ESO
LCU Common Software

LCU Server Framework

User Manual

Doc.

Issue

Date

Page
VLT-MAN-ESO-17210-2252

1.0

2000-10-25

3 of 81

[image: image1.wmf]
EUROPEAN SOUTHERN OBSERVATORY

Organisation Européenne pour des Recherches Astronomiques dans l'Hémisphère Austral

Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

VLT PROGRAMME

VERY LARGE TELESCOPE

LCU Common Software

LCU Server Framework

User Manual

Doc. No.: VLT-MAN-ESO-17210-2252

Issue: 1.0

Date: 2000-10-25

Prepared: P.Duhoux

2000-10-25

Name

Date

Signature

Approved: B. Gustafsson

Name

Date

Signature

Released: G. Raffi

Name

Date

Signature

VLT PROGRAMME * TELEPHONE: (089) 3 20 06-0 * FAX: (089) 3 20 06 514

CHANGE RECORD

ISSUE
DATE
SECTION/PAGE

AFFECTED
REASON/INITIATION

DOCUMENTS/REMARKS

1.0
2000-10-25
All
First preparation

TABLE OF CONTENTS

51
Introduction

1.1
Purpose & Scope
5
1.2
Applicable Documents
5
1.3
Reference Documents
6
1.4
Acronyms
7
1.5
Stylistic Conventions
7
1.5.1
Text
7
1.5.2
Diagrams
7
2
User Manual
8
2.1
Introduction
8
2.2
LCU Server Framework
8
2.2.1
lsf: the LCU Server Framework
8
2.2.2
lsftpl : the LCU Server Application Template
13
2.3
LCU Server Application
15
2.3.1
Module Creation
15
2.3.2
Module Configuration
15
2.3.3
Specific Implementation
18
2.3.4
Scan Links
19
2.3.5
Database Configuration
19
2.3.6
Default panel & UIF widget
20
2.3.7
Application Makefiles
20
2.3.8
Implementation Rules for the Command Handlers
21
2.3.9
Hook functions
21
2.3.10
Miscellaneous
24
3
Reference
25
3.1
Utilities
25
3.1.1
lsf(1)
25
3.1.2
lsfCreate(1)
30
3.1.3
lsfConfig(1)
31
3.1.4
lsfBackup(1)
33
3.2
Code
34
3.2.1
lsfServer(3)
34
3.2.2
lsfStandard(3)
39
3.2.3
lsfSignalHandlers(3)
41
3.2.4
lsfControl(3)
42
3.2.5
lsfDevice(3)
45
3.2.6
lsfSignal(3)
47
3.2.7
lsfMotor(3)
50
3.2.8
lsfSerial(3)
53
3.2.9
lsfTaskDev(3)
56
3.2.10
lsfSoftDev(3)
59
3.3
Database Classes
62
3.3.1
lsfTemplate.db
62
3.3.2
lsfDB_SERVER(5)
64
3.3.3
lsfDB_CONTROL(5)
65
3.3.4
lsfDB_DATA(5)
66
3.3.5
lsfDB_DEVICE(5)
67
3.3.6
lsfDB_SIGNAL(5)
68
3.3.7
lsfDB_MOTOR(5)
70
3.3.8
lsfDB_SERIAL(5)
71
3.3.9
lsfDB_TASKDEV(5)
72
3.3.10
lsfDB_SOFTDEV(5)
73
3.4
Include Files
74
3.4.1
lsfDefines.h
74
4
Installation Guide
77
4.1.1
WS Environment
77
4.1.2
LCU Environment
77
4.1.3
Scan Links
79
4.1.4
Verification
80
4.1.5
Database configuration
80

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
1 Introduction

1.1 Purpose & Scope

This document describes the usage of the LCU Server Framework lsf from a programmatic point of view. It is intended to provide all the necessary information for an application developer to create, configure, customize and install LCU Server applications. It describes all the necessary steps that must be performed for the implementation of a new Software Device.

The intended readers are application developers of VLT Software who need to develop, test or maintain LCU Server Applications, based on this framework.

The author assumes the reader has a good knowledge of the VLT Standards and Software Engineering practices, especially experience with Real-Time and Object Oriented concepts and UML Notation would be an asset.

Beside the Introduction, the document is built in 3 parts:

· the User Manual describes the concepts and usage of the LCU Server Framework

· the Reference section provides the necessary man-pages for all the available scripts, commands and code

· the Installation Guide explains how to install a new LCU Server Application in the VLT environments

<!-- Standard footer -->

<!-- hhmts start -->Last modified: Thu Oct 26 12:50:45 METDST 2000 <!-- hhmts end -->

1.2 Applicable Documents

The following documents, of the exact issue shown, form part of this document to the extend specified herein. In the event of conflict between the documents referenced herein and the content of this issue, the content of this document shall be considered as a superseding requirement.

PRIVATE
Reference
Document Number
Issue
Date
Title

[AD 01]
VLT-SPE-ESO-10000-0011
2.0
30/09/1992
VLT Software Requirements Specifications

[AD 02]
VLT-PRO-ESO-10000-0228
1.0
10/03/1993
VLT Software Programming Standards

[AD 05]
VLT-MAN-ESO-17200-0888
1.0
17/08/1995
VLT Common Software Overview

[AD 06]
VLT-MAN-ESO-17210-0642
1.11
22/11/1999
VLT Common Software Installation Manual

[AD 07]
VLT-MAN-ESO-17210-0855
3.0
30/10/1998
VLT Software Environments Common Configuration User Manual

[AD 08]
VLT-MAN-ESO-17210-0667
1.0
03/12/1996
Guidelines for the Development of VLT Application Software

[AD 09]
VLT-SPE-ESO-17210-2051
1.0
2000-03-10
LCU Common Software - LCU Server Framework Detailed Design

1.3 Reference Documents

The reference documents contain background information required to fully understand the structure of this document, the terminology used, the software environment in which the product shall be integrated and the interface characteristics to the external systems.

VLT Project Software documents are available from the ESO VLT Project Archive or online at the following URL:
http://www.eso.org/projects/vlt/sw-dev/ftp/index.html

PRIVATE
Reference
Document Number
Issue
Date
Title

[RDV 01]
VLT-MAN-ESO-17210-0619
1.6
20/10/1999
VLT Central Control Software - User Manual

[RDV 02]
VLT-MAN-SBI-17210-0001
3.5
20/10/1999
LCU Common Software - User Manual

[RDV 03]
VLT-MAN-ESO-17210-0707
1.4
20/10/1999
CCS On-Line Database Loader - User Manual

[RDV 04]
VLT-SPE-ESO-17230-0819
1.3
18/09/1997
Mode Switching - Design Description

[RDV 05]
VLT-MAN-ESO-17210-0600
1.7
02/10/1998
LCC Motor Control Module - User Manual

The following non-VLT documents are referenced in the document:

PRIVATE
Reference
Title
Authors
Publisher, Date

[RD 01]
IEEE Std 1012, Standard for Software Verification and Validation Plans

1986

[RD 02]
IEEE Std 830, Recommended Practice for Software Requirements Specifications

1993

[RD 03]
IEE (UK), Guidelines for the Documentation of Software in Industrial Computer Systems

1985

[RD 04]
The Unified Modeling Language Reference Manual
J. Rumbaugh, G. Booch,
I. Jacobson
Addison-Wesley, 1998

[RD 05]
The Unified Modeling Language User Guide
G. Booch, J. Rumbaugh,
I. Jacobson
Addison-Wesley, 1998

[RD 06]
The Unified Software Development Process
I. Jacobson, G. Booch,
J. Rumbaugh
Addison-Wesley, 1999

[RD 07]
Real-Time UML - Developing Efficient Objects For Embedded Systems
B. Douglas
Addison-Wesley, 1998

[RD 08]
Design Patterns - Elements of Reusable Object-Oriented Software
E. Gamma, R. Helm,
R. Johnson and J. Vlissides
Addison-Wesley, 1994

1.4 Acronyms

This document employs several abbreviations and acronyms to refer concisely to an item, after it has been introduced. The following list is aimed to help the reader in recalling the extended meaning of each short expression:

PRIVATE
[AD xx]
Applicable Document #xx

CCS
Central Common Software

DB
Database

ESO
European Southern Observatory

I/O
Input/Output

LAN
Local Area Network

LCC
LCU Common Software

LCU
Local Control Unit

MCM
Motor Control Module (part of LCC)

OLDB
On-line Database

OO
Object Oriented

[RD xx]
Reference Document #xx

RT
Real-Time

TIM
Time Interface Module

UC
Use Case

UML
Unified Modeling Language

VME
Versa Module Eurocard

WS
(Unix) Work Station

1.5 Stylistic Conventions

1.5.1 Text

The following styles are used:

· bold : in the text, for commands, filenames, pre- and suffixes as they have to be typed.

· italic : in the text, for parts that have to be substituted with the real content before typing.

· teletype : for examples.

· <name> : in the examples, for parts that have to be substituted with the real content before typing.

1.5.2 Diagrams

All diagrams are based on the UML notation, as described in [RD 04] and given in Appendix.
Besides the classical class notation, three dedicated icons are used throughout the class diagrams for representing the UML standard class stereotypes ([RD 06] pp. 183ff) and shown below:

· <<boundary>>: model interactions between the system and its actors.

· <<entity>>: model information and associated behavior of phenomenon, concept such as a real-life objects; often persistent.

· <<control>>: represent coordination, sequencing, transactions and control of other objects; often used to encapsulate the control related to a use-case.

PRIVATE "TYPE=PICT;ALT=lsf BoundaryEntityControl"[image: image2.png]xxxxxxxxx

cccccccccccccccccccccccccc

<!-- Standard footer -->

<!-- hhmts start -->Last modified: Thu Oct 26 14:15:25 METDST 2000 <!-- hhmts end -->

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
2 User Manual

2.1 Introduction

In this chapter, the concept of the LCU Server Framework will be described. This section is followed by the practical description of its usage through the whole creation and customization process of a new LCU Server Application.

Naming Conventions: In this chapter, the following naming conventions apply: the generic names devtype and Devtype differ only by the case of the first letter (lower/upper). The first case indicates the name of the device type, the latter is the name of the device type when concatenated with the module prefix as in appDevtype.

2.2 LCU Server Framework

The intent, motivation and consequences of the framework have been discussed in detail in [AD 09]. The framework implements the minimum behavior for all the Standard Commands and offers the expected extensibility, flexibility and changeability while defining a fixed architecture and improving the overall maintainability as most of the code is provided and reused.

2.2.1 lsf: the LCU Server Framework

The framework consists in a collection of reusable components that implement the standard behaviour for a number of devices. It provides a unique and fully re-entrant set of common procedures that need not be duplicated by new applications.

As of this issue, lsf supports the following devices:

· I/O signals: digital and analog signals based resp. on the VLT standard Acromag AVME 948x Digital I/O and VMIVME-3111 Analog I/O VME boards

· motors: any kind of motor as supported by MCM

· serial communication links: based on the VxWorks tyCo driver and on the VLT standard esd ISER8 Serial Interface Board.

· tasks: any periodic task running in background as part of the Software Device

· software devices: any lsf-based sub-Software Device running on the same LCU.

Architecture: The purpose of a framework is to impose the architecture of the applications based on and to provide the implementation of the standard behaviour. The application is consequently responsible for implementing the specialized functionality as of its design.

The architecture is hierarchical: The server object lsfServer is responsible for handling the application global data and hosts the commands of the application; these commands might involve no device (pure software command) or devices of various types (combined command). The actual control of the devices is performed from within the object lsfControl that dispatches the standard commands to the respective devices. Finally for each device type, an object lsfDeviceType implements the commands of this type of device.

PRIVATE "TYPE=PICT;ALT=Framework Architecture"[image: image3.emf]Command Interpreter

lsf Init All

<<active>>

LCU Server

11

lsfCONTROL_ENTRY

name : vltBYTES20

type : Integer

startPhase : Integer

stopPhase : Integer

simulation : Boolean

ignored : Boolean

lsf SERVER_DATA

state

subState

initialized

simulation

timeout

serverName

<<control>>

11

+serverData

lsf Monitor

lsfMonitor()

lsfWakeupMonitor()

<<active>>

11

lsf CONTROL_DATA

numDevices : Integer[]

<<control>>

1..n

+deviceTable

1..n

1

+controlData

1

Command Handler

23..n 23..n

lsfDEVICE_ENTRY

state : Integer = 1

subState : Integer = 0

init : Boolean = F

simulation : Boolean = F

timeout : Integer = 120 s

devnameConstructor()

(from Devices)

Device

<<Device>>

0..n 0..n

query

1..n

+deviceData

1..n

lsfDEVICE_DATA

numDevices : Integer

deviceNames[] : String

userData : void = NULL

state

subState

simulation

init

devInit()

devOnline()

devStandby()

devStop()

devExit()

devOff()

devGetState()

devGetStatus()

devGetInit()

devGetSim()

devSimulat()

devStopSim()

devSelfTest()

devTest()

devTypeConstructor()

lsf<devType>Contructor()

app<devType>Destructor()

app<devType>Constructor()

(from Devices)

1..n

+deviceTable

1..n

11

Two additional objects complete this view: the task lsfInitAll that creates the application at boot time, and the task lsfMonitor, created at boot time, that monitors periodically the state and sub-state of all the devices and updates consequently the state and sub-state of the application.

Devices: Each device is characterized by its type as listed above. All devices of one type are supposed to behave in a similar manner in response to the standard commands. Consequently all the methods associated to one device type perform the same actions on all the devices of this type.

Standard Behaviour: The standard commands are implemented within the framework. They define the standard behaviour of each standard command for each type of device. The standard behaviour is edicted in [RDV 02] for Software Devices and State management. The standard behaviour can not be modified but only extended by means of dedicated hooks functions, which are application specific and implement additional actions required by the application design (e.g. set a particular I/O signal prior to go Online).

States and Sub-States: Each device is characterized by its state and sub-state. The state is defined by LCC ([RDV 02]) and takes the values OFF, LOADED, STANDBY or ONLINE.
Each group of devices of a type is as well characterized by a state and sub-state value; the state is set as being the lowest state of all the devices of this group.
The global application state is then the lowest state value of all the devices.

PRIVATE "TYPE=PICT;ALT=State Machine"[image: image4.emf]Cold Start

OFF

Implicit transition when

switching to any lower state.

LOADED

Idle - Not

Initialized

Initializing

Idle-

Initialized

Error

ONLINE

Idle

Active

Error

STANDBY

All equipement is powered-off or in

low-power mode, but those required

for safety or thermal stability and

preventing any degradation of the

system.

LOADED

Idle - Not

Initialized

Initializing

Idle-

Initialized

Error

ONLINE

Idle

Active

Error

STANDBY

Idle - Not

Initialized

Initializing

Idle-

Initialized

Error

Idle - Not

Initialized

Initializing

Idle-

Initialized

Idle

Active

Error

Idle

Active

ONLINE

STANDBY

STANDBY / STOP

[any error] [any error]

[LCU boot OK]

 / log error

INIT | STANDBY | ONLINE

STOP

[some step failed]

[all init step OK]

[any error]

 / log error

ONLINE

Specific Command

STOP | Completion OK

[action failure]

Transcient sub-state:

- the error is logged

- the sub-state resets to Idle

STANDBY

ONLINE

All equipement is powered-off or

in low-power mode,

brakes clamped.

EXIT | KILL / OFF

SIMULAT | STOPSIM | TEST / STOP

INIT / STOP

OFF / STOP

SELFTST

The sub-state is used to indicate the detailed activity of a device, or group of devices; the following sub-states have been introduced:

· Idle: the device is inactive

· Error: an error has occured

· Timeout: the requested action has timed out

· Initializing: the device is performing the initialization procedure

· Monitoring: monitoring is active in background

· Moving: for motors only when performing a motion

· Active: any other activity like e.g. Waiting for an event, in a Control Loop etc...

The 2 sub-states Error and Timeout are transcient states that reset to Idle on recovery, or on next request.

The global sub-state of the software device is set to:

· Idle: when all the devices are inactive

· Error: if one device went in error.

· Timeout: if one device timed out.

· Initializing: if one device is initializing

· Active: if one device or more is active

Database: All relevant configuration and runtime data is stored in the OLDB of the LCU, which is partly mirrored on the WS so as to enable the use of the scan system.

Each type of device is mapped in the database by a dedicated class. All the device classes are derived from the base abstract class lsfDB_DEVICE as depicted in the class hierarchy:

PRIVATE "TYPE=PICT;ALT=lsf Database Class Hierarchy"[image: image5.emf]lsfDB_ANALOG

channel : Integer

gain : ioGAIN

conversionFactor : Float

lowerRange : Float

higherRange : Float

simValue : Float

signalA : lccANALOG_SIGNAL

lsfDB_DIGITAL

level : ioLEVEL

startBit : Integer

numBits : Integer

simValue : Integer

signalD : lccDIGITAL_SIGNAL

BASE_CLASS

(from Dbl)

lsfDB_SOFTDEV

serverName : String

lsfDB_SERIAL

deviceName : lccDEVICE_NAME

protocol : Integer = 232

baudRate : Integer = 9600

dataBits : Integer = 8

stopBits : Integer = 1

parity : Integer = 1

handShake : Integer = 1

rxMode : Integer = 0

bufferLength : Integer = 512

lsfDB_MOTOR

motor : motMOTOR

lsfDB_SIGNAL

deviceName : lccDEVICE_NAME

direction : ioIN_OUT

lsfDB_TASKDEV

startState : Integer = lsfSTATE_ONLINE

ignoreStop : Boolean = TRUE

timerNum : Integer = -1

period : Integer = 1000 ms

priority : Integer = 80

stackSize : Integer = 30 kB

lsfDB_ENCODER

deviceName : lccDEVICE_NAME

lsfDB_NETWORK

deviceName : lccDEVICE_NAME

ipName : String

ipAddr : Integer

gateway : Integer

lsfDB_DATA

lsfDB_CONTROL_ENTRY

name : String

type : String

startPhase : Integer = 0

stopPhase : Integer = 0

simulation : Boolean = F

ignored : Boolean = F

lsfDB_SERVER

moduleAlias : ALIAS

numDevices : Integer = 0

11

lsfDB_DEVICE

state : Integer = 0

subState : Integer = 0

simulation : Boolean = 0

initialized : Boolean = 0

timeout : Integer = 120 s

lsfDB_CONTROL

1..n

+deviceTable

1..n

0..1 0..1

1..n

+<deviceType>

1..n

Note that a Software Device is a sub-class of lsfDB_SOFTDEV, thus allowing recursive construction: a Software Device can be a sub-Software Device of another one.

The structure of the database is fixed as illustrated in the diagram below:

PRIVATE "TYPE=PICT;ALT=lsf Database Structure"[image: image6.emf]lsfDB_SERVER

lsfDB_DEVICE

lsfDB_MOTOR

lsfDB_SERIAL

lsfDB_SIGNAL

lsfDB_SOFTDEV

lsfDB_TASKDEV lsfDB_NETWORK

lsfDB_ENCODER

lsfDB_CONTROL

:mot_1..n :com_1..n :ios_1..n :swd_1..n :tsk1..n :enc1..n :net1..n

:motor

1..n 1..n

:serial

1..n 1..n

:signal

1..n 1..n

:softdev

1..n 1..n

:taskdev

1..n 1..n

:encoder

1..n 1..n

:network

1..n 1..n

:control

0..1 0..1

0..1 0..1

0..1 0..1

0..1 0..1

0..1 0..1

0..1 0..1

0..1 0..1

:data

lsfDB_ROOT

<<alias>> LSF

0..1 0..1

11

lsfDB_DATA

Note the multiplicity of the various instances as a means to scale the database to the exact needs of the application.

Application Data: The class lsfDB_DATA is an abstract class. It does not contain any attribute as it is intended to be specialized (by sub-classing) to the needs of the application. This class has been introduced so as to allow the application to store data that shows following characteristics at a known location:

· the data is not strictly device dependent (e.g. temperatures, or telemetry values), or shall be hardware independent (i.e. should a thermometer device be exchanged from a device with digital interface to a one with serial interface)

· the data might be accessed from within another device (e.g. a background task) for further processing

· the data might need to be scanned to the WS independently on the devices producing it.

2.2.2 lsftpl : the LCU Server Application Template

The module lsftpl is a template application based on lsf that provides an implementation template for all available device types. In particular, it gives examples of ACI and API functions for signals and motors for addressing one or all devices of this type.

The template implements the control of 16 devices: 8 I/O signals (4 analogue and 4 digital where from 2 input and 2 output signals), 2 motors, 3 serial communication links (2 using the ISER 8 board, and one /tyCo device), 2 sub-ordinated software devices (swdtst1 and swdtst2) and 1 task device performing periodic monitoring) as illustrated in the class diagram below:

PRIVATE "TYPE=PICT;ALT=app Level 0"[image: image7.emf]TRS

LCU Server

<<framework>>

(from Standard Package)

User

M1 M2 com1

com2

tyCo1

DI2 DI3

DO1 DO4

AI1 AI8

AO3 AO4

swd1tst

swd2tst

APP

<<SubSystem>>

appMotor

(from appMotor)

<<Device>>

appSerial

(from appSerial)

<<Device>>

appSignal

(from appSignal)

<<Device>>

appSoftDev

(from appSoftdev)

<<Device>>

appBgTask

(from appTaskdev)

<<active>>

appServer

11

11

11

11

11

appTaskDev

(from appTaskdev)

<<Device>>

11

11

LCU Server Template

<<template>>

(from Standard Package)

It implements the functionality as shown in the Use Case diagram:

PRIVATE "TYPE=PICT;ALT=app Functionality"[image: image8.emf]M2

com2

AI1

DO4

AO4

DI3

AI8

AO3

DI2

DO1

tyCo1

com1

an Encoder

M1

a Network Port

swd1tst

Read Analog Signal

Write Analog Signal

Read Digital Signal

Write Digital Signal

Read Serial Communication Port

Write Serial Communication Port

Read Encoder Head

Execute Main Command

Move Motor Absolute

Read Network Communication Port

Write Network Communication Port

Forward Command

SOFTCMD

<<message>>

User

RASIG

<<message>>

WASIG

<<message>>

RDSIG

<<message>>

WDSIG

<<message>>

RSCOM

<<message>>

WSCOM

<<message>>

RHEAD

<<message>>

MAINCMD

<<message>>

MOVEA

<<message>>

RECOM

<<message>>

WECOM

<<message>>

SOFTCMD

<<message>>

swd2tst

SOFTCMD

<<message>>

Execute Command

SWDCMD

<<message>>

swd2tstSwdCommand

<<call>>

N.B.: as of this version, both the encoder and network devices are not yet supported.

The following section describes all the steps necessary to create a new application from this template.

2.3 LCU Server Application

This section describes how to create a LCU Server Application based on the Framework.

It assumes the detailed analysis of the package is complete: all interacting devices, and commands and interfaces have been identified and described.

2.3.1 Module Creation

The creation of a new LCU Server Application app from the template is made by means of the utility lsfCreate(1). It makes a copy of the template module lsftpl in its last version available under CMM, and performs all string replacements: all occurences of lsftpl are substituted by app, as well the occurences of LSFTPL are substituted by APP.

Example:
<DIV>
lsfCreate app
Retrieving module 'lsftpl' ... done
Renaming module 'lsftpl' to 'app' ... done
Renaming all files with prefix 'app' ... done
Replacing pattern 'lsftpl' by 'app' ... done
1.24u 49.41s 1:59.60 42.3%
</DIV>
The module app is ready. It needs now be configured for the devices and commands.

2.3.2 Module Configuration

The configuration of the application is kept central in the file app/ws/config/app.cfg. This file must be edited to the needs of the application. The module configuration contains 3 parts:

· module:
LSF.MODULE.NAME app

· devices:
LSF.DEVICE.NUM number of devices D
For each device d (from 1 to D)
LSF.DEVICEd.NAME: name of the device (19 char. max), unique for the application.
LSF.DEVICEd.TYPE: type of the device:

· analog, digital: I/O signal

· motor: motorized axis

· serial: communication link

· taskdev: task

· softdev: sub-Software Device (another LSF-based application to which this application will communicate via the Message Server)

LSF.DEVICEd.CLASS: when applicable the name of the specialized database class appDB_devtype as derived from the corresponding generic device class lsfDB_devtype. For the motors, the motor specialized class name (motDVAMI etc... see [RDV 05])
LSF.DEVICEd.PARAM: for motors only the dimensions of database tables for the named positions (P), named speeds (V) and initialization sequence (I), following the syntax: P p,V v,I i.

· commands:
LSF.COMMAND.NUM number of commands C
For each command c (from 1 to C)
LSF.COMMANDc.NAME: name of the command following the naming recommendations stated in [RDV 02]
LSF.COMMANDc.DEST: device type for which the command is intended (see the list of device types above); in addition, the destination may be set to server for any command which either does not involve any device, or commands that involve many devices of various types
LSF.COMMANDc.GROUP: as described in [RDV 02], the associated command group (PUBLIC, MAINTENANCE or TEST)
LSF.COMMANDc.ENTRY: the name of the entry function associated to the command and to be declared in the Command Interpreter Table (CIT). The ACI function name must follow the convention: Iapp<Devtype><Entry>, where Devtype is the device type as declared under LSF.COMMANDc.DEST and Entry is the name entered under this key-word
LSF.COMMANDc.INVOKE: the invocation mode FUNCTION or TASK
LSF.COMMANDc.OPTION: for the invocation mode TASK only, the task options following the syntax: <taskName>,[<priority>], [<task flags>],[<stack size>][,<options>].
where the task name shall be built as tapp<command name>
Note: The option REGISTER must be omitted since it is handled internally (all tasks are registered to allow CCS communications)

Example:

#***

E.S.O. - VLT project

#

"@(#) $Id: app.cfg,v 3.4 2000/07/21 09:22:08 vltsccm Exp $"

#

who when what

-------- ---------- --

pduhoux 2000-04-07 created

#

#

MODULE

#

LSF.MODULE.NAME app

#

DEVICES

#

LSF.DEVICE.NUM 1

LSF.DEVICE1.NAME NDF

LSF.DEVICE1.TYPE motor

LSF.DEVICE1.CLASS motDVAMI

LSF.DEVICE1.PARAM P 7,V 3,I 6

#

COMMANDS

#

LSF.COMMAND.NUM 1

LSF.COMMAND1.NAME SETNDF

LSF.COMMAND1.DEST motor

LSF.COMMAND1.GROUP PUBLIC

LSF.COMMAND1.ENTRY SetFilter

LSF.COMMAND1.INVOKE TASK

LSF.COMMAND1.OPTION appSETNDF,,,40000

___oOo___

The effective configuration of the LCU Server Application app is made by means of the utility lsfConfig(1).

It performs following steps:

1. Parse the configuration file app/ws/config/app.cfg and display all the devices by type and the commands by group

2. Generate the include file app/lcu/include/appDeviceList.h containing the macro definition of all devices

3. Generate the database file app/lcu/dbl/app.db for the instantiation of the database point.

4. Generate the makefile app/lcu/src/Makefile

5. Generate the CDT partial files app/lcu/src/appPublic.cdt, app/lcu/src/appMaintenance.cdt and app/lcu/src/appTest.cdt. The files are created only if at least one command has been declared in this group.

6. Generate the CIT partial files app/lcu/src/app<Devtype>.cit for each referenced device type Devtype.

7. Move all the unused files to app/lcu/tmp
(The unused files are the files associated to the control of the device types not referenced in the configuration file. They are moved to this directory prior to be removed by the user when preparing for archive.)

8. Generate the log file app/ChangeLog and add an entry for the configuration sequence.

Important Note: The utility lsfConfig shall be called once as its actions are destructive for some files. Any application dependent modification made to the partial CDT files will be lost during this process, as these files are re-created. A posteriori addition of a device of a new type is not supported.

Example:

> lsfConfig app

Parse file 'app/ws/config/app.cfg' ... done

Found 1 device:

 1 Motor : NDF

Found 1 PUBLIC command:

 1 Motor : SETNDF

Found 0 MAINTENANCE command

Found 0 TEST command

Generate 'app/ws/config/app.dbcfg' ... done

Generate 'app/lcu/include/appDeviceList.h' ... done

Generate 'app/lcu/dbl/app.db' ... done

Generate 'app/lcu/src/Makefile' ... done

Generate 'app/lcu/src/appPublic.cdt' ... done

Generate 'app/lcu/src/appMotor.cit' ... done

Move unused files to ./lcu/tmp ... done

Add change log entry ... done

>>> Remember to edit the CDT files ...

Module configuration for 'app' ... done"

>

2.3.3 Specific Implementation

After the module has been tailored to the needs of the application, some files need be edited to implement the behaviour and specify the interfaces as of the design.

· app/lcu/src/appPublic.cdt,
app/lcu/src/appMaintenance.cdt,
app/lcu/src/appTest.cdt: For each command the parameters and replies must be described.

· app/lcu/dbl/appDB_DEVICE.class: Each application specific device class must be defined as a sub-class of the corresponding device type lsfDB_DEVTYPE

· app/lcu/dbl/appDB_DATA.class: If any extra data storage is needed in the database by the application, the class appDB_DATA must be described in this file

· app/lcu/include/app<Devtype>.h: for each referenced device type, the prototypes of the API functions associated to the commands must be declared. The file app/lcu/include/appServer.h is also subject to modification.
The API function shall be named following the convention for the ACI function names without the leading I.

· app/lcu/src/app<Devtype>.c: Each API function must be implemented in the respective file.

· app/lcu/src/app<Devtype>Interface.c: Each ACI function must be implemented in the respective file.

For the sake of clarity, one might group the API functions dedicated to one specific device into one separate file. These files may be included into the device type associated file.

The class diagram shown below depicts the device control structure for a specific command:

PRIVATE "TYPE=PICT;ALT=Specific Command Implementation"[image: image9.emf]lsfDEVICE_DATA

<<ACI>>IappDeviceSpecificCommand()

app Command Interpreter

SPECMD()

appServer

appGlobalData : lsfSERVER_DATA

<<SubSystem>>

appDeviceData

<<API>> appDeviceSpecificCommand()

SPECMD

Command Handler

(from LCU Server)

(SpecificCommand)

<<bind>>

appDevice

<<Device>>

Command Interpreter

(from LCU Server)

LCU Server

Device

<<Device>>

2.3.4 Scan Links

For application implementing the WS counterpart of the database, the scan links must be configured. These links are described in the file app/ws/config/app.scan.

2.3.5 Database Configuration

At boot-time, the database branch of the module need be configured. The configuration is kept in the file app/ws/config/app.dbcfg and restored from $VLTROOT/config, resp. from $INTROOT/config at startup. This file is mandatory for starting up the server, however the database is then solely basically configured and might not permit to initialize the system. By means of the dedicated engineering tools, the database can be properly configured. Once the initialization is successful, the utility lsfBackup(1) creates a file ./app.dbcfg that contains the relevant database configuration.

Example:

> cd app/ws/config

> lsfBackup -e lcuEnv -m app

Generating input file './app.inp' ... done

Performing database backup into './app.dbcfg' ... done

>

The file ./app.inp is a temporary file that contains the list of database points and attributes to backup. At backup completion, it is removed.

2.3.6 Default panel & UIF widget

A default panel appgui is provided by the template that instantiates the UIF widget lsfState_uifClass. This widget shows the associated LCU environment name, a button for sending standard commands, a STOP button, and the status information of the module (state, subState and operational mode).

In addition, the Command Feedback Window shows the last 2 replies.

PRIVATE "TYPE=PICT;ALT=application template panel"[image: image10.png]atndf - @wx0ats [-[O[x]

ile Std. Options Help
State 'UNKNOWH
Loy [Ited
Substate IDLE
OFF
Mode NORMAL

Command Feedback Window _ Options

¥
WARNING Environments NOT ACTIVE : led

2.3.7 Application Makefiles

The WS part is built as described in app/ws/src/Makefile. It makes the panel app/ws/src/appgui.pan and installs the two configuration files app/ws/config/app.scan and app/ws/config/app.dbcfg under $XXXROOT/config.

Example:

> cd app/ws/src

> make all install

 ...

 . . . 'all' done

 ...

 . . . installation done

>

The LCU part is built as described in app/lcu/src/Makefile.

It invokes 3 utilities prior to building the code (target "all"):

· lsfMakeCIT: merge all the partial CIT files app/lcu/src/app*.cit and the common CIT file $XXXROOT/vw/CIT/lsfCommon.cit into app/lcu/CIT/appServer.cit;

· lsfMakeCDT: merge all the partial CDT files app/lcu/src/app*.cdt and the common CDT files $XXXROOT/CDT/lsf*.cdt into app/lcu/CDT/appServer.cdt;

· lsfMakeINC: generate all the files app/lcu/include/app*Interface.h from the partial CIT files app/lcu/src/app*.cit.

Example:

> cd app/lcu/src

> make all

 . . . 'CIT' done

 . . . 'CDT' done

Include file '../include/appMotorInterface.h' done

 . . . 'include files' done

 ...

== Building executable: ../bin/app

 . . . 'all' done

>

Note: The final CDT and CIT files are deleted by the Makefile. Remember to perform the modifications in the ./src directory.

2.3.8 Implementation Rules for the Command Handlers

As stated in the rules applying to a Software Device, the behaviour of each command is implemented in a Command Handler. This handler must show the 2 ACI and API interfaces:

· ACI function: the ACI function name is built on the following scheme:

 ccsCOMPL_STAT Iapp<Devtype><Entry>

 (... , ccsERROR *error)

It is responsible for parsing the command parameters, invoking the API function and building the reply buffer as defined in the CDT entry of this command.

· API function: the API function name is built on the following scheme:

 ccsCOMPL_STAT app<Devtype><Entry>

 (... , ccsERROR *error)

It is the core implementation of the behaviour of the command. It must be callable from another application. It receives application specific parameters and the error stack pointer, and returns the completion status.

2.3.9 Hook functions

A hook function is implementing an additional behaviour. Four kinds of hooks are supported:

· Constructors/Destructors: One application specific constructor and one application specific destructor per device name, resp. device type may be implemented. These functions will be invoked according to the following scheme:

· At boot time, the object constructors will be invoked as depicted in the following Sequence Diagram.

PRIVATE "TYPE=PICT;ALT=Object constructors"[image: image11.emf] : lsf Init All

 : lsf SERVER_DATA

 : lsf CONTROL_DATA

 :

lsfDEVICE_DATA

 :

lsfDEVICE_ENTRY

lsfServerConstructor()

lsfControlConstructor()

lsf<devType>Constructor()

app<devName>Constructor()

app<devType>Constructor()

The application specific constructors have the prototype:

ccsCOMPL_STAT app<devType>Constructor (IN void *devData,

 IN const char *devName,

 OUT ccsERROR *error)

ccsCOMPL_STAT app<devName>Constructor (IN void *devData,

 IN const char *devName,

 OUT ccsERROR *error)

· At exit time, the object destructors will be invoked as depicted in the following Sequence Diagram.

PRIVATE "TYPE=PICT;ALT=Object destructors"[image: image12.emf] : EXIT

 : lsf SERVER_DATA : lsf CONTROL_DATA

 :

lsfDEVICE_DATA

 :

lsfDEVICE_ENTRY

lsfServerDestructor()

lsfControlDestructor()

lsf<devType>Destructor()

app<devName>Destructor()

app<devType>Destructor()

The application specific destructors have the prototype:

ccsCOMPL_STAT app<devType>Destructor (IN void *devData)

ccsCOMPL_STAT app<devName>Destructor (IN void *devData)

· Standard Commands: 3 hooks per standard command may be implemented. The hook function names must follow the prototype convention:

ccsCOMPL_STAT appStd<Command><Type>Hook (IN lsfSERVER_DATA *serverData,

 OUT ccsERROR *error)

where Command is the name of the command (Init, Standby, Online, Stop, Off, Exit, Selftest, Test),
and Type is the hook type (Pro, Mid, Epi) resp. for the prologue, the intermediate and the epilogue additional statements. The intermediate hook is invoked only together with at least one sub-Software Device and one Hardware Device.

The hooks are located in the file appStdHooks.c. They do not need any prototype declaration.

PRIVATE "TYPE=PICT;ALT=Init Hooks"[image: image13.emf] : User

 : Command

Interpreter

INIT : Command

Handler

 : lsfDEVICE_DATA

 : Hardware Device

 : Software Device

INIT

OK

IlsfInit()

SUCCESS

*[all HW devices]:devInit()

lsfInit()

init

lsfStop()

*[all SW devices]:devInit()

forward INIT command

userStdInitProHook()

userStdInitMidHook()

userStdInitEpiHook()

[I/O signal devices]:userSignalInitHook()

· Signals Initialization hook: a dedicated hook might be implemented that allows the proper setting of the signals at initialization, thus setting the sub-system in a known state. The hook function has the following prototype:

ccsCOMPL_STAT appSignalInitHook (IN lsfSIGNAL_DATA *signalData,

 IN const char *signalName,

 OUT ccsERROR *error)

· Task device hooks: One hook function per task device must be implemented, additional 2 hooks are optional.
The mandatory hook function implements the core of the task and the prototype is:

ccsCOMPL_STAT app<TaskDevName> (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 OUT ccsERROR *error)

where TaskDevName is the name of the task device (starting with upper case).
The 2 additional hooks are invoked whenever implemented before entering the loop, resp. when terminating. The hook functions must be prototyped:

ccsCOMPL_STAT app<TaskDevName>ProHook (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 OUT ccsERROR *error)

resp.

ccsCOMPL_STAT app<TaskDevName>EpiHook (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 OUT ccsERROR *error)

2.3.10 Miscellaneous

· Adding source files: There is no limitation in adding new source or include files to the module repository. These files must be listed in the makefile either under the list app_OBJECTS for a source file, or under INCLUDES for an include file to be installed, see also Makefile(5).

<!--

<H3>Summary</H3>

 <U>:</U>

-->

<!-- Standard footer -->

<!-- hhmts start -->Last modified: Thu Oct 26 14:23:30 METDST 2000 <!-- hhmts end -->

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
3 Reference

In this section, the man-pages of the utilities, objects anf database classes are provided. The public include files are appended.

PRIVATE
Utility
Code
Database Class
Include File

lsf(1)

lsfTemplate.db
lsfDefines.h

lsfCreate(1)

lsfConfig(1)

lsfBackup(1)

lsfServer(3)
lsfDB_SERVER(5)
lsfServer.h

lsfStandard(3)

lsfHandleBreak(3)
lsfHandleKill(3)

lsfControl(3)
lsfDB_CONTROL(5)
lsfDB_DATA(5)
lsfControl.h

lsfDevice(3)
lsfDB_DEVICE(5)
lsfDevice.h

lsfSignal(3)
lsfDB_SIGNAL(5)
lsfSignal.h

lsfMotor(3)
lsfDB_MOTOR(5)
lsfMotor.h

lsfSerial(3)
lsfDB_SERIAL(5)
lsfSerial.h

lsfTaskDev(3)
lsfDB_TASKDEV(5)
lsfTaskDev.h

lsfSoftDev(3)
lsfDB_SOFTDEV(5)
lsfSoftDev.h

<!-- Standard footer -->

<!-- hhmts start -->Last modified: Fri Aug 11 08:21:18 METDST 2000 <!-- hhmts end -->

3.1 Utilities

3.1.1 lsf(1)

NAME
 lsf - LCU Server Framework

SYNOPSIS
 > lsfCreate <modName>

 > emacs <modName>/ws/config/<modName>.cfg

 > lsfConfig <modName>

 > emacs <modName>/lcu/src/<modName>Public.cdt

 > cd <modName>/ws/src ; make clean all man install ; cd -

 > cd <modName>/lcu/src ; make clean all man install ; cd -

DESCRIPTION
 lsf is a framework for developing LCU Server Applications. It

 consists of a WS part dedicated to the generation and

 configuration/customization of the target application module and

 of a LCU part providing the application architecture and implementing

 the minimum behaviour for the standard commands.

 1 - The WS part:

 1.1 Script lsfCreate(1): creates a software module compliant with

 the VLT Standards from a template.

 1.2 Script lsfConfig(1): customizes the software module according

 to the software device description file.

 1.3 The description file: is an ASCII file containing the definition

 of all devices (hardware and software) to be controlled by the

 application and of all the commands to be accepted by the

 application.

 The devices are grouped in 7 types:

 - signal (analog or digital) based on VLT AIO resp. ACRO boards

 - motor (all types as supported by MCM)

 - serial communication link (RS232, RS422 or RS485) based on

 VxWorks tyCo driver or VLT ISER8 board.

 - software device (any lsf-based application to be controlled

 from this software device)

 - tasks (any periodic background process)

 - encoder [not supported yet]

 - network [not supported yet]

 The commands are grouped in 3 types:

 - public for normal operations

 - maintenance for software/hardware verification work

 - test with restricted access to technical staff

 1.4 The database is a partial mirror (based on the scan system) of

 the LCU database

 2 - The LCU part:

 2.1 Code: the binary code lsf is to be downloaded to the LCU prior

 to loading the application software. It implements the minimum

 behaviour of the supported devices for the standard commands.

 2.2 Database: the database architecture is provided.

 The device classes may be customized by sub-classing

 to the needs of the application.

 3 - Creating a new application

 The creation of a new module is made by the utility lsfCreate.

 It receives the name of the module <mod> as argument.

 The module name shall not be registered in the CMM archive.

 Example:

 From the parent directory of <mod>

 > lsfCreate mod

 Retrieving module 'lsftpl' ... done

 Renaming module 'lsftpl' to 'mod' ... done

 Renaming all files with prefix 'mod' ... done

 Replacing pattern 'lsftpl' by 'mod' ... done

 1.24u 49.41s 1:59.60 42.3%

 >

 4 - Customizing the software device

 The customizatin of a new module is made by the utility lsfConfig.

 The file <mod>/ws/config/<mod>.cfg must be edited and its content

 modified to the needs of the application <mod>.

 LSF.MODULE.NAME <mod>

 LSF.DEVICE.NUM << the number of devices to be controlled >>

 Mandatory for each device <d>:

 LSF.DEVICEd.NAME << the name of the device,

 it defines the name of a database point >>

 LSF.DEVICEd.TYPE << the type of the device:

 analog, digital: for signals

 serial: for serial communication links

 motor: for motorized axis

 taskdev: for a periodic background process

 softdev: for a sub-software device,

 it defines the type of control, and the

 associated database class >>

 The following 2 entries are optional:

 LSF.DEVICEd.CLASS << the specialized database class name mapping

 the device. For motors, the motor class

 name (e.g. motDVAMI) >>

 LSF.DEVICEd.PARAM << for motors only, the number of entries in

 the named position (P), named speed (V),

 initialization sequence (I) and unit conversion

 methods (U), following the syntax:

 "P <p>,V <v>,I <i>,U <u>" >>

 LSF.COMMAND.NUM << the number of commands to be accepted,

 in addition to the standard commands >>

 Mandatory for each command <c>:

 LSF.COMMANDc.NAME << the name of the command as specified for

 the CDT (7 char.) >>

 LSF.COMMANDc.DEST << signal, motor, serial, softdev or server

 where "server" indicates that the command

 is to be processed internally (no device

 interaction).

 NB: task devices do not process commands >>

 LSF.COMMANDc.GROUP PUBLIC, MAINTENANCE or TEST

 LSF.COMMANDc.ENTRY << API Funtion name <Fct> following the rule:

 <mod><Devtype><Fct>()

 The ACI function name is built automatically

 as I<mod><Devtype><Fct>() in the corresponding

 CIT file. Where <Devtype> is the destination

 device type (e.g. "Signal") >>

 LSF.COMMANDc.INVOKE TASK or FUNCTION

 LSF.COMMANDc.OPTION << for TASK invocation only, the parameters

 as for the CIT entries without REGISTER >>

 Example:

 From the parent directory of <mod>

 > lsfConfig mod

 Parse file 'mod/ws/config/mod.cfg' ... done

 Found 11 devices:

 2 Motor : M1 M2

 8 Signal : AI1 AO3 AO4 AI8 DO1 DI2 DI3 DO4

 1 Taskdev : bgTask

 Found 6 PUBLIC commands:

 1 Motor : MOVEA

 4 Signal : RASIG WASIG RDSIG WDSIG

 1 Server : MAINCMD

 Found 0 MAINTENANCE command

 Found 0 TEST command

 Generate 'mod/ws/config/mod.dbcfg' ... done

 Generate 'mod/lcu/include/modDeviceList.h' ... done

 Generate 'mod/lcu/dbl/mod.db' ... done

 Generate 'mod/lcu/src/Makefile' ... done

 Generate 'mod/lcu/src/modPublic.cdt' ... done

 Generate 'mod/lcu/src/modServer.cit' ... done

 Generate 'mod/lcu/src/modMotor.cit' ... done

 Generate 'mod/lcu/src/modSignal.cit' ... done

 Move unused files to ./lcu/tmp ... done

 Add change log entry ... done

 >>> Remember to edit the CDT files ...

 Module configuration for 'mod' ... done

 >

 5 - Application specific code

 The following files must be edited:

 - <mod>/lcu/src/<mod>*.cdt: describe all the command parameters

 and reply

 - <mod>/lcu/dbl/<mod>DB_DEVICE.class: define the sub-classes

 of lsfDB_DEVICE (or derived) which have been referenced in the

 device description file <mod>/ws/config/<mod>.cfg

 - <mod>/lcu/src/<mod><Devtype>.c: for each referenced device type

 <devtype>, implement the API functions

 - <mod>/lcu/include/<mod><Devtype>.h: declare the API function

 prototypes

 - <mod>/lcu/src/<mod><Devtype>Interface.c: for each command, in

 implement the ACI functions

 6a - Extend the behaviour of the standard commands

 For each of the standard commands, up to 3 hook functions might be

 defined following the prototype:

 ccsCOMPL_STAT <mod>Std<cmd><typ>Hook

 (IN lsfCONTROL_DATA *controlData,

 OUT ccsERROR *error)

 where

 <mod> is the module name,

 <cmd> is the standard command name (Init, Online etc...)

 <typ> is the hook index (Pro,Mid,Epi)

 Pro: hook is invoked when entering the method,

 Mid: hook is invoked between Software and Hardware device control

 Epi: hook is invoked before leaving the method.

 The first (Pro) and last (Epi) are called from within the standard

 object regardless on the number of devices. The middle hook (Mid) is

 only invoked from within this object.

 The prototypes to these functions do not need be declared. The hook

 functions shall be located in <mod>/lcu/src/<mod>Standard.c

 In addition, for the signals only the optional hook function

 ccsCOMPL_STAT <mod>SignalInitHook

 (IN lsfSIGNAL_DATA *signalData,

 IN const char *signalName,

 OUT ccsERROR *error)

 might be implemented in <mod>/lcu/src/<mod>Signal.c

 6b - Extend the behaviour of the device constructors/destructors

 For each device type and each device, a specific additional constructor

 resp. destructor might be implemented. These functions must be defined

 following the prototype:

 ccsCOMPL_STAT <mod><devName>Constructor (IN void *devData,

 IN const char *devName,

 OUT ccsERROR *error)

 void <mod><devName>Destructor (IN void *devData)

 The user specific constructors are invoked at completion of the

 standard constructor for each device type, then for each device of

 this type;

 the user specific destructors for each device of each type followed

 by theuser specific destructor for this device type are invoked

 prior to the standard destructor.

 7 - Task devices

 The task devices are scheduled according to the state of the

 Software Device and is configurable in the database.

 The periodic loop associated to a task device is implemented within

 the framework. The core function of the task is mandatory and must

 be prototyped:

 ccsCOMPL_STAT <mod><Devname> (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 OUT ccsERROR *error)

 Two optional hooks might be implemented that are invoked when

 starting resp. when terminating the task.

 The function name syntax follows:

 ccsCOMPL_STAT <mod><Devname>ProHook() for the prologue function, and

 ccsCOMPL_STAT <mod><Devname>EpiHook() for the epilogue function,

 same parameters as the core function.

 The method lsfTaskDevTrigger() is provided that triggers

 asynchronously the task, if running.

 8 - Building the code

 On both <mod>/ws/src and <mod>/lcu/src, invoke:

 make clean all man install

 9 - Building the environments

 The instantiation of the database point associated to the Software

 Device is realized from within the file:

 $VLTDATA/ENVIRONMENTS/<env>/dbl/DATABASE.db

 #define <mod>DB_ROOT "<< database absolute path >>"

 #include "<mod>.db"

 On the LCU environment, the file 'bootScript' shall be updated

 that contains the modules: lcc, cai, scan, too, mcm, lsf and <mod>

 The file 'devicesFile' shall be updated as well with the entry

 corresponding to the new Software Device:

 "<mod>" "<mod>Server" 1 0 0 1

 NB: any Software Device to be controlled by another Software Device

 MUST NOT be declared in this list.

 10 - Database configuration file

 The default database configuration file <mod>/ws/config/<mod>.dbcfg

 shall be updated to store the complete final device configuration.

 The backup of the database configuration is made by the utility

 lsfConfig.

 Example:

 From the directory of <mod>/ws/config

 > lsfBackup -e <lcuEnv> -m mod

 Generating input file './mod.inp' ... done

 Performing database backup into './mod.dbcfg' ... done

 1.24u 49.41s 1:59.60 42.3%

 >

SEE ALSO
 lsfCreate(1), lsfConfig(1), lsfBackup(1)

3.1.2 lsfCreate(1)

NAME
 lsfCreate - Create a new module from lsftpl template

SYNOPSIS
 lsfCreate [-f] <modName>

DESCRIPTION
 This script creates a module directory <modName> from the

 template module 'lsftpl'.

 It checks that the new module is not already existing in the

 CMM Archive.

 It renames all files with the new prefix.

 It replaces all occurences of 'lsftpl' by 'modName' in lower

 and upper case.

 Finally it creates the file <modName>/ChangeLog with one entry.

 Options:

 -f : the module is created anyway

 the existing module 'modName' is renamed 'modName-old'

 the module is created even if already in the CMM archive

ENVIRONMENT
 CMM

RETURN VALUES
 0 on SUCCESS

 1 on Failure

CAUTIONS
 The module is not created if it already exists under the CMM archive

 or if the directory 'modName' already exists. Option -f bypasses these

 checks.

EXAMPLES
 > lsfCreate app

 Copying template module 'lsftpl' to ./app ... done

 Renaming all files with prefix 'app' ... done

 Replacing pattern 'lsftpl' by 'app' ... done

 1.24u 49.41s 1:59.60 42.3%

 Module creation 'app' ... done

 >

SEE ALSO
 lsf(1), cmmCopy

3.1.3 lsfConfig(1)

NAME
 lsfConfig - Configure the application

SYNOPSIS
 lsfConfig <modName>

DESCRIPTION
 This script configures the module <modName> according to the

 description file <modName>/ws/config/<modName>.cfg

 It generates the files:

 - <modName>/ws/config/<modName>.dbcfg

 - <modName>/lcu/include/<modName>DeviceList.h

 - <modName>/lcu/dbl/<modName>.db

 - <modName>/lcu/src/Makefile

 It removes the unused files.

 Finally it adds a log entry in <modName>/ChangeLog.

 The syntax of the configuration file must follow:

 LSF.MODULE.NAME <modName>

 LSF.DEVICE.NUM <numDevices>

 LSF.DEVICEi.NAME <devName>

 LSF.DEVICEi.TYPE analog | digital | motor | serial | taskdev | softdev

 LSF.DEVICEi.CLASS <dbClass>

 LSF.DEVICEi.PARAM <parameter value>[, <parameter value>]

 LSF.COMMAND.NUM <numCommands>

 LSF.COMMANDi.NAME <cmdName>

 LSF.COMMANDi.DEST server | analog | digital | motor | serial | taskdev | softdev

 LSF.COMMANDi.GROUP PUBLIC | MAINTENANCE | TEST

 LSF.COMMANDi.ENTRY <entryFct>

 LSF.COMMANDi.INVOKE FUNCTION | TASK

 LSF.COMMANDi.OPTION <task parameters> (without REGISTER option)

FILES
 <modName>/ws/config/<modName>.cfg

RETURN VALUES
 0 on SUCCESS

 1 on Failure

CAUTIONS
 The script shall be run only once from the parent directory.

 The deleted files can not be restored.

EXAMPLES
 > lsfConfig app

 Parse file 'app/ws/config/app.cfg' ... done

 Found 16 devices:

 2 Motor : M1 M2

 8 Signal : AI1 AO3 AO4 AI8 DO1 DI2 DI3 DO4

 3 Serial : tyCo1 com1 com2

 2 Softdev : swd soft

 1 Taskdev : bgTask

 Found 10 PUBLIC commands:

 1 Motor : MOVEA

 4 Signal : RASIG WASIG RDSIG WDSIG

 2 Serial : RSCOM WSCOM

 2 Softdev : SOFTCMD SWDCMD

 1 Server : MAINCMD

 Found 0 MAINTENANCE command

 Found 0 TEST command

 Generate 'app/ws/config/app.dbcfg' ... done

 Generate 'app/lcu/include/appDeviceList.h' ... done

 Generate 'app/lcu/dbl/app.db' ... done

 Generate 'app/lcu/src/Makefile' ... done

 Generate 'app/lcu/src/appPublic.cdt' ... done

 Generate 'app/lcu/src/appServer.cit' ... done

 Generate 'app/lcu/src/appMotor.cit' ... done

 Generate 'app/lcu/src/appSignal.cit' ... done

 Generate 'app/lcu/src/appSerial.cit' ... done

 Generate 'app/lcu/src/appSoftdev.cit' ... done

 Move unused files to ./lcu/tmp ... done

 Add change log entry ... done

 >>> Remember to edit the CDT files ...

 Module configuration for 'app' ... done"

 >

SEE ALSO
 lsf(1), lsfCreate(1)

BUGS
3.1.4 lsfBackup(1)

NAME
 lsfBackup - Save LCU database configuration into file

SYNOPSIS
 lsfBackup -e <lcuEnv> -m <modName> [-o <fileName>]

DESCRIPTION
 This script saves the content of the LCU database to a file.

 It generates a ".dbcfg" type file containing all the configuration

 attributes of the module.

 Arguments:

 lcuEnv : LCU environment name

 modName : module name (alias of the database top point)

 fileName: output file name (default to "./<modName>.dbcfg"

FILES
ENVIRONMENT
RETURN VALUES
 0 on SUCCESS

 1 on Failure

CAUTIONS
EXAMPLES
 > lsfBackup -e lcuEnv -m app

 Generating input file './app.inp' ... done

 Performing database backup into './app.dbcfg' ... done

 1.24u 49.41s 1:59.60 42.3%

 >

SEE ALSO
 dbBackup

BUGS
Code

3.1.5 lsfServer(3)

NAME
 lsfServer - Top level control of the application

SYNOPSIS
 #include "lsfServer.h"

DESCRIPTION
 This class provides the methods for the handling of the server process.

PUBLIC METHODS
 ccsCOMPL_STAT lsfInitAll

 (IN const char *swdName,

 OUT lsfSERVER_DATA **pServerData)

 This method is the constructor of the application server <swdName>.

 It shall be invoked at boot time from the bootScript(5) as part

 of the application file <swdName>.boot(3).

 It receives the address of the pointer to the application global

 data <pServerData>.

 The method loads the database from the file <swdName>.dbcfg

 located under VLTROOT/config or $INTROOT/config.

 It invokes then the server constructor and finally spawns the

 command interpreter with the associated CDT and CIT files.

 vltLOGICAL lsfServerGetInit

 (IN lsfSERVER_DATA *serverData)

 This method returns the initialization status of the device.

 vltLOGICAL lsfServerGetSim

 (IN lsfSERVER_DATA *serverData)

 This method returns the simulation status of the device.

 lccDEV_MODE lsfServerGetState

 (IN lsfSERVER_DATA *serverData)

 const char *lsfServerGetStateName

 (IN lsfSERVER_DATA *serverData)

 These methods return the state and state's name name of the device.

 vltINT32 lsfServerGetSubState

 (IN lsfSERVER_DATA *serverData)

 const char *lsfServerGetSubStateName

 (IN lsfSERVER_DATA *serverData)

 These methods return the subState and subState's name of the device.

 ccsCOMPL_STAT lsfServerCheckOnline

 (IN lsfSERVER_DATA *serverData,

 OUT vltLOGICAL *online,

 OUT ccsERROR *error)

 This method returns the flag <online> indicating if the device

 is in state ONLINE when True.

 lsfSERVER_DATA *lsfServerGetGlobalData

 (IN const char *swdName,

 OUT ccsERROR *error)

 This method returns the pointer to the global data structure of

 the device.

 ccsCOMPL_STAT lsfServerGetSwDeviceName

 (OUT char *swdName,

 OUT ccsERROR *error)

 This method returns the name of the device from the task name of

 the commmand interpreter process.

 vltLOGICAL lsfServerIsALccDevice

 (IN lsfSERVER_DATA *serverData)

 This method returns the flag indicating if the device is registered

 in the LCC Device Table.

 Any Software Device controlled by another Software Device

 must NOT be registered in LCC.

PROTECTED METHODS
 void lsfServerDestructor

 (IN lsfSERVER_DATA **pServerData)

 This method is the object destructor. All resources are released.

 void lsfServerGetHooks

 (IN lsfSERVER_DATA *serverData)

 This method resolves the addresses of all existing hook functions

 provided by the application. It is invoked once at Init time.

 The function entry points are retrieved from the global

 symbol table.

 ccsCOMPL_STAT lsfServerCallHook

 (IN lsfSERVER_DATA *serverData,

 IN lsfHOOKFUNC_IDX cmd,

 IN lsfHOOKTYPE_IDX typ,

 OUT ccsERROR *error)

 This method resolves the hook function <typ> [Pro,Mid or Epi]

 associated to the command indexed by <cmd>, if resolved.

 ccsCOMPL_STAT lsfServerReadConfig

 (IN lsfSERVER_DATA *serverData,

 OUT ccsERROR *error)

 This method reads the device configuration from the database.

 ccsCOMPL_STAT lsfServerSetInit

 (IN lsfSERVER_DATA *serverData,

 IN vltLOGICAL value,

 OUT ccsERROR *error)

 These methods set/return the initialization status of the device.

 ccsCOMPL_STAT lsfServerSetSim

 (IN lsfSERVER_DATA *serverData,

 IN vltLOGICAL value,

 OUT ccsERROR *error)

 This method sets the simulation status of the device.

 ccsCOMPL_STAT lsfServerTakeInitSem

 (IN lsfSERVER_DATA *serverData)

 void lsfServerGiveInitSem

 (IN lsfSERVER_DATA *serverData)

 These methods control the initialization semaphore associated

 to the device. It prevents multiple invocation.

 ccsCOMPL_STAT lsfServerTakeCmdSem

 (IN lsfSERVER_DATA *serverData)

 void lsfServerGiveCmdSem

 (IN lsfSERVER_DATA *serverData)

 These methods control the command semaphore associated

 to the device. It prevents multiple invocation.

 void lsfServerWakeupMonitor

 (IN lsfSERVER_DATA *serverData)

 This method triggers the monitor task for state update

 vltINT32 lsfServerGetCmdTimeout

 (IN lsfSERVER_DATA *serverData)

 void lsfServerSetCmdTimeout

 (IN lsfSERVER_DATA *serverData,

 IN vltINT32 timeout)

 These methods set/get the timeout value associated to the commands.

 ccsCOMPL_STAT lsfServerSwitchState

 (IN lsfSERVER_DATA *serverData,

 IN lccDEV_MODE newDevState,

 OUT ccsERROR *error)

 This method instructs LCC of the new state <newDevState> of the

 device.

 int lsfStartupTask

 (IN char *name,

 IN vltINT32 priority,

 IN vltINT32 stackSize,

 IN FUNCPTR entryPoint,

 IN void *param,

 OUT ccsERROR *error)

 This method spawns the task <name> with the appropiate parameters,

 and checks the task has synchronized with the caller. The task entry

 function must comply with the prototype lsfTASK_FUNCTION.

 typedef void lsfTASK_FUNCTION (IN void *parameter,

 IN SEM_ID *syncSem,

 IN ccsCOMPL_STAT *status)

 The first argument is application dependent. The semaphore <syncSem>

 must be given by the task within 1 second, and the task status

 <status> shall be set accordingly to SUCCESS or FAILURE.

PRIVATE METHODS
 static ccsCOMPL_STAT lsfServerUpdateState

 (IN lsfSERVER_DATA *serverData,

 OUT ccsERROR *error)

 static ccsCOMPL_STAT lsfServerUpdateSubState

 (IN lsfSERVER_DATA *serverData,

 OUT ccsERROR *error)

 These 2 methods are responsible for updating the state and subState

 of the device. They query the individual states and subStates of all

 registered devices.

 The device state is set to the lower state of the devices.

 The subState is set to :

 - lsfSUBSTATE_ERROR if any device is in that subState.

 - lsfSUBSTATE_INITIALIZING if any device is in that subState.

 - lsfSUBSTATE_IDLE if all devices are in that subState

 - lsfSUBSTATE_ACTIVE if any device is not lsfSUBSTATE_IDLE and

 the device subState is not lsfSUBSTATE_IDLE

 - lsfSUBSTATE_<ACTION> if a device is in that subState and

 the device subState is lsfSUBSTATE_IDLE

 The following subStates are dedicated:

 - lsfSUBSTATE_MOVING for a motor when moving

 - lsfSUBSTATE_MONITORING for a device monitoring a piece of hardware

 In addition, the subState lsfSUBSTATE_TIMEOUT indicates a timeout

 occured.

 Both lsfSUBSTATE_TIMEOUT and lsfSUBSTATE_ERROR are transient

 subStates that reset to lsfSUBSTATE_IDLE with the next action.

 static ccsCOMPL_STAT lsfServerInitDb

 (IN const char *swdName,

 OUT ccsERROR *error)

 This method is invoked at boot time by lsfInitAll(). It restores

 the content of the device database branch from the file

 <swdName>.dbcfg located under $VLTROOT/config or $INTROOT/config.

 static void lsfServerMonitor

 (IN void *pData,

 IN SEM_ID *pSyncSem,

 IN ccsCOMPL_STAT *pStatus)

 This method is invoked as a task (see lsfStartupTask) at construction

 time. It is responsible for updating the device global state and

 subState at the given rate (see lsfSERVER(5)).

 Note: be aware that a high polling rate is CPU consuming and might

 impact on the overall behaviour of the system.

 static ccsCOMPL_STAT lsfServerConstructor

 (IN const char *swdName,

 OUT lsfSERVER_DATA **pServerData,

 OUT ccsERROR *error)

 This method is the constructor of the software device. It invokes

 the control contructor (see lsfControl(3)) and spawns the monitor.

PRIVATE DATA MEMBERS
 typedef struct

 {

 void *ctrlData; Ptr to Control Data structure

 lccDEV_MODE state; Module state

 vltINT32 subState; Module sub-state

 vltLOGICAL init; True if initialized

 vltLOGICAL simulation; True if in simulation

 vltINT32 numDevices; number of controlled devices (registered)

 SEM_ID cmdSem; semaphore for sending commands

 vltINT32 cmdTimeout; timeout for sending commands

 SEM_ID initSem; semaphore for init command

 vltLOGICAL lccDevice; SW device is a LCC device

 int monTid; Monitoring Task Id

 SEM_ID monSem; semaphore for monitor task period

 int monPeriod; Monitoring Task Period (ticks)

 ccsERROR error; error stack for cmdInit()

 char *attrTable; cai DB attribute table

 vltBYTES20 swdName; Name of the SW device

 void *fctHook[8][3]; Hook function addresses

 } lsfSERVER_DATA;

FILES
 $INTROOT/config/<modName>.dbcfg

DATABASE
 The class lsfDB_SERVER is a sub-class of lsfDB_SOFTDEV.

 It is partially mapped by the data structure lsfSERVER_DATA.

SEE ALSO
 lsfControl(3), lsfDevice(3), lsfDB_DEVICE(5)

3.1.6 lsfStandard(3)

NAME
 lsfStandard - Standard commands

SYNOPSIS
 #include "lsfStandard.h"

DESCRIPTION
 This class provides the methods implementing the high level default

 behaviour of the standard commands.

 For each of the standard commands, up to 3 hook functions might be

 defined following the syntax:

 <mod>Std<cmd><typ>Hook(lsfSERVER_DATA *serverData, ccsERROR *error)

 where

 <mod> is the module name,

 <cmd> is the standard command name (Init, Online etc...)

 <typ> is the hook index (Pro,Mid,Epi)

 Pro: hook is invoked when entering the method,

 Mid: hook is invoked between Software and Hardware device control

 Epi: hook is invoked before leaving the method.

 The first (Pro) and last (Epi) are called regardless on the number

 of devices. The middle hook (Mid) is only invoked from within the control

 object.

PUBLIC METHODS
 ccsCOMPL_STAT lsfStdInit

 ccsCOMPL_STAT lsfStdStandby

 ccsCOMPL_STAT lsfStdOnline

 ccsCOMPL_STAT lsfStdStop

 ccsCOMPL_STAT lsfStdExit

 ccsCOMPL_STAT lsfStdStartSim

 ccsCOMPL_STAT lsfStdStopSim

 ccsCOMPL_STAT lsfStdSelfTest

 ccsCOMPL_STAT lsfStdTest

 (IN lsfSERVER_DATA *serverData,

 IN const char *devName,

 OUT ccsERROR *error)

 These methods implement the high level behaviour associated

 to the standard commands. They invoke the associated control

 method for the specified device <devName>.

 If <devName> is set to the software device name, the method

 affects all devices registered in that software device, otherwise

 the action is restricted to the one device.

 At completion, the methods update the global state accordingly.

 ccsCOMPL_STAT lsfStdGetInit

 (IN lsfSERVER_DATA *serverData,

 OUT vltLOGICAL *init,

 OUT ccsERROR *error)

 This method returns the initialization status.

 ccsCOMPL_STAT lsfStdGetSimulation

 (IN lsfSERVER_DATA *serverData,

 OUT vltLOGICAL *simulation,

 OUT ccsERROR *error)

 This method returns the value of the simulation flag.

 ccsCOMPL_STAT lsfStdGetVersion

 (OUT char *version,

 OUT ccsERROR *error)

 This method returns the software version of the module LSF.

PRIVATE METHODS
 static const char *lsfCheckDevice

 (IN lsfSERVER_DATA *serverData,

 IN const char *devName,

 OUT ccsERROR *error)

 This method checks if the given device is known:

 - name of the software device or "all", it returns "all"

 - name of a controlled device, it returns the name if defined.

 - unknown name, it returns NULL.

PRIVATE DATA MEMBERS
 These methods use the data structure <serverData>.

COMMANDS
 The public methods are the API functions associated to the

 ACI for the Standard Commands.

RETURN VALUES
 SUCCESS if everything ok

 FAILURE, the error structure is updated with:

 lsfERR_DEVICE : unknown device name or

 module name mismatch

 lsfERR_MULTIPLE_COMMAND : multiple invocation not allowed

SEE ALSO
 lsfServer(3)

3.1.7 lsfSignalHandlers(3)

NAME
 lsfHandleBreak, lsfHandleKill - signal handler for BREAK and KILL signals

SYNOPSIS
 #include "lsfSignalHandlers.h"

 void lsfHandleKill(void);

 void lsfHandleBreak(void);

DESCRIPTION
 lsfHandleBreak() and lsfHandleKill() are the 2 signal handler methods

 installed at boot time by lsfInitAll(). These methods retrieve the

 name of the affected software device from the server task name before

 performing the corresponding actions (STOP, resp. EXIT).

RETURN VALUES
 None

SEE ALSO
 lsfStandard(3), lsfServer(3)

3.1.8 lsfControl(3)

NAME
 lsfControl - Device control

SYNOPSIS
 #include "lsfControl.h"

DESCRIPTION
 This class provides the methods dedicated to the control

 of the devices. It is driven by the deviceTable. This table is read

 at init time.

 For each of the standard commands, the associated control method

 invokes the device methods for each type of device assuming devices of

 that type are registered and not ignored.

 First the sub-software devices are invoked, then the hardware

 devices whereby the digital and analogue signals are processed first,

 followed by the motors.

 For each of the standard commands, up to 3 hook functions might be

 defined following the syntax:

 <mod>Std<cmd><typ>Hook(lsfCONTROL_DATA *controlData, ccsERROR *error)

 where

 <mod> is the module name,

 <cmd> is the standard command name (Init, Online etc...)

 <typ> is the hook index (Pro,Mid,Epi)

 Pro: hook is invoked when entering the method,

 Mid: hook is invoked between Software and Hardware device control

 Epi: hook is invoked before leaving the method.

 The first (Pro) and last (Epi) are called from within the standard

 object regardless on the number of devices. The middle hook (Mid) is

 only invoked from within this object.

PROTECTED METHODS
 ccsCOMPL_STAT lsfControlConstructor

 (IN const char *swdName,

 IN lsfDEVICE_DATA *serverData,

 OUT ccsERROR *error)

 This method is the object constructor. It invokes the constructors

 of all devices registered in the device table.

 void lsfControlDestructor

 (IN lsfDEVICE_DATA *serverData)

 This method is the object destructor. It invokes the destructors

 of all registered devices. All resources are released.

 const char *lsfControlGetSwdName

 (IN void *pData)

 This method returns the name of the software device (= module name)

 void *lsfControlGetDevData

 (IN lsfCONTROL_DATA *controlData,

 IN int devType)

 This method returns a pointer to the device data structure

 of the given device type.

 int lsfControlGetDevType

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName)

 This method returns the type of the given device.

 int lsfControlGetDevNamesOfType

 (IN lsfCONTROL_DATA *controlData,

 IN int devType,

 IN const char *devNames[])

 This method returns the number of devices of the given type.

 The array <devNames[]> contains the names of all the matching

 devices.

 ccsCOMPL_STAT lsfControlInit

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlStandby

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlOnline

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlStop

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlOff

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlExit

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlSimulat

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlStopsim

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlSelftest

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 ccsCOMPL_STAT lsfControlTest

 (IN lsfCONTROL_DATA *controlData,

 IN const char *devName,

 OUT ccsERROR *error)

 These methods perform the actions corresponding to the standard

 behaviour.

PRIVATE METHODS
 static int lsfDecodeDeviceType

 (char *type)

 This method returns the associated device type associated to

 the device type name.

 static ccsCOMPL_STAT lsfControlReadDevTbl

 (IN lsfCONTROL_DATA *controlData,

 OUT ccsERROR *error)

 This method reads the database attribute control:deviceTable

 and sets the private data member <deviceTable>.

PRIVATE DATA MEMBERS
 The data structure lsfCONTROL_ENTRY maps the database attribute

 :control.deviceTable.

 typedef struct

 {

 vltBYTES20 name; Name of the device

 vltINT32 type; Type of the device

 vltINT32 startPhase; Sequence order for increasing/

 vltINT32 stopPhase; decreasing the state

 vltLOGICAL simulation; True when device is in Simulation

 vltLOGICAL ignored; True when device is ignored

 } lsfCONTROL_ENTRY;

 The data structure lsfCONTROL_DATA holds all the necessary information

 for the control of the devices.

 typedef struct

 {

 void *ctrlData; Ptr to self

 void *srvrData; Ptr to parent structure

 int numDevices[lsfDEVICE_NUM_TYPES+1];

 Number of devices of each type

 lsfCONTROL_ENTRY *deviceTable;

 Device table (mirror of DB)

 lsfDEVICE_DATA *deviceData[lsfDEVICE_NUM_TYPES+1];

 Device data

 char *attrTable; LCC cai internal

 void *fctHook[8][3]; Hook function addresses

 } lsfCONTROL_DATA;

DATABASE
 The class lsfCONTROL is the class holding the description of the

 device. It consists of the deviceTable attribute that stores the

 description of each device to be controlled:

 vltBYTES20 name; Name of the device

 vltBYTES20 type; Type of the device

 vltINT32 startPhase; Sequence order for increasing/

 vltINT32 stopPhase; decreasing the state

 vltLOGICAL simulation; Device is in Simulation

 vltLOGICAL ignored; Device is ignored

 For each kind of device a point is instanciated from the class lsfDEVICE

 that holds the information of that kind of devices (state, subState

 etc...). These points are instanciated dynamically at build time

 depending on the number of devices of a kind.

RETURN VALUES
 The control sequence is broken on the first failure.

 The method returns FAILURE and an error is logged.

CAUTIONS
 Start/Stop Phase handling mechanism is not yet implemented.

SEE ALSO
 lsfCONTROL(5)

3.1.9 lsfDevice(3)

NAME
 lsfDevice - Common device handling methods

SYNOPSIS
 #include "lsfDevice.h"

DESCRIPTION
 This class provides methods dedicated to the handling of devices.

 The allows other objects to query device private information and

 to set the device state/subState.

PUBLIC METHODS
 vltLOGICAL lsfDeviceIsDefined (IN void *pData,

 IN const char *devName);

 vltLOGICAL lsfDeviceIsIgnored (IN void *pData,

 IN const char *devName);

 vltLOGICAL lsfDeviceIsSimulated (IN void *pData,

 IN const char *devName);

 vltLOGICAL lsfDeviceIsInState (IN void *pData,

 IN vltINT32 state);

 These 4 methods query the device status.

PROTECTED METHODS
 ccsCOMPL_STAT lsfDeviceSetStatus (IN void *pData,

 IN vltINT32 devIdx,

 IN vltINT32 state,

 IN vltINT32 subState,

 IN vltINT32 init,

 OUT ccsERROR *error);

 This method sets the device status to the given values for:

 the <state>, the <subState> and the <init> flag.

 The index <devIdx> refers to the selected device when > 0

 or to the device group when zero.

 ccsCOMPL_STAT lsfDeviceSetState (IN void *pData,

 IN vltINT32 devIdx,

 IN vltINT32 state,

 OUT ccsERROR *error);

 Idem dito for the <state> only.

 ccsCOMPL_STAT lsfDeviceSetSubState (IN void *pData,

 IN vltINT32 devIdx,

 IN vltINT32 subState,

 OUT ccsERROR *error);

 Idem dito for the <subState> only.

 ccsCOMPL_STAT lsfDeviceSetInit (IN void *pData,

 IN vltINT32 devIdx,

 IN vltLOGICAL init,

 OUT ccsERROR *error);

 Idem dito for the <init> flag only.

PRIVATE DATA MEMBERS
 typedef struct

 {

 vltINT32 state; State of the device

 vltINT32 subState; Associated sub-state

 vltLOGICAL init; True when Initialized

 vltLOGICAL simulation; True when in Simulation

 vltINT32 timeout; Device action timeout in seconds

 } lsfDEVICE_ENTRY;

 typedef struct

 {

 void *ctrlData; Ptr to the CONTROL_DATA structure

 void *userData; Ptr to User data

 vltINT32 state; State, SubState and Init/Sim flag of

 vltINT32 subState; all the devices of this type

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout; Timeout in seconds

 vltINT32 numDevices; Number of devices of this type

 vltBYTES20 *deviceNames; Names of the devices

 char *attrTable[lsfMAX_DEVICES+1]; LCC cai internal

 lsfDEVICE_ENTRY *deviceTable[lsfMAX_DEVICES]; Device individual data

 } lsfDEVICE_DATA;

DATABASE
 The class lsfDB_DEVICE is the generic class for device description:

 It is partially mapped by the data structure lsfDEVICE_ENTRY.

 Each type of device is represented in the database branch of the

 Software Device by a point instanciated from lsfDB_DEVICE

 and located under :control.

 Each device of a kind is represented in the database by a point

 instanciated from a sub-class of lsfDB_DEVICE and

 located under :control:<devType>.

SEE ALSO
 lsfControl(3), lsfDB_DEVICE(5)

3.1.10 lsfSignal(3)

NAME
 lsfSignal - Control digital and analogue signals

SYNOPSIS
 #include "lsfSignal.h"

DESCRIPTION
 This class provides the methods for the control of digital and

 analogue signals. It implements the default behaviour for all

 the standard commands.

 A user-defined hook function is foreseen to be invoked at

 completion of the signal initialization.

 This hook shall follow the syntax:

 ccsCOMPL_STAT <mod>SignalInitHook(lsfSIGNAL_DATA *signalData,

 const char *signalName,

 ccsERROR *error)

 In addition, it offers the 4 methods for reading and setting

 digital and analogue signals as a whole or individually.

PUBLIC METHODS
 ccsCOMPL_STAT lsfSignalReadAnalog

 (IN lsfSIGNAL_DATA *signalData,

 IN const char *signalName,

 OUT char *names[],

 OUT vltFLOAT *value,

 OUT ccsERROR *error)

 This method reads the specified analog signal value(s) and

 stores it/them in the array pointed to by <value>. The names

 of the signals are listed and returned to the caller via the

 array <names[]>.

 If <signalName> is NULL or "all", all input analogue signals

 will be read.

 ccsCOMPL_STAT lsfSignalWriteAnalog

 (IN lsfSIGNAL_DATA *signalData,

 IN const char *signalName,

 IN vltFLOAT *value,

 OUT ccsERROR *error)

 This method sets the specified analog signal <signalName>

 to the value pointed to by <value>.

 If <signalName> is NULL or "all", all output analogue signals

 will be set to the values pointed to by <value> in the order

 they are registered.

 ccsCOMPL_STAT lsfSignalReadDigital

 (IN lsfSIGNAL_DATA *signalData,

 IN const char *signalName,

 OUT char *names[],

 OUT vltUINT32 *value,

 OUT ccsERROR *error)

 This method reads the specified digital signal value(s) and

 stores it/them in the array pointed to by <value>. The names

 of the signals are listed and returned to the caller via the

 array <names[]>.

 If <signalName> is NULL or "all", all input digital signals

 will be read.

 ccsCOMPL_STAT lsfSignalWriteDigital

 (IN lsfSIGNAL_DATA *signalData,

 IN const char *signalName,

 IN vltUINT32 *value,

 OUT ccsERROR *error)

 This method sets the specified digital signal <signalName>

 to the value pointed to by <value>.

 If <signalName> is NULL or "all", all output digital signals

 will be set to the values pointed to by <value> in the order

 they are registered.

PROTECTED METHODS
 ccsCOMPL_STAT lsfSignalConstructor

 (IN const char *swdName,

 IN lsfCONTROL_DATA *controlData,

 IN const char *signalNames[],

 OUT ccsERROR *error)

 This is the constructor of the signal object. It affects all the

 signals given in the list <signalNames[]> (NULL terminated).

 void lsfSignalDestructor

 (IN lsfCONTROL_DATA *controlData)

 This method is the object destructor. All resources are released.

 ccsCOMPL_STAT lsfSignalInit

 ccsCOMPL_STAT lsfSignalStandby

 ccsCOMPL_STAT lsfSignalOnline

 ccsCOMPL_STAT lsfSignalStop

 ccsCOMPL_STAT lsfSignalOff

 ccsCOMPL_STAT lsfSignalExit

 ccsCOMPL_STAT lsfSignalSimulat

 ccsCOMPL_STAT lsfSignalStopsim

 ccsCOMPL_STAT lsfSignalSelftest

 ccsCOMPL_STAT lsfSignalTest

 (IN lsfSIGNAL_DATA *signalData,

 IN const char *signalName,

 OUT ccsERROR *error)

 These methods implement the behaviour of the standard commands.

 If <signalName> is NULL, or "all" all the signals will be

 affected, otherwise only the specified one.

PRIVATE METHODS
 static ccsCOMPL_STAT lsfSignalCallHook

 (IN lsfSIGNAL_DATA *signalData,

 IN const char *signalName,

 IN const char *signalFct,

 OUT ccsERROR *error)

 This method invokes the user-defined hook function

 <mod>Signal<signalFct>Hook(<signalData>,<signalName>,error).

 It is invoked at Init completion only.

PRIVATE DATA MEMBERS
 The data stucture lsfSIGNAL_ENTRY is a sub-class of lsfDEVICE_ENTRY.

 typedef struct

 {

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 Additional data members

 ioTYPE ioType; Type of signal (Digital/Analog)

 ioIN_OUT direction; Signal direction (Input/Output)

 dbSYMADDRESS dbAddr; DB path to Signal point

 ioDIRADDRESS ioAddr; IO Direct address

 } lsfSIGNAL_ENTRY;

 The data stucture lsfSIGNAL_DATA is a sub-class of lsfDEVICE_DATA.

 typedef struct

 {

 void *ctrlData;

 void *userData;

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 vltINT32 numSignals; Number of signals

 vltBYTES20 *signalNames; Signal names

 (dynamic allocated)

 char *attrTable[lsfMAX_DEVICES+1];

 lsfSIGNAL_ENTRY *signalTable[lsfMAX_DEVICES]; Signal data

 } lsfSIGNAL_DATA;

DATABASE
 The class lsfDB_SIGNAL is a sub-class of lsfDB_DEVICE.

 It is partially mapped by the data structure lsfSIGNAL_ENTRY.

 Each signal is represented in the database by a point under the

 main signal point :control:signal, which is partially mapped

 by the data structure lsfSIGNAL_DATA.

 The 2 sub-classes lsfDB_ANALOG and lsfDB_DIGITAL are specialized classes

 for Analogue, resp. Digital signals. They are instanciating the LCC

 classes lccANALOG_SIGNAL and lccDIGITAL_SIGNAL resp.

SEE ALSO
 lsfDB_SIGNAL(5)

3.1.11 lsfMotor(3)

NAME
 lsfMotor - Control motors

SYNOPSIS
 #include "lsfMotor.h"

DESCRIPTION
 This class provides the methods for the control of motors.

 It implements the default behaviour for all the standard commands.

 In addition, it offers 2 methods for performing absolute motions

 on one or all motors in parallel.

PUBLIC METHODS
 vltINT32 lsfMotorGetState (IN lsfMOTOR_DATA *motorData,

 IN const char *motorName)

 vltINT32 lsfMotorGetSubState (IN lsfMOTOR_DATA *motorData,

 IN const char *motorName)

 These 2 methods return the state, resp. sub-state of the motors

 specified by <motorName>.

 ccsCOMPL_STAT lsfMotorMoveAbs

 (IN lsfMOTOR_DATA *motorData,

 IN const char *motorName,

 IN vltINT32 target[],

 IN const char *unit[],

 IN vltLOGICAL wait,

 OUT ccsERROR *error)

 This methods initiates an absolute motion to the position

 <target> for all the motors specified by <motorName>. The

 position unit is specified by <unit> in the corresponding order.

 The flag <wait> indicates whether the function shall wait for

 the motion completion, or not.

 ccsCOMPL_STAT lsfMotorWaitMove

 (IN lsfMOTOR_DATA *motorData,

 IN const char *motorName,

 OUT char *names[],

 OUT vltDOUBLE *position,

 OUT char *units[],

 OUT ccsERROR *error)

 This method is based on the API function motWaitMove() that

 waits until all motors specified by <motorName> have completed

 their motion. It returns on the first error.

PROTECTED METHODS
 ccsCOMPL_STAT lsfMotorConstructor

 (IN const char *swdName,

 IN lsfCONTROL_DATA *controlData,

 IN const char *motorNames[],

 OUT ccsERROR *error)

 This is the constructor of the motor object. It affects all the

 motors given in the list <motorNames[]> (NULL terminated).

 void lsfMotorDestructor

 (IN lsfCONTROL_DATA *controlData)

 This method is the object destructor. It deinstalls all

 of all registered motors. All resources are released.

 ccsCOMPL_STAT lsfMotorInit

 ccsCOMPL_STAT lsfMotorStandby

 ccsCOMPL_STAT lsfMotorOnline

 ccsCOMPL_STAT lsfMotorStop

 ccsCOMPL_STAT lsfMotorOff

 ccsCOMPL_STAT lsfMotorExit

 ccsCOMPL_STAT lsfMotorSimulat

 ccsCOMPL_STAT lsfMotorStopsim

 ccsCOMPL_STAT lsfMotorSelftest

 ccsCOMPL_STAT lsfMotorTest (IN lsfMOTOR_DATA *motorData,

 IN const char *motorName,

 OUT ccsERROR *error)

 These methods implement the behaviour of the standard commands.

 If <motorName> is NULL, or "all" all the motors will be

 affected, otherwise only the specified one.

 ccsCOMPL_STAT lsfMotorWaitInit

 (IN lsfMOTOR_DATA *motorData,

 IN const char *motorName,

 OUT ccsERROR *error)

 This method is based on the API function motWaitInit() that

 waits until all motors specified by <motorName> have completed

 their initialization sequence. It returns on the first error.

 ccsCOMPL_STAT lsfMotorSetSubState

 (IN lsfMOTOR_DATA *motorData,

 OUT ccsERROR *error)

 This method sets the sub-states of all registered motors as a

 function of their resp. initStatus and motionStatus.

PRIVATE DATA MEMBERS
 The data stucture lsfMOTOR_ENTRY is a sub-class of lsfDEVICE_ENTRY.

 typedef struct

 {

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 Additional data members

 motSTATUS *motorStatus; Ptr to motorStatus array

 from lsfMOTOR_DATA

 } lsfMOTOR_ENTRY;

 The data stucture lsfMOTOR_DATA is a sub-class of lsfDEVICE_DATA.

 typedef struct

 {

 void *ctrlData;

 void *userData;

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 vltINT32 numMotors; Number of motors

 vltBYTES20 *motorNames; Motor names

 (dynamic allocated)

 char *attrTable[lsfMAX_DEVICES+1];

 lsfMOTOR_ENTRY *motorTable[lsfMAX_DEVICES]; Motor data

 Additional data members

 motHANDLE motorHandle[lsfMAX_DEVICES+1]; List of motor

 handles [0 terminated]

 motSTATUS *motorStatus; Array of motor status

 (dynamic allocated)

 } lsfMOTOR_DATA;

DATABASE
 The class lsfDB_MOTOR is a sub-class of lsfDB_DEVICE.

 It is partially mapped by the data structure lsfMOTOR_ENTRY.

 Each motor is represented in the database by a point under the

 main warning: imsignal point :control:motor, which is partially mapped

 by the data structure lsfMOTOR_DATA.

SEE ALSO
 lsfDB_MOTOR(5)

3.1.12 lsfSerial(3)

NAME
 lsfSerial - Control serial communication links

SYNOPSIS
 #include "lsfSerial.h"

DESCRIPTION
 This class provides the methods for the control of serial

communication links. It implements the default behaviour for all

 the standard commands.

PUBLIC METHODS
 ccsCOMPL_STAT lsfSerialRead (IN lsfSERIAL_DATA *serialData,

 IN const char *serialName,

 OUT char *names[],

 OUT char *buffer[],

 OUT ccsERROR *error)

 This method reads data from the given serial communication

 link <serialName> into the buffer pointed to by <buffer>.

 If <serialName> is NULL or "all", all communication links

 will be read in the order they are registered. The names of

 devices read are returned in the array <names[]>. The data

 buffers are ordered identically.

 ccsCOMPL_STAT lsfSerialWrite (IN lsfSERIAL_DATA *serialData,

 IN const char *serialName,

 IN char *buffer[],

 OUT ccsERROR *error)

 This method writes data pointed to by <buffer> to the given

 serial communication link <serialName>.

 If <serialName> is NULL or "all", all communication links

 will be written in the order they are registered.

PROTECTED METHODS
 ccsCOMPL_STAT lsfSerialConstructor

 (IN const char *swdName,

 IN lsfCONTROL_DATA *controlData,

 IN const char *serialNames[],

 OUT ccsERROR *error)

 This is the constructor of the serial object. It affects all the

 serials given in the list <serialNames[]> (NULL terminated).

 void lsfSerialDestructor

 (IN lsfCONTROL_DATA *controlData)

 This method is the object destructor. All resources are released.

 ccsCOMPL_STAT lsfSerialInit

 ccsCOMPL_STAT lsfSerialStandby

 ccsCOMPL_STAT lsfSerialOnline

 ccsCOMPL_STAT lsfSerialStop

 ccsCOMPL_STAT lsfSerialOff

 ccsCOMPL_STAT lsfSerialExit

 ccsCOMPL_STAT lsfSerialSimulat

 ccsCOMPL_STAT lsfSerialStopsim

 ccsCOMPL_STAT lsfSerialSelftest

 ccsCOMPL_STAT lsfSerialTest

 (IN lsfSERIAL_DATA *serialData,

 IN const char *serialName,

 OUT ccsERROR *error)

 These methods implement the behaviour of the standard commands.

 If <serialName> is NULL, or "all" all the serials will be

 affected, otherwise only the specified one.

PRIVATE METHODS
 static ccsCOMPL_STAT lsfSerialCallHook

 (IN lsfSERIAL_DATA *serialData,

 IN const char *serialName,

 IN const char *serialFct,

 OUT ccsERROR *error)

 This method invokes the user-defined hook function

 <mod>Serial<serialFct>Hook(<serialData>,<serialName>,error).

 It is invoked at Init completion only.

PRIVATE DATA MEMBERS
 The data stucture lsfSERIAL_ENTRY is a sub-class of lsfDEVICE_ENTRY.

 typedef struct

 {

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 Additional data members

 vltINT32 fd; File descriptor

 vltLOGICAL isTyCo; True when TyCo device

 } lsfSERIAL_ENTRY;

 The data stucture lsfSERIAL_DATA is a sub-class of lsfDEVICE_DATA.

 typedef struct

 {

 void *ctrlData;

 void *userData;

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 vltINT32 numSerials; Number of serials

 vltBYTES20 *serialNames; Serial names

 (dynamic allocated)

 char *attrTable[lsfMAX_DEVICES+1];

 lsfSERIAL_ENTRY *serialTable[lsfMAX_DEVICES]; Serial data

 } lsfSERIAL_DATA;

DATABASE
 The class lsfDB_SERIAL is a sub-class of lsfDB_DEVICE.

 It is partially mapped by the data structure lsfSERIAL_ENTRY.

 Each serial communication link is represented in the database by a

 point under the main serial point :control:serial, which is partially

 mapped by the data structure lsfSERIAL_DATA.

 The sub-classes lsfDB_RS232, lsfDB_RS422 and lsfDB_RS485 derive from lsfDB_SERIAL

 whereby the protocol and handshake are overloaded.

SEE ALSO
 lsfDB_SERIAL(5)

3.1.13 lsfTaskDev(3)

NAME
 lsfTaskDev - Control Task Devices

SYNOPSIS
 #include "lsfTaskDev.h"

DESCRIPTION
 This class provides the methods for the control of task devices.

 It implements the default behaviour for all the standard commands.

 Function of the state, the task devices are activated/stopped.

PUBLIC METHODS
 ccsCOMPL_STAT lsfTaskDevTrigger

 (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 OUT ccsERROR *error)

 This method triggers the given task asynchronously.

 If the timer is based on TIM, the activation occurs asynchronously

 within the period; otherwise, the periodic delay is restarted

 after activation.

 STATUS lsfTaskDevVerify

 (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 OUT ccsERROR *error)

 This method returns the status of the given task device.

 OK if running; ERROR if not. see taskIdVerify()

 If <taskDevName> is "all" the return value is OK if all tasks

 are running otherwise ERROR;

PROTECTED METHODS
 ccsCOMPL_STAT lsfTaskDevConstructor

 (IN const char *swdName,

 IN lsfCONTROL_DATA *controlData,

 IN const char *taskDevNames[],

 OUT ccsERROR *error)

 This is the constructor of the taskDev object. It affects all the

 task devices given in the list <taskDevNames[]> (NULL terminated).

 void lsfTaskDevDestructor

 (IN lsfCONTROL_DATA *controlData)

 This method is the object destructor. All resources are released.

 ccsCOMPL_STAT lsfTaskDevInit

 ccsCOMPL_STAT lsfTaskDevStandby

 ccsCOMPL_STAT lsfTaskDevOnline

 ccsCOMPL_STAT lsfTaskDevStop

 ccsCOMPL_STAT lsfTaskDevOff

 ccsCOMPL_STAT lsfTaskDevExit

 ccsCOMPL_STAT lsfTaskDevSimulat

 ccsCOMPL_STAT lsfTaskDevStopsim

 ccsCOMPL_STAT lsfTaskDevSelftest

 ccsCOMPL_STAT lsfTaskDevTest (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 OUT ccsERROR *error)

 These methods forward the standard commands to the task

 devices given in the list <taskDevName>.

 If <taskDevName> is NULL, or "all" all the task devices will

 be affected, otherwise only the specified one.

 It updates the state and subState of the group.

PRIVATE METHODS
 static ccsCOMPL_STAT lsfTaskDevLoop

 (IN lsfTASKDEV_DATA *taskDevData,

 IN int tskIdx,

 OUT ccsCOMPL_STAT *tskStat,

 IN SEM_ID *tskSync,

 OUT ccsERROR *error)

 This method is the core of the task. Therefore the structure is

 imposed. It invoked an optional prologue user function

 <mod><taskDevName>ProHook(), then enters the infinite loop

 in which it invokes the user core function <mod><taskDevName>()

 When the task is told to terminate, it invoked the optional

 epilogue user function <mod><taskDevName>EpiHook().

 All the task hook functions must comply the prototype:

 typedef ccsCOMPL_STAT lsfTASKDEV_HOOK

 (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 OUT ccsERROR *error)

 The function names must follow the syntax:

 <moduleName><taskDevName>["ProHook" | "" | "EpiHook"]()

 The core function <moduleName><taskDevName>() is mandatory.

 static ccsCOMPL_STAT lsfTaskDevActivate

 (IN lsfTASKDEV_DATA *taskDevData,

 IN int tskIdx,

 OUT ccsERROR *error)

 This method activates the task indexed <tskIdx>.

 static ccsCOMPL_STAT lsfTaskDevSchedule

 (IN lsfTASKDEV_DATA *taskDevData,

 IN const char *taskDevName,

 IN vltINT32 state,

 OUT ccsERROR *error)

 This method schedules the tasks depending on their start state.

 If the <state> is higher or equal the start state, the task is

 activated, otherwise it is terminated.

PRIVATE DATA MEMBERS
 The data stucture lsfTASKDEV_ENTRY is a sub-class of lsfDEVICE_ENTRY.

 typedef struct

 {

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 Additional data members

 vltINT32 startState; Miniumum state for schedule

 vltLOGICAL ignoreStop; True when stop is ignored

 vltLOGICAL first; True when starting

 vltINT32 tcb,tid; Task TCB for lccTaskLib

 void *fctHook[3]; Addresses of function hooks

 } lsfTASKDEV_ENTRY;

 The data stucture lsfTASKDEV_DATA is a sub-class of lsfDEVICE_DATA.

 typedef struct

 {

 void *ctrlData;

 void *userData;

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 vltINT32 numTaskDevs; Number of tasks

 vltBYTES20 *taskDevNames; Names of the tasks

 (dynamic allocated)

 char *attrTable[lsfMAX_DEVICES+1];

 lsfTASKDEV_ENTRY *taskDevTable[lsfMAX_DEVICES]; TaskDev data

 } lsfTASKDEV_DATA;

DATABASE
 The class lsfDB_TASKDEV is a sub-class of lsfDB_DEVICE.

 It is partially mapped by the data structure lsfTASKDEV_ENTRY.

 Each task is represented in the database by a point under the

 main point :control:taskDev, which is partially mapped by the data

 structure lsfTASKDEV_DATA.

SEE ALSO
 lsfDB_DEVICE(5)

3.1.14 lsfSoftDev(3)

NAME
 lsfSoftDev - Control underlying Software Devices

SYNOPSIS
 #include "lsfSoftDev.h"

DESCRIPTION
 This class provides the methods for the control of software devices.

 It implements the default behaviour for all the standard commands.

 The standard commands are forwarded to the underlying software devices.

PUBLIC METHODS
 ccsCOMPL_STAT lsfForwardCommand

 (IN lsfSOFTDEV_DATA *softDevData,

 IN const char *softDevName,

 IN const char *command,

 IN const char *param,

 OUT char *reply,

 OUT ccsERROR *error)

 This method forward a command to the software devices specified

 by <softDevName>. If <softDevName> is NULL, or "all" all the

 software devices will be affected, otherwise only the specified one.

 The method returns the completion status of the command, thus waits

 for all specified software devices to reply.

PROTECTED METHODS
 ccsCOMPL_STAT lsfSoftDevConstructor

 (IN const char *swdName,

 IN lsfCONTROL_DATA *controlData,

 IN const char *softDevNames[],

 OUT ccsERROR *error)

 This is the constructor of the softDev object. It affects all the

 software devices given in the list <softDevNames[]> (NULL terminated).

 void lsfSoftDevDestructor

 (IN lsfCONTROL_DATA *controlData)

 This method is the object destructor. All resources are released.

 ccsCOMPL_STAT lsfSoftDevInit

 ccsCOMPL_STAT lsfSoftDevStandby

 ccsCOMPL_STAT lsfSoftDevOnline

 ccsCOMPL_STAT lsfSoftDevStop

 ccsCOMPL_STAT lsfSoftDevOff

 ccsCOMPL_STAT lsfSoftDevExit

 ccsCOMPL_STAT lsfSoftDevSimulat

 ccsCOMPL_STAT lsfSoftDevStopsim

 ccsCOMPL_STAT lsfSoftDevSelftest

 ccsCOMPL_STAT lsfSoftDevTest (IN lsfSOFTDEV_DATA *softDevData,

 IN const char *softDevName,

 OUT ccsERROR *error)

 These methods forward the standard commands to the software

 devices given ib the list <softDevName>.

 If <softDevName> is NULL, or "all" all the software devices will

 be affected, otherwise only the specified one.

 It updates the state and subState of the group.

PRIVATE METHODS
 static ccsCOMPL_STAT lsfSendCommand

 (IN const char *srvName,

 IN const char *command,

 IN const char *param,

 OUT ccsERROR *error)

 This method sends the command <command> with the

 parameters <param> to the server process <srvName> of the

 software device.

 static ccsCOMPL_STAT lsfWaitReply

 (IN const char *srvName,

 IN const char *command,

 IN char *reply,

 IN int timeout,

 OUT ccsERROR *error)

 This method waits for the last or error reply to the command

 <command> from the server process <srvName> of the software device.

 The reply is stored in <reply>.

PRIVATE DATA MEMBERS
 The data stucture lsfSOFTDEV_ENTRY is a sub-class of lsfDEVICE_ENTRY.

 typedef struct

 {

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 Additional data members

 vltBYTES20 serverName; Name of the server process

 } lsfSOFTDEV_ENTRY;

 The data stucture lsfSOFTDEV_DATA is a sub-class of lsfDEVICE_DATA.

 typedef struct

 {

 void *ctrlData;

 void *userData;

 vltINT32 state;

 vltINT32 subState;

 vltLOGICAL init;

 vltLOGICAL simulation;

 vltINT32 timeout;

 vltINT32 numSoftDevs; Number of software devices

 vltBYTES20 *softDevNames; Names of the software devices

 (dynamic allocated)

 char *attrTable[lsfMAX_DEVICES+1];

 lsfSOFTDEV_ENTRY *softDevTable[lsfMAX_DEVICES]; SoftDev data

 } lsfSOFTDEV_DATA;

DATABASE
 The class lsfDB_SOFTDEV is a sub-class of lsfDB_DEVICE.

 It is partially mapped by the data structure lsfSOFTDEV_ENTRY.

 Each softDev is represented in the database by a point under the

 main point :control:softDev, which is partially mapped by the data

 structure lsfSOFTDEV_DATA.

SEE ALSO
 lsfDB_DEVICE(5), lsfDB_SOFTDEV(5)

Database Classes

3.1.15 lsfTemplate.db

// ***

// * E.S.O. - VLT project

// *

// * "@(#) $Id: lsfTemplate.db,v 1.27 2000/10/24 08:32:13 vltsccm Exp $"

// *

// * who when what

// * -------- ---------- --

// * pduhoux 2000-05-18 created

// *

// **

// *

// * This file has been generated by a utility

// *

// * !!!!!!!!!!! DO NOT MANUALLY EDIT THIS FILE !!!!!!!!!!!

// *

// *--

// */

//

// Points needed by the application 'pfx'

//

#include "pfxDefines.h"

#include "pfxDeviceList.h"

#include "lsfDB_SERVER.class"

#include "pfxDB_DEVICE.class"

#include "pfxDB_DATA.class"

#ifdef lsfNUM_DEVICES

#if lsfNUM_DEVICES > 0

#include "lsfDB_CONTROL.class"

CLASS "lsfDB_CONTROL" "pfxDB_CONTROL"

BEGIN

 ATTRIBUTE Table deviceTable (lsfNUM_DEVICES)

#ifdef lsfNUM_SIGNAL

#if lsfNUM_SIGNAL > 0

 ATTRIBUTE "lsfDB_DEVICE" lsfDEVTYPE_SIGNAL_STR

#endif

#endif

#ifdef lsfNUM_MOTOR

#if lsfNUM_MOTOR > 0

 ATTRIBUTE "lsfDB_DEVICE" lsfDEVTYPE_MOTOR_STR

#endif

#endif

#ifdef lsfNUM_SERIAL

#if lsfNUM_SERIAL > 0

 ATTRIBUTE "lsfDB_DEVICE" lsfDEVTYPE_SERIAL_STR

#endif

#endif

#ifdef lsfNUM_ENCODER

#if lsfNUM_ENCODER > 0

 ATTRIBUTE "lsfDB_DEVICE" lsfDEVTYPE_ENCODER_STR

#endif

#endif

#ifdef lsfNUM_NETWORK

#if lsfNUM_NETWORK > 0

 ATTRIBUTE "lsfDB_DEVICE" lsfDEVTYPE_NETWORK_STR

#endif

#endif

#ifdef lsfNUM_SOFTDEV

#if lsfNUM_SOFTDEV > 0

 ATTRIBUTE "lsfDB_DEVICE" lsfDEVTYPE_SOFTDEV_STR

#endif

#endif

#ifdef lsfNUM_TASKDEV

#if lsfNUM_TASKDEV > 0

 ATTRIBUTE "lsfDB_DEVICE" lsfDEVTYPE_TASKDEV_STR

#endif

#endif

END

#endif

#endif

CLASS "lsfDB_SERVER" "pfxDB_SERVER"

BEGIN

#ifdef lsfNUM_DEVICES

 ATTRIBUTE int32 numDevices lsfNUM_DEVICES

#if lsfNUM_DEVICES > 0

 ATTRIBUTE "pfxDB_CONTROL" control

 BEGIN

 ATTRIBUTE Table deviceTable (lsfNUM_DEVICES)

 END

#endif

#else

 ATTRIBUTE int32 numDevices 0

#endif

 ATTRIBUTE "pfxDB_DATA" data

END

POINT "pfxDB_SERVER" pfxDB_ROOT

BEGIN

 ALIAS pfxMODULE_NAME

//

// Instanciate all devices

//

#ifdef lsfNUM_DEVICES

#if lsfNUM_DEVICES > 0

// ATTRIBUTE "<lsfDB_CLASS>" control:<devType1>:<devName1>

// ATTRIBUTE "<pfxDB_CLASS>" control:<devType2>:<devName2>

#endif

#endif

END

// END OF FILE

// ==

3.1.16 lsfDB_SERVER(5)

NAME
 lsfDB_SERVER - Base class for software device application

SYNOPSIS
 #include "lsfDB_SERVER.class"

 POINT lsfDB_SERVER ":<myPath>:<myMod>"

 BEGIN

 ALIAS "myMod"

 END

PARENT CLASS
 lsfDB_DEVICE <-- lsfDB_SOFTDEV <-- lsfDB_SERVER

DESCRIPTION
 The class lsfDB_SERVER is the generic definition of the top point of

 a software device. It holds the minimum information required

 by "lsf" for the software device management.

ATTRIBUTES
 In addition to those defined in the parent class lsfDB_SOFTDEV:

 monPeriod : period in ms of the associated monitor task

 numDevices : number of controlled devices

3.1.17 lsfDB_CONTROL(5)

NAME
 lsfDB_CONTROL - Base class for application control point

SYNOPSIS
 #include "lsfDB_CONTROL.class"

 ATTRIBUTE lsfDB_CONTROL control

PARENT CLASS
 BASE_CLASS <-- lsfDB_CONTROL

DESCRIPTION
 The class lsfDB_CONTROL is the generic definition of the

 control point.

 It contains the attribute <deviceTable> holding the information

 relevant to the control of the devices.

 The application control point is instanciated from a sub-class

 of this generic class. In particular it overloads the number of

 devices and adds a sub-point per device type.

ATTRIBUTES
 - TABLE deviceTable(1)

 deviceName : name of the device

 deviceType : type of the device

 startPhase : sequence order when increasing the device state

 stopPhase : sequence order when decreasing the device state

 simulation : true if device shall be controlled in simulation

 ignored : true is device shall be ignored

CAUTIONS
 The two fields <startPhase> and <stopPhase> are ignored.

3.1.18 lsfDB_DATA(5)

NAME
 lsfDB_DATA - Base class for application data

SYNOPSIS
 #include "lsfDB_DATA.class"

 ATTRIBUTE lsfDB_DATA data

PARENT CLASS
 BASE_CLASS <-- lsfDB_DATA

DESCRIPTION
 This class is the generic definition of the data point.

 It is provided to hold the application specific data used e.g.

 for monitoring purpose.

 The application data point is instanciated from a sub-class

 of this generic class. Its definition is application dependent.

ATTRIBUTES
 None

3.1.19 lsfDB_DEVICE(5)

NAME
 lsfDB_DEVICE - Base class for devices

SYNOPSIS
 #include "lsfDB_DEVICE.class"

 ATTRIBUTE lsfDB_DEVICE <aGenericDevice>

PARENT CLASS
 BASE_CLASS <-- lsfDB_DEVICE

DESCRIPTION
 The class lsfDB_DEVICE is the generic definition of a device.

 It holds the minimum information required by "lsf" for the

 device management. For each type of device a specialized

 sub-class is provided that adds specific attributes.

ATTRIBUTES
 lsfDB_DEVICE

 state : state of the device (= LCC states)

 substate : sub-state of the device

 initialized : true if device is initialized

 simulation : true if device shall be controlled in simulation

 timeout : timeout in seconds for command execution

3.1.20 lsfDB_SIGNAL(5)

NAME
 lsfDB_SIGNAL - Base classes for analogue and digital signals

SYNOPSIS
 #include "lsfDB_SIGNAL.class"

 ATTRIBUTE lsfDB_ANALOG analog

 ATTRIBUTE lsfDB_DIGITAL digital

PARENT CLASS
 |-- lsfDB_ANALOG

 lsfDB_DEVICE <-- lsfDB_SIGNAL <--+

 |-- lsfDB_DIGITAL

DESCRIPTION
 The class lsfDB_SIGNAL is the generic definition of a signal

 (analogue or digital) device. It contains the attribute holding

 the information relevant to the control of these devices.

ATTRIBUTES
 The following attributes are mapping for Analog and Digital

 signals the configuration parameters expexted by the LCC

 functions ioConfigAnalog(3), resp. ioConfigDigital(3).

 lsfDB_SIGNAL

 In addition to those defined in the parent class lsfDB_DEVICE:

 deviceName : name of the device "/acroN" for Digital signals

 "/aioN" for Analogue signals

 direction : signal direction (Input/Output)

 lsfDB_ANALOG

 deviceName : overloaded to "/aio"

 In addition to those defined in the parent class lsfDB_SIGNAL:

 channel : channel number

 gain : amplifier gain

 conversionFactor: floating point value

 lowerRange : signal range

 higherRange:

 simValue : simulation value

 signalA : associated database point (lccANALOG_SIGNAL)

 lsfDB_DIGITAL

 deviceName : overloaded to "/acro"

 In addition to those defined in the parent class lsfDB_SIGNAL:

 level : active Low/High

 startBit : lower bit [0-63]

 numBits : number of bits mapping the signal

 simValue : simulation value

 signalD : associated database point (lccDIGITAL_SIGNAL)

SEE ALSO
 LCC User Manual for Signal Handling

 ioConfigAnalog(3), ioConfigDigital(3)

 Digital I/O Board User Manual, and acro driver User Manual

 Analog I/O Board User Manual, and aio driver User Manual

3.1.21 lsfDB_MOTOR(5)

NAME
 lsfDB_MOTOR - Base class for motor

SYNOPSIS
 #include "lsfDB_MOTOR.class"

 ATTRIBUTE lsfDB_MOTOR <aMotorDevice>

PARENT CLASS
 lsfDB_DEVICE <-- lsfDB_MOTOR

DESCRIPTION
 The class lsfDB_MOTOR is the specialized class for motors of

 any kind.

 At instanciation, the class of the attribute <motor> shall be

 overloaded with the sub-class corresponding to the motor.

ATTRIBUTES
 In addition to those defined in the parent class lsfDB_DEVICE:

 motor : motor branch (from motMOTOR)

SEE ALSO
 motor.db(5), motMOTORS(5)

3.1.22 lsfDB_SERIAL(5)

NAME
 lsfDB_SERIAL - Base classes for serial communication links

SYNOPSIS
 ATTRIBUTE lsfDB_SERIAL com

 ATTRIBUTE lsfDB_RS232 com1

 ATTRIBUTE lsfDB_RS422 com2

 ATTRIBUTE lsfDB_RS485 com3

PARENT CLASS
 |-- lsfDB_RS232

 lsfDB_DEVICE <-- lsfDB_SERIAL <--+-- lsfDB_RS422

 |-- lsfDB_RS485

DESCRIPTION
 The class lsfDB_SERIAL is the generic definition of a serial

 communication device. It contains the attribute holding the

 information relevant to the control of these devices.

 The 3 sub-classes lsfDB_RS232, lsfDB_RS422 and lsfDB_RS485 are

 specialized classes for the control of RS232, RS422 and RS485 resp.

 communication links based on these protocols.

ATTRIBUTES
 lsfDB_SERIAL

 In addition to those defined in the parent class lsfDB_DEVICE:

 deviceName : name of the device "/iser0-9" or "/tyCo/1-3"

 protocol : number of the RS protocol [232, 422 or 485]

 for the following attributes, see iserDrv(3) and VxWorks

 manuals for tyCo devices

 baudRate :

 dataBits :

 stopBits :

 parity :

 handShake :

 rxMode :

 bufferLength:

 lsfDB_RS232, lsfDB_RS422 and lsfDB_RS485: these sub-classes overload

 the attributes 'protocol' and 'handShake'.

SEE ALSO
 iserDrv(3), VxWorks tyLib(1), ttyLib(1) and related

3.1.23 lsfDB_TASKDEV(5)

NAME
 lsfDB_TASKDEV - Base classes for task devices

SYNOPSIS
 #include "lsfDB_TASKDEV.class"

 ATTRIBUTE lsfDB_TASKDEV <aTaskDevice>

PARENT CLASS
 lsfDB_DEVICE <-- lsfDB_TASKDEV

DESCRIPTION
 The class lsfDB_TASKDEV is the specialized class for tasks

 devices to be controlled by the application.

ATTRIBUTES
 lsfDB_TASKDEV

 In addition to those defined in the parent class lsfDB_DEVICE:

 startState : minimum state for task activation

 timerNum : timer number for period

 -1 : use system call taskDelay()

 1 - 4 : use TIM timer

 period : task period in milli-seconds

 priority : task priority

 stackSize : task stack size in kilo-bytes [kB]

3.1.24 lsfDB_SOFTDEV(5)

NAME
 lsfDB_SOFTDEV - Base classes for software devices

SYNOPSIS
 #include "lsfDB_SOFTDEV.class"

 ATTRIBUTE lsfDB_SOFTDEV <aSoftwareDevice>

PARENT CLASS
 lsfDB_DEVICE <-- lsfDB_SOFTDEV

DESCRIPTION
 The class lsfDB_SOFTDEV is the specialized class for Software

 devices to be controlled by the application.

ATTRIBUTES
 lsfDB_SOFTDEV

 In addition to those defined in the parent class lsfDB_DEVICE:

 serverName : name of the software device server

Include Files

3.1.25 lsfDefines.h

#ifndef LSF_DEFINES_H

#define LSF_DEFINES_H

/***

* E.S.O. - VLT project

*

* "@(#) $Id: lsfDefines.h,v 1.27 2000/10/24 08:32:16 vltsccm Exp $"

*

* who when what

* -------- ---------- --

* pduhoux 2000-04-10 created

*/

/**

 *

 *--

 */

/*

 * Constants

 */

#define _eccs_tostr(a) #a

#define _eccs_tostr_pass2(a) _eccs_tostr(a)

#define __FILE_LINE__ __FILE__ ":" _eccs_tostr_pass2(__LINE__)

#define lsfMODULE_ID "lsf"
/* module name */

#define lsfMODULE_NAME lsfMODULE_ID

#define lsfMODULE_TITLE "LCU Server Framework"

#define lsfLOG_ID
 100

#define lsfMAX_DEVICES 32

/*

 * Database

 */

#define lsfDB_CONTROL_POINT ":control"

#define lsfDB_DATA_POINT ":data"

#define lsfDB_SIGNAL_POINT ":signal"

#define lsfDB_MOTOR_POINT ":motor"

#define lsfDB_SERIAL_POINT ":serial"

#define lsfDB_ENCODER_POINT ":encoder"

#define lsfDB_NETWORK_POINT ":network"

#define lsfDB_SOFTDEV_POINT ":softdev"

#define lsfDB_TASKDEV_POINT ":taskdev"

#define lsfALL_DEVICES "all"

#define lsfDEVTYPE_SIGNAL_STR "signal"

#define lsfDEVTYPE_ANALOG_STR "analog"

#define lsfDEVTYPE_DIGITAL_STR "digital"

#define lsfDEVTYPE_MOTOR_STR "motor"

#define lsfDEVTYPE_SERIAL_STR "serial"

#define lsfDEVTYPE_TYCO_STR "tyCo"

#define lsfDEVTYPE_RS232_STR "rs232"

#define lsfDEVTYPE_RS422_STR "rs422"

#define lsfDEVTYPE_RS485_STR "rs485"

#define lsfDEVTYPE_ENCODER_STR "encoder"

#define lsfDEVTYPE_IK320_STR "ik320"

#define lsfDEVTYPE_NETWORK_STR "network"

#define lsfDEVTYPE_ETHERNET_STR "ethernet"

#define lsfDEVTYPE_NET01_STR "net01"

#define lsfDEVTYPE_ATM_STR "atm"

#define lsfDEVTYPE_SOFTDEV_STR "softdev"

#define lsfDEVTYPE_TASKDEV_STR "taskdev"

#define lsfDEVICE_NUM_TYPES 7

#define lsfDEVICE_SIGNAL 1

#define lsfDEVICE_MOTOR 2

#define lsfDEVICE_SERIAL 3

#define lsfDEVICE_ENCODER 4

#define lsfDEVICE_NETWORK 5

#define lsfDEVICE_SOFTDEV 6

#define lsfDEVICE_TASKDEV 7

/* lsfDEVTYPE_<device> = (0x100 << (lsfDEVICE_<type>-1)) + <kind> */

#define lsfDEVTYPE_MASK 0xFF00

#define lsfDEVTYPE_UNKNOWN 0

#define lsfDEVTYPE_SIGNAL 0x0100

#define lsfDEVTYPE_ANALOG 0x0101 /* = lsfDEVTYPE_SIGNAL | ioANALOG */

#define lsfDEVTYPE_DIGITAL 0x0102 /* = lsfDEVTYPE_SIGNAL | ioDIGITAL */

#define lsfDEVTYPE_MOTOR 0x0200

#define lsfDEVTYPE_SERIAL 0x0400

#define lsfDEVTYPE_RS232 0x0401

#define lsfDEVTYPE_RS422 0x0402

#define lsfDEVTYPE_RS485 0x0404

#define lsfDEVTYPE_ENCODER 0x0800

#define lsfDEVTYPE_IK320 0x0801

#define lsfDEVTYPE_NETWORK 0x1000

#define lsfDEVTYPE_ETHERNET 0x1001

#define lsfDEVTYPE_NET01 0x1002

#define lsfDEVTYPE_ATM 0x1004

#define lsfDEVTYPE_SOFTDEV 0x2000

#define lsfDEVTYPE_TASKDEV 0x4000

#define lsfSTATE_OFF 1

#define lsfSTATE_LOADED 2

#define lsfSTATE_STANDBY 3

#define lsfSTATE_ONLINE 4

#define lsfUNCHANGED -99

#define lsfSUBSTATE_IDLE 0

#define lsfSUBSTATE_ERROR 1

#define lsfSUBSTATE_TIMEOUT 2

#define lsfSUBSTATE_INITIALIZING 3

#define lsfSUBSTATE_ACTIVE 4

#define lsfSUBSTATE_MONITORING 5

#define lsfSUBSTATE_MOVING 6

#define lsfSUBSTATE_WAITING 7

#define lsfATTR_NAMES \

 "state","substate","simulation","initialized","timeout"

#define lsfDB_STATE 0

#define lsfDB_SUBSTATE 1

#define lsfDB_SIMULATION 2

#define lsfDB_INITIALIZED 3

#define lsfDB_TIMEOUT 4

#define lsfDB_LAST 5

#endif /*!LSF_DEFINES_H*/

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
4 Installation Guide

This chapter is a guide for the installation of Software Devices in the VLT environments. It is built in 2 sections resp. for the WS and the LCU parts. The installation of the Software Device on the Workstation environment depends on the requirements, namely whether the database must be scanned from the LCU environment. In that case, the database shall contain the branch mirroring the LCU database branch for scanning.

It is assumed that the WS environment wsEnv and LCU environment lcuEnv have been successfully created and configured for lcuEnv to report to wsEnv.

4.1.1 WS Environment

The configuration of the WS environment is made in 3 steps:

· Edit the file $VLTDATA/ENVIRONMENTS/wsEnv/dbl/DATABASE.db
Add the following 2 lines outside any BEGIN ... END block:

 #define appDB_ROOT "<absolute path>"

 #include "app.db"

· Edit the file $VLTDATA/ENVIRONMENTS/wsEnv/dbl/Makefile
Add the following directive:

 USER_INC = -I${INTROOT}/vw/include

· Generate the database, initiatialize and start the environment:

 > cd $VLTDATA/ENVIRONMENTS/wsEnv/dbl

 > make db

 > vccEnvInit -e wsEnv
 > vccEnvStart -e wsEnv
 >

4.1.2 LCU Environment

The configuration of the LCU environment is made in 4 steps:

· Edit the file $VLTDATA/ENVIRONMENTS/lcuEnv/dbl/DATABASE.db
Add the following 2 lines outside any BEGIN ... END block:

 #define appDB_ROOT "<absolute path>"

 #include "app.db"

· Generate the database:

 > cd $VLTDATA/ENVIRONMENTS/lcuEnv/dbl

 > make db

 >

· Edit the file $VLTDATA/ENVIRONMENTS/lcuEnv/devicesFile

9. Increment the number of devices in the line:

<ATTRIBUTE>: deviceTable <TYPE>: Table <REC>: 0 - N <FIELDS>: 0 - 5

where N must be incremented

10. Add the following entry:

"app" "appServer" 1 0 0 1

IMPORTANT NOTE: Any Software Device that is to be controlled from another Software Device must not be registered in this list; the respect of this rule is essential for the system to behave correctly: since the standard commands are forwarded from the co-ordinating Software Device to the sub-ordinated ones, any standard command sent to LCC (process lccServer) would be forwarded to all the registered Software Devices found in this list, but as well from the co-ordinating Software Devices to the sub-ordinated ones resulting in non predictable effects.

· Configure the LCU bootScript and reboot the LCU:

 > vccConfigLcu lcuEnv &

 >

In the LCU Configuration panel:

1. Update the user module list that shall contain:
lsf and app in this precedence order.
For applications that do use motors, the module mcm must be added.

2. Add the required driver devices,

3. Add the process appServer.

4. Click on the button Write Files to save the configuration

5. Click on the button Reboot LCU to boot the LCU

PRIVATE "TYPE=PICT;ALT=LCU configuration panel"[image: image14.png]vecConfiglcu@te30

[_[CIx]

le Help
Environment __Host IP Address __ TCPPort _CPU__Host Type
Boot WS jusEny +| = 30,071,100 [5454 hppa || hpg700
Boothome: v L tdata/ ENVIRGNMENTS, LouEny
VXROOT: [/u1e/NOV2000/wa5. 47t BSPijmuz60d Single Master « Slave
ROOT CONFIGURATION 1 Load cuboot from INTROOT
VLTROOT:[os +| [PoiereBzo00Ees I1P: [134.171.12. uuu
INTROOT: s o Paiskarinerost/user IP: [134.171.12. uuu
NETWORK CONFIGURATION
Boot User: ox NFS User: [ox 36 o e e e
Password: NFS Group[vle 500 ey P
Main Host: [ToaEny Main Host IP: 134,171,128, nnn Backplane IP:
2nd Host: 2nd Host IP
3rd Host: 3rd Host IP
MODULES CONFIGURATION DEVICES CONFIGURATION PROCESSES
System Mod: User Mod Devices Processes
Tcudy floo 7 acro Teoserver
Icuiog inducer 7 fampl Peim agServer
™ mem 2 mcon Count: rdbServer
acro st J iy | A = jnotserver
armpl app Remove [T ARE
mcon T 12
i Remove
Hel *
cai B Reset 1
scan Reset appServer
7 7 W userScript d Add |Remove] Reset
Target Files
Reset
sVt data/ENVIRONMENTS IeUEnv/hostScript
hwe:vltdata/ENVIRONMENTS leuEnviuserScript Remove
hwe:vltdata/ENVIRONMENTS lcuEnv/devicesFile
Jwsivltdata/ENVIRONMENTS/IcUENV/PROCESSES 7 [Edt

I e L

CreateEnv_ | ReadFiles |

Write Files

Reboot LCU

| configure Leu |

4.1.3 Scan Links

After both environments have been successfully started, the scan links can be configured. Edit the file app/ws/config/app.scan to add all the links required by the application.

Example:

> cd app/ws/config

> vi app.scan

 ...

> cd ../src

> make install

 ...

 . . . installation done

>

> scanLinks -f $INTROOT/config/app.scan -l wsEnv -e lcuEnv -c -E -r <path>

>

where <path> is the absolute path of the database root point of the application on the WS.

The WS database will now be kept aligned with the LCU database by means of the scan system. In particular, the module state and sub-state are updated on change (mode SRBX).

4.1.4 Verification

On the Workstation, invoke the panel appgui.

The fields State, Substate and Mode shall not be shaded (indication for bad data quality, hence scan troubles). They shall indicate LOADED (in Orange), IDLE (in Green) and NORMAL (in Green) resp.

Send the command VERSION.

The Software Device is ready for use, however it might be necessary to tune the configuration of the devices (e.g. motors or signals).

4.1.5 Database configuration

This last section is dedicated to the handling of the database configuration file of the application (app/ws/config/app.dbcfg).

As mentioned above, this file is generated by the utility lsfConfig(1). It contains then the minimum necessary configuration attributes for the software device to startup. After the tuning of the hardware has been completed, i.e. all devices are properly configured and initialize and perform as required, the database shall be saved into the file app/ws/config/app.dbcfg by means of the utility lsfBackup(1).

Example:

> cd app/ws/config

> lsfBackup -e lcuEnv -m app

Generating input file './app.inp' ... done

Performing database backup into 'app.dbcfg' ... done

> cd ../src

> make install

 ...

 . . . installation done

>

<!-- Standard footer -->

<!-- hhmts start -->Last modified: Thu Sep 28 10:32:15 METDST 2000 <!-- hhmts end -->

___oOo___

