
A Giant Planet Imaged in the disk of the Young Star β Pictoris 
 

 

A.-M.~Lagrange
1*

, M. Bonnefoy
1

, G.Chauvin
1

, D. Apai
2 

, D. Ehrenreich
1

, A. 

Boccaletti
3

, D. Gratadour
3

, D. Rouan
3 

, D. Mouillet
1

, S. Lacour
3

, M. Kasper
4 

. 
 

1 

Laboratoire d'Astrophysique, Observatoire de Grenoble,  Université Joseph 

Fourier, CNRS, BP 53, F-38041 Grenoble 
2 

Space Telesope Science Institute, 

3700 San Martin Dr. Baltimore, MD 21218, USA
3 

LESIA, Observatoire de Paris, 

place Jules Janssen, F-92195 Meudon 
4

 ESO, Karl Schwarzschild St, 2, D-

85748 Garching bei Muenchen  

 

* E-mail: anne-marie.lagrange@obs.ujf-grenoble.fr 

 

Here we show that the ~10 Myr β Pictoris system hosts a massive giant planet, β Pictoris b, located 8 to 15 

AU from the star. This result confirms that gas giant planets form rapidly within disks and validates the use  of 

disk structures as fingerprints of embedded planets. Among the few planets already imaged, β Pictoris b is the 

closest to its parent star. Its short period could allow recording the full orbit within 17 years. 

 

 

Gas giant planets form from dusty gas-rich disks that surround young stars through processes that are not 

completely understood. Two general mechanisms of such planets have been identified (1): disk fragmentation 

and accretion of gas onto a solid, typically 5-10 Earth-mass (MEarth) core. Currently, available models do not 

offer a detailed description of all the physical and dynamical steps involved in these processes. The lifetime of 

gas-rich disks limits the availability of nebular gas and, thus, defines the time window in which gas giant 

planets can form. Once formed, giant planets are predicted to interact with the disk and distort it, possibly 

leading to characteristic disk structures that can be used to infer the presence of planets and to constrain their 

orbits. Up to now, most giant planets have been detected around stars orders-of-magnitude older than the 

lifetime of gas-rich circumstellar disks, preventing the validation of models of disk–planet interactions and the 

final phases of giant planet accretion. 

 

The young (~12
+8

-4 Myr), nearby (19.3+/- 0.2 pc), 1.75 solar mass (MSun) star β Pictoris (2, 3) hosts a wide 

(several hundreds of AUs), tenuous edge-on circumstellar dust disk (4). It is composed of dust particles 

continuously replenished through collisions of larger solid bodies (planetesimals, comets), and is referred to as 

a debris disk (5, 6), in contrast to more massive gas-rich counterparts around younger (a few Myr) stars.  This 

disk has been studied in great detail over the past 25 years. Observations at optical to the thermal infrared 

wavelengths revealed multiple disk structures (7, 8, 9), as well as asymmetries in disk size, scale height, and 

surface brightness distributions (10, 11). 

Some of these structures and asymmetries have been theoretically linked to the presence of one or more 

massive planets.  An inner warp in the disk plane (12, 13), in particular, can be reproduced by detailed models 

that include a planetary-mass companion (13, 14). In addition, spectroscopic observations over several years 

revealed sporadic high-velocity infall of ionized gas to the star, attributed to the evaporation of comet-like 

bodies grazing the star [see e.g., (5,15,16)]. The observed comet infall has been attributed to the gravitational 

perturbations by a giant planet within the disk [see e.g., (17), and references there-in]. Taken together, data 

and models suggest that the β Pictoris disk is populated by dust, gas, solid kilometer-sized bodies, and 

possibly planet(s). 

Near-infrared images of β Pictoris obtained in 2003 (18) show a faint (apparent magnitude L‟=11.2 mag), 

point-like source at ~ 8 AU in projected separation from the star, within the North-East side of the dust disk. 

However, these data were not sufficient to determine whether this source was a gravitationally bound 



companion, or an unrelated background star, whose projected position in the plane of the sky happened to be 

close to β Pictoris.  Further observations in January and February 2009 did not detect the companion candidate 

(19, 20), an outcome fully consistent with both the proper motion of β Pictoris with respect to a background 

star or with the orbital motion of a physically bound companion.   

 

Here we present high-contrast and high-spatial resolution near-infrared images obtained in October, 

November, and December 2009 with the European Southern Observatory‟s Very Large Telescope‟s (VLT) 

Adaptive Optics NaCo instrument (21, 22) (see SOM for more details on the observations and data reduction). 

The images obtained in October 2009 (Fig. 1) show a faint point source South-West of the star, with a 

brightness (ΔL‟=L*-L=7.8 +/- 0.3) comparable to that (ΔL‟=L*-L=7.7 +/- 0.3) of the source detected North-

East of β Pictoris in November 2003 (Fig. 1). The source lies at a projected separation of 297.6+/-16.3 mas, 

and at a position angle (PA) of 210.6+/- 3.6 degrees. Within the error bars, the source is located in the plane of 

the disk. To confirm the signal detected SW of β Pictoris in October 2009, we gathered further data in 

November and December 2009. Together, these data confirm the detection made in October 2009 (see SOM). 

 
The images  show that the source detected in November 2003 could not have been a background object (Fig. 

2). Indeed, if background, given the star‟s proper motion (Table S1, SOM), the Nov. 2003 source would be 

located and detectable 5.1 AU away, South-East (PA= 147.5 deg) of β Pictoris in Fall 2009. The data do not 

show such a source (Fig. S2). On the contrary, the source position in Fall 2009 is compatible with the 

projected position in November 2003 if the source is gravitationally bound to the star (see below). 

 
Based on the system age, distance, and on the apparent brightness of the companion, the widely-used Baraffe 

et al. (23) evolutionary models predict a mass of ~9+/-3 Jovian masses (MJup). This value is compatible with 

those derived from other groups [see e.g. (24)] calculations when assuming - as Baraffe et al. (23) – that the 

planets form from the spherical contraction and cooling of a hot, initially non-rotating cloud of gas.  However, 

it is not clear whether the basic assumption of these “hot start” models, i.e. the spherical contraction, applies to 

β Pictoris b or other planets. A leading alternative model (24), recently developed, includes the loss of energy 

of the infalling gas via an accretion shock (core accretion start), resulting in the accretion of cooler gas to the 

forming planet. This “cold start” model predicts luminosities two orders of magnitudes lower than those 

predicted by the “hot start” models at young (~10 Myr) ages for a ~ 10 MJup mass planet. The initial 

difference between the two models decreases after formation; it remains however significant for these massive 

planets even at ages of 100 Myr (factor of 10). The low luminosities predicted by the” cold start” model are 

not easy to reconcile with the brightness of β Pictoris b. This apparent inconsistency suggests that this model 

overestimates the energy lost during the formation of beta Pictoris b. The assumptions underlying the „hot 

start‟ or „cold start‟ models are still a matter of debate, and observations of objects such as β Pictoris b are 

essential to test them. In what follows, we use the mass inferred by the “hot start” model because there are 

lines of evidence that the companion cannot be much more massive (see below). 

 

In order to constrain the orbital parameters of β Pictoris b, we took the projected separation measured in 

November 2003 and computed the expected position of the planet in 2009 (SOM), assuming that it  moves in a 

prograde [following (25)], circular orbit within the disk or close to the plane of the disk. Comparison between 

the expected projected separation in December 2009 and the observed position implies that the planet‟s semi-

major axis is between 8 and 13 AU (Fig. S3). This leads to orbital periods of 17-35 yr for the planet. The 

semi-major axis is less strongly constrained in the case of an eccentric orbit because of the unknown longitude 

of the periastron. However, for the probable case of a moderate eccentricity [e < 0.05 (26)], the semi-major 

axis must be in the range 8-15 AU. These orbital parameters are compatible with the non-detection at L‟-band 

in February 2009 (Fig. 2), given the 4-sigma detection limits at this date which correspond to projected 

separations of 6.5 AU. Thus, β Pictoris b orbits closer to its parent star than Uranus and Neptune do in the 

Solar System. 



 

The planet separation is qualitatively consistent with the observation of belt-like structures in the inner disk at 

6+/- 3 and 16+/-3 AU (7, 8). The separation and mass are fully consistent with those predicted by dynamical 

studies that invoked a planet to reproduce the inner disk warp (13, 14). A more massive (>40 MJup) 

companion at such separations would on the contrary, not be compatible with the warp constraints (SOM). 

 

Finally, it has been suggested (27) that the 2003 candidate planet could have been responsible for a peculiar 

photometric variability event observed in 1981, when transiting in front of the star. The 2009 data are 

compatible with this possibility [see also (19)], however, only for a small range of planet orbital parameters. 
 

The detection of β Pictoris b follows on the recent detections of planets around the intermediate-mass stars HR 

8799 and Fomalhaut (28, 29, and SOM). These stars are also surrounded by debris disks (30, 31). However, β 

Pictoris b orbits closer to its star and is younger than the planets around HR 8799 and Fomalhaut (30-160 and 

100-300 Myr old, respectively, Tables S2A and S2B). Our images of β Pictoris b provide direct evidence that 

massive giant planets can form rapidly, on time scales of a few million years within circumstellar disks (32). 

This is in agreement with studies of the dispersion of primordial disks around young intermediate mass stars, 

which yield typical disk lifetimes of between less than 3 and 6 Myr (16). 

 

A comparison of the luminosity of β Pictoris [8.7 LSun; (3)] to that of the Sun suggests that the orbit of β 

Pictoris b lies at or slightly beyond the disk radius outside which water is stable as ice (snow-line). The 

snowline is thought to separate disk regions where rocky or gaseous/icy planets form (33, 34). Indeed, beyond 

the snowline, the disk surface density is expected to be higher (factor of 3) than that inside the line; this allows 

giant planet cores (10 MEarth) to form before the dispersion of the gaseous nebulae. Core accretion models 

suggest indeed that this latter step – the onset of rapid gas accretion before the loss of circumstellar gas – is the 

critical step in forming giant planets. Assuming a core with a minimum mass of 5-10 MEarth and taking into 

account the snowline properties as a function of stellar mass and age, the model of Kennedy and Kenyon (33) 

determines the snow line position as a function of time, and possible locations of giant protoplanet cores as a 

function of stellar mass. For a 2 MSun star, the snowline location varies between 2.5 and 4 AU for ages 

between 1 and 10 Myr, respectively. In the case of the 1.75 MSun β Pictoris, core-accretion based models 

predict a rapid formation of giant protoplanet cores between ~ 6 and 18 AU. The observed orbital radius of β 

Pictoris b is consistent with this range, demonstrating that the planet could have formed via core accretion on 

the same orbit where it is observed today. This possibility is in contrast to the case of the more distant planets 

Fomalhaut b, HR8799bc, AB Pic b, and 2MASS 1207b, which are too massive (Tables S2A and S2B) to have 

formed at their present separations (40 AU or larger), via core accretion. 
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Figure 1: β Pictoris imaged at L‟-band (3.78 microns) with the VLT/NaCo instrument in November 2003 

(left) and in the fall of 2009 (right). We used images of the comparison star HR2435 to estimate and remove 

the stellar halo (SOM). Similar results are obtained when using  Angular Differential Imaging [SOM].   

 

Figure 2: Expected positions (spiraling red curve), between November 2003 (green circle) and December 

2009, of the source detected in November 2003 if it was a background object with a projected position at this 

epoch close to β Pictoris. We computed these positions using the proper motion of β Pictoris. Epochs of 

interest are indicated by open red circles. 

The measured positions of the detected sources in November 2003 and in Fall 2009 are indicated by 

respectively the green and blue filled circles). The grey filled circle indicates the expected position of the 

planet in February 2009, assuming a semi major axis of 8 AU and a circular orbit. The planet position at less 

than 4 AU from the star, was well below the detection limit of the  February 2009 data. 


