, clearly document it.

. Limit the use of global variables inside a module. (It does not apply to VxWorks where by

definition global variables of a module are common to the whole LCU).

Break each case of the switch statement to avoid falling through to the next case. If unavoid-
able, clearly document it. (The only exception is multiple case labels.)

. Avoid using char variables to store non-character data.

. Expect the unexpected: Provide an else for if statements. Even when you expect one of the

cases to catch all answers, have it diagnose as a catastrophic error if the condition was not
expected.

Use parentheses even when not required to improve clarity. Using parentheses also helps avoid
errors caused by misunderstood operator precedent.

If the same index addresses two or more data then define an array of structures instead of
separate vectors.

. Don’t use realloc() with a NULL pointer, a pointer that has not been allocated, or one that has

been freed. You may get away with it on some systems, but on others it may cause problems
that won’t be detected until your customer has trusted the system with a lot of data.

Do not increment/decrement loop control variables in the middle of the block. Otherwise it
makes it harder for you to find the loop control, and you may miss the increment, or increment
past the boundary, under certain conditions.

You should never have an additional increment/decrement inside a for loop. In a while loop,
put the increment/decrement at the top or bottom of the block

When you have a software error condition, print out the file and line number in the message.
This is facilitated by __LINE__and __FILE__, which are defined by the compiler to be the current
line number and file name:



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

12.

13.

14.

fprint(stderr, "Fatal: bad pointer, line %d, file: %s\n",
__LINE__, __FILE__);

Provide an in-line comment for each declaration of variable (except for obvious loop counters

like i, j, etc.), type, #include (except POSIX system files like stdio.h, etc.), etc.

Avoid debug statements. They are rarely useful (it always turns out you want to look at other
or more variables than the ones you are printing), they are only used at the very beginning
of the lifetime of a program, they make the source file longer and more diflicult to read, and
modern debuggers are by far more efficient and versatile.

If unavoidable, use conditional compile to turn them on/off as shown:

#ifdef DEBUG
/* debug print statements */
#endif

Setting up of enumerated variables starts with 1, so uninitialized values are easily detected.
Example: a failure to read the traffic light or possibly even to call the read_traffic light function
will be detected:

typedef enum {
CT_RED=1,
CT_YELLOW
CT_GREEN

} COLOR_TYPE;

{
COLOR_TYPE color = CT_INVALID;

color = readTrafficLight();

switch (color)

{

case CT_RED:
stop();
break;

case CT_YELLOW;
stopIfPossible();
break;

case CT_GREEN;
cruise();
break;

default:
fprintf(stderr, "\nFatal: bad pointer, line %d,
file: %s\n", __LINE FILE__);
abort();

—_ ——



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

4.9 Error Return

See CCS/ErrorSystem documentation.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

5 Script Files

5.1 Standard Shell

A standard shell command language is not yet defined. The Part 2 of the POSIX standard (IEEE
Std. 1003) is planned to specify a standard shell based on the System V shell with some features from
the C shell and the Korn shell. The standard includes also the User Portability Extension (UPE)
that covers utilities like vi, make, man, mailx, etc. (see [6] page 3).

For the VLT Software the following have been chosen:
— Bourne shell as the mandatory shell for scripts.

— Korn shell as the suggested interactive shell

5.2 File Template

As a rule of thumb, each file should range between two to five pages.

Each script file shall be structured according to the follow template:



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

Template for script file

file name: program_name

#! /bin/sh
<configuration control prologue>
stk ok ok sk s o o sk sk o ok sk s o ok sk s o ok sk s sk sk o o sk sk s ok o ok sk s sk s o ok sk sk ks o ok sk sk s ok s ok sk sk sk sk o ok sk sk sk sk ok ok

NAME
<program_name> - <brief description of program>

SYNOPSIS
<program_name> [[[<par_1>] <par_2>] ...]

DESCRIPTION
<detailed explanation of the function performed>

FILES
<file_1> <access> <meaning and purpose of the file>

ENVIRONMENT
<var_1> <access> <meaning and purpose of the variable>

RETURN VALUES
<ret_value_1> <message> <diagnostic of the error>

H OH H OH H OH H H O H H H H H H H HHE H O H O H HH HEH H HE HHE R HE HEHEH HEHE HE R H R



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

H OH H H B B B H H H

H

*=*



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

5.3 Readability

The following are guidelines.

5.3.1 Indentation and Spacing

Do not put more than one instruction on the same line.

The standard indentation step is 4. The style is the following;:

<command-list>

if <command-list>

then
<command-list>
<. 0.2

else
<command-list>

<.o.002
fi
for <name> (or: for <name> in <word> . . .)
do
<.o..0.02
done

while <command-list>
do

done

case <word> in

): <. >
L A
...... ): <. >
< 0002
*): <....> # REMARK: the default label
<..00> # is mandatory.

esac



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

5.3.2 Comments

Both block-style comments and in-line comments are acceptable.

1. block-style comment

is one or more line having # as the first non-blank character. Each block is preceded by an
empty line. Text is aligned with the code that it documents.

A block-style comment should always appear at the beginning of each relevant segment of code.

2. in-line comment

Brief comments on the same line of the statement that they describe. They can start on
columns (33+n*4) n=1,2,3... (33, 37, 41, 45, etc.). There must be at least 4 spaces between
the code and the start of the comment. Comments on contiguous lines must be aligned on the
same column.

Limit the use of in-line comment to document variable usage and other small comments. Prefer
block-style comments to describe the computation process.

5.3.3 Local Variable Naming

Local variables can be uppercase or lowercase. The suggested use is:

— UPPERCASE objects (file names, etc.)

SOURCE_DIR=$CURRENT_MODULE/source
INPUT_FILE=$1

— lowercase: variables used in computation (index, counter, etc.)

read a
for file in ...

Being local, no restriction in naming is defined. Provided that each name is meaningful and under-
standable, avoid abbreviation.

In any case the use of the name of a environmental variable for a local scope variable is strongly
discouraged, even when the global variable is not used in the script.

5.4 Forbidden Instruction/commands

No other control flow operator is permitted in addition to those listed in section 5.3.1.

Local redefinition of OS and VLT variables shall be clearly documented and cannot be exported to
global environment.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

5.5 Mandatory Practice

Always provide the default *): pattern in the case statement.

5.6 Suggested Practice

Multiple case labels should be placed on separate lines.

5.7 Returns Values

Use only one exit point for all possible successful end(s). Write explicitly exit or exit 0 when there
are other possible exit values for abnormal termination.

Use exit n to exit in abnormal situation. Document each case in the script header (RETURN

VALUES section).



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

6 Make

6.1 Make Version

To avoid discrepancies with the different vendor implementations of make, the GNU make 3.59
will be used.

6.2 Makefile Structure

A Maketfile file shall exist in every directory containing sources, in particular:

mod_name/: with the entries:

all to regenerate software, documentation and test.
install to install software, documentation and test

clean to clean up the development areas
source/: with the entries:

all to regenerate all the software
install to move executable, libraries, include and script files to target directories

clean to clean up the software development areas

doc/: with the entries:
all to regenerate all the documents (from source, .tex file, etc.) both as printable form and in
the man/xman format
install to move man/xman files to target directory

clean to clean up the document development areas
test/: TBD

Standard templates and the use of make in conjunction with SCCS will be provided in the next
issue, after the definition of the CC structure and of the target system file organization (see also

appendix C).



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

7 UNIX

The development operating system standard for the VLT shall be UNIX System V ([4] 7.1.2 1a).

7.1 Callable Interface for System Calls

According to section 7 of Software Requirement Specification [4], only POSIX calls are accepted.
The reference document for POSIX calls is [2]

IEEE Std. 1003.1-1990, Information Technology—Portable Operating Interface (POSIX)—Part 1:
System Application Program Interface (API) [C language]

As a program development help, [6] POSIX Programmer’s Guide, by D.Lewine, 1991, O’Reilly &
Associates, Inc. can be used. This book presents the recommendations of the IEEE standard to
operating system developers, in a form better suited to application developers.

The use of non-POSIX calls must be proved necessary during the design phase and is subject to
ESO approval. In such a case, all calls to OS implementation dependent routines shall be put in a
separate file, providing interface routines to access them. The other code uses the system dependent
part ONLY via the interface routines.

For interprocess communication and data sharing, applications shall use the Central Common Soft-
ware. The use of other mechanisms must be proved necessary during the design phase and is subject
to ESO approval. In such a case, all the specific functions shall be implemented as a separate soft-
ware module, providing a programmatic interface to access it. The other code can use the alternative
mechanism ONLY via the interface of such a module.

7.2 OS Utility

System V.

7.3 Signal Treatment

TBD



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

8 VxWorks

No limit to the use of the functions currently part of the VxWorks. When available, POSIX.1 and
real time extention POSIX.4 calls should be used whenever possible.

When not POSIX compliant, calls to OS implementation dependent routines should be put in a
separate file, providing interface routines to access them. The other code uses the system dependent
part ONLY via the interface routines.

The LCU Common Software services, like interprocess communication and data sharing, shall be
used. The use of other mechanisms must be proved necessary during the design phase and is subject
to ESO approval.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

APPENDICES



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

A Media for Deliverable Software

Digital Audio Tape (DAT) cartridge shall be used to deliver any type of software and documentation
internally between ESO and contractors, in both directions.

When available and with the approval of ESO, network link(s) can be used in addition or as an
alternative to DAT.

A.1 Media Format

Only DAT/DDS cartridge (90 m.) UNCOMPRESSED format are allowed.

A.2 Media Labeling

Each media item shall have a label, with a layout as in figure 1, having the following information:

<date> date of writing

<content> brief explanation of the content (e.g., name of the software module, documentation for
Design review, etc.).

<reason> reason to produce the tape (acceptance, bug fix, information, update, etc.)
<from> identification of the sender (name, Company)

<system> operating system (name and version) and computer (model) used in the generation
<command> command issued to create the tape

<pwd> the current directory at the time the command was issued

REMARK: <date> and <content> shall be written on the spine label too.

A.3 Software Format

All delivery shall be one tar-file (or compressed tar-file) produced using the tar command (and
compress).

tar-path names shall be relative (i.e., path names shall not begin with a ’/’).



56

VLT SW - Programming Standards - 1.0

<date> <content>

<reason>

<from>

<W$en’]>

<command>

<pwd> UNCOMPRESSED

<date> - <content>

15/03/93 | D1 DRIVER1.1-AT
Acceptance test version
A.Smith - SOFT CORP.
SunOS4.1.1- SUN 4
tar -cv .

/home/asmith/dldrv | UNCOMPRESSED

15/03/93 - D1 DRIVER 1.1 AT ’7

Figure 1: Tape Label Layout

VLT-PRO-ESO-10000-0228




VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

B Test Tools

At present, several tools are under evaluation to cope with:

static checks (lint)

consistency checks (application of this standard, cross-check among files)
- software quality measure
- test coverage

standard test environment

TBD in the next version of this document or in separate document, the selected tools and the rules
to use them.



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

This page was intentionally left blank



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

C VLT Directory Structure

The complete directory structure of the VLT software is not within the scope of this document, bul
is part of the System Software Design Description document (see [3] 4.2.6).

This section provides a preliminary description of the VLT Directory Structure. Its main purpose is
to provide a logical structure for the use of make.

The following logical areas are defined:

the development area of a module: this area shall have the structure described in 2.6.1 and is the
responsibility of the programmer. No reference to such areas can be made from other modules.

Development areas can be created on any machine and in multiple copies. The node-directory
of the root of each area is the identification for each area.

Any activity in the development area of a module shall be based on the standard structure
and all paths shall be relative to the module root. Reference to software belonging to other
modules shall be done via the environmental variable VLTROOT (see later), appropriately
defined to the needed operating environment.

the software archive: there is only one archive area under the responsibility of the Software Config-
uration Control Manager. The archive contains the whole history of the VLT software and is
used as follows;

1. the software is developed and tested under a development area.

2. after being accepted, the software is checked-in to the archive by the responsible of the
development.

3. All source files are transferred from the development area into the corresponding subdi-
rectory in the archive (modx/...).

4. all source file are checked-in to SCCS.
5. a new area is created according to the version number (modx/n.m)

6. all files are checked-out for read from SCCS and executables are regenerated from scratch
in modx/....

7. include/, object/, oldb/, bin/, lib/, man/ are copied under modx/n.m copied by
the SCCM.

The archive is used to install the software in the target machines.



VLT SW - Programming Standards - 1.0

VLT-PRO-ESO-10000-0228

VLTARCHIVE/
[-—--- modx/
| |-———-- include/
I I |---.sccs/
| I
[ | . (complete structure)
| I
| [---1.1/
I | | ————-- include/
[ | | ——==-- object/
I I [-=-—-- oldb/
| I |-===== bin/
| I |-===-= 1ib/
I I |-——-—- man/
| I
| |---1.2/
| | | ————-- include/
| I
| I
| I |-==--- man/
|
I |---n.m/
|
|
[-—--- mody/
I |-==———- include/
I I |---.sccs/
| I
[ | . (complete structure)
| I
| |---1.1/
| I
| |---1.2/
| .
I |---n.m/
|
|-—---forms/

| (To Be Defined)



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

the operating area: contains the software that can be used. It is the target for make install and is
in the search path for libraries and include files when generating a module.

Operating areas are defined both on target computers and on development computers. For
target computers the installation is from the archive. For development computers, the area
is first created from the archive and then updated from the development area for integration
activities involving more modules.

It is possible to create many operating areas and, appropriately defining the environmental
variable VLTROOT, to switch from one to another.

VLTROOT/
|-——-etc/
| | -——-include/

----xyz/
| -——-include/

|--forms/
|

|
| --<data>



VLT SW - Programming Standards - 1.0 VLT-PRO-ESO-10000-0228

__000___



