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Pluto and Eris are icy dwarf planets with nearly identical accurately measured sizes, 

comparable densities, and similar surface compositions as revealed by spectroscopic 

studies1,2. Their different albedos3 and current distances from the Sun are likely reasons 

why Pluto possesses an atmosphere whereas Eris does not. Makemake is another icy 

dwarf planet with a similar spectrum to Eris and Pluto4 and is currently at intermediate 

distance to the Sun between the two. Makemake’s size and albedo were known 

approximately5,6, there was no constraint on its density and there were expectations 

that it could have a Pluto-like atmosphere4,7,8. Here we present results from a stellar 

occultation by Makemake on 2011 April 23rd. Our preferred solution that fits the 

occultation chords corresponds to a body with projected axes of 1,430±9 km (1σ) and 

1,502±45 km implying a V-band geometric albedo pV=0.77±0.03. This albedo is larger 

than that of Pluto, but smaller than that of Eris. The star disappearances and 

reappearances were abrupt, showing that Makemake has no global Pluto-like 

atmosphere at an upper limit of 4 to 12 nbar (1σ) for the surface pressure. The 

possibility of a localized atmosphere is investigated, and viable scenarios are 

proposed. A density of 1.7±0.3 g cm-3 is implied by the data. 
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Because stellar occultations allow detecting very tenuous atmospheres and can provide 

accurate sizes as well as albedos9,10,11,3,12, we embarked on a program to predict and observe 

occultations by (136472)  Makemake, also known as 2005 FY9.  The occultation of the faint 

star NOMAD 1181- 0235723 (with magnitude mR=18.22) was predicted in 2010 by following 

similar methods to those recently used to predict occultations by several large bodies13, but 

refined as shown in Supplementary Information, section 1. We arranged a campaign involving 

16 telescopes listed in supplementary table S1. The occultation was successfully recorded 

from 7 telescopes, listed in table 1, at 5 sites.  From the images obtained, photometric 

measurements as a function of time (light curves) were obtained for each instrument.  

The light curves of the occultation are shown in Fig. 1. Fitting synthetic square-well 

models to the light curves yielded the disappearance and reappearance times of the star 

shown in table 1. These times provided chords in the plane of the sky, one chord per site (see 

Supplementary Information, section 3). Because there were no secondary occultations we can 

reject the existence of a satellite larger than ~200 km in diameter in the areas sampled by the 

chords. This comes from the analyses of the light curves, taking account the cycle time 

between the images and the dispersion of the data. The result is consistent with a deep image 

survey that did not find any satellites16. The chords can be fit with two shape models (Fig. 2). 

Our preferred shape that is compatible with our own and other observations (see 

Supplementary Information, section 8) corresponds to an elliptical object with projected axes 

1,430±9 km and 1,502±45 km. By combining this result with visible photometry at various 

phase angles17, it turns out that Makemake has a V-band geometric albedo of pV=0.77±0.03 

(see Supplementary Information, section 4). This considerably high albedo compared to that of 
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the Trans-Neptunian Objects (TNOs) population5 is larger than that of Pluto (pV=0.52)18 but 

smaller than that of Eris (pV=0.96)3.  

Because the object is large enough to be in hydrostatic equilibrium one can use the 

figures of equilibrium formalism as done for Haumea19 to analyze the shape of a body that 

rotates at Makemake’s period of 7.77 hours20,21. The object could only be a tri-axial Jacobi 

ellipsoid for densities in the range 0.66 to 0.86 g cm-3 (e.g. ref. 22). Such low densities are 

unrealistic for a body as large as Makemake (see Fig. S7 of Supplementary Information). 

Thus, Makemake must be an oblate Maclaurin spheroid for plausible densities between 1.4 

and 2.0 g cm-3 (see discussion in Supplementary Information, section 8).  

Thermal measurements indicate that Makemake must have two terrains with very 

different albedos5,6,23, and a diameter of 1,420±60 km (ref. 6) if assumed to be spherical. This 

value is in agreement with, but considerably less precise than the 1,430±9 km value 

determined here under the assumption of spherical shape. One of the terrains in the thermal 

models must be very dark to explain Makemake’s thermal output at 24 µm (ref. 6), which 

requires a warm terrain on the order of ~50 K (see Supplementary Information, section 5). The 

two terrains and the low rotational variability of Makemake20,21,24 can be reconciled if the object 

is rotating nearly pole-on or if the dark terrain is spread uniformly in longitude (a banded 

configuration) or a combination of both. 

Makemake is, a priori, a good candidate to have a fully developed atmosphere4,7,8. Its 

albedo and distance from the Sun lie between those of Pluto (which has a global atmosphere), 

and Eris (which does not, at least presently). Makemake may also have a similar surface 
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composition to Pluto and Eris based on spectroscopic observations4. At the warm ~50 K 

temperatures expected from the two-terrain thermal models, methane vapour pressure is a few 

µbar while nitrogen vapour pressure is around 2 orders of magnitude higher (as illustrated in 

Fig. 32 of a recent work on vapor pressures25). 

However, from our occultation light curves a global Pluto-like atmosphere is ruled out 

because the ingress and egress profiles are abrupt (Fig. 1). To get an upper limit on a global 

atmosphere, one can model its effect on the occultation profiles and compare with the 

observations. The profiles from the NTT telescope imply an upper limit to the surface pressure 

of a putative methane atmosphere of only 4 to 12 nbar at a 1σ confidence level and 20 to 100 

nbar at the 3σ level (see Fig. 3 and Supplementary Information, section 6, for a description of 

the models, which also consider nitrogen).  

To explain the lack of a global atmosphere a possibility is that Makemake might have 

little or no N2 ice, because N2 vapour pressure is well above the μbar level even at the cooler 

terrain. From an update of the results of the models on retention of volatiles8 considering new 

empirical determinations of the vapor pressures of N2 and CH4 (ref. 25), Makemake would not 

have retained N2 if it were smaller than 1,370 km, which we rule out. A density of 1.7 g cm-3, 

smaller than the adopted nominal 1.8 g cm-3 value8, would result in complete N2 loss for a 

body with a 1,430 km diameter. Under this view Makemake would have a density smaller than 

1.7 g cm-3. Considering now that CH4 is abundant on the surface of Makemake, again from the 

volatile retention arguments, its density would be greater than 1.4 g cm-3. Other constraints on 

the density based on the observed shape and the figures of equilibrium are discussed in 

section 8 of the Supplementary Information. Another possibility to explain the lack of a global 
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atmosphere is a nearly pole-on orientation. From a theoretical study7, TNOs with high obliquity 

are less likely to have globally distributed atmospheres. 

The remarkably high albedo of Eris (pv=0.96) is thought to be a result of a collapsed 

atmosphere which coated Eris with bright fresh ices3,26. A fully condensed atmosphere on 

Makemake might have resulted in a similar albedo to that of Eris, which is not the case. If 

Makemake had a local, not global atmosphere, some parts of the surface could be fully 

covered with fresh ice from the collapsed part of the atmosphere and be very bright whereas 

others could not. The overall albedo of Makemake could thus be smaller than that of Eris, but 

larger than that of Pluto. A local atmosphere can also provide a reason for the two terrain 

models needed to explain Makemake’s thermal data.  

Local atmospheres on TNOs are theoretically plausible7. They can be locally confined to 

a subsolar region or a band at the subsolar latitude. One should note that a small drop of only 

10 K in surface temperature implies a decrease of three orders of magnitude in the vapour 

pressure of CH4 and N2 at low temperatures.  

We can investigate whether the presence of a local atmosphere is consistent with our 

data. The bottom of the occultation light curves should be flat in an airless body. Flashes in 

occultations are known to be caused by the focusing effect of an atmosphere when the 

observer passes near the centre of the shadow27.  Thus, the noise level of the light curves at 

their bottoms can put limits on the local atmosphere that can extend to the limbs. Modelling of 

central flashes for plausible local atmospheres shows that an atmosphere with surface 

pressure of the order of several μbar can exist and still be consistent with the data, provided 
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that the atmosphere is confined to specific parts of the limb (see Supplementary Information, 

section 7). 

From the information gathered on Pluto, Eris and now Makemake using stellar 

occultations, we hypothesize that the albedos and other surface properties of the largest TNOs 

are determined by sublimation and condensation processes. In our picture the largest albedos 

would result from fully condensed atmospheres (collapsed onto the surface), whereas medium 

albedo objects would have local atmospheres and the lower albedo objects would have global 

atmospheres from sublimation of the volatiles. Future studies will shed light on this possibility 

and whether sublimation is fully solar driven or is also driven by other mechanisms. The 

airborne SOFIA observatory in combination with large aperture telescopes on the ground can 

be an excellent tool for this kind of studies.  
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Table 1. Details of the successful observations on 2011 April 23. Image sequences were obtained 

with all the telescopes at different image rates and with different dead times as shown in the table. 

All the observations were carried out in the visible, except for the Paranal light curve, which was 

obtained with ISAAC, a near Infrared instrument
14

. The sequences were started typically 20 minutes 

prior to the nominal occultation time, and finished around 20 minutes later. The images were bias 

subtracted and flat-field corrected using calibration frames taken before or after the occultation. 

From the image sequences, fluxes of the combined light source formed by Makemake and the 

blended star were obtained. The fluxes were obtained by means of synthetic circular aperture 

photometry techniques. Also, the fluxes of other stars in the field of view were extracted. We used 

the DAOPHOT package
15

 to extract them. The fluxes as a function of time constitute what we call 

light curves. These were divided by the fluxes of other stars to compensate for transparency 

fluctuations in the terrestrial atmosphere. The resulting light curves were divided by the average 

value of the un-occulted part of the light curve to obtain a normalized flux. The uncertainties in the 

fluxes were obtained from the standard deviation of the data outside the occultation drop. The 

computers that controlled the cameras were all periodically synchronized with UTC time servers, 

except for ULTRACAM at the 3.5m NTT telescope, whose timing was directly synchronized by 

means of a GPS that provided a time accuracy better than 1 ms. We tested the accuracy of the 

timing of the internet-synchronized computers by checking the error logs. The maximum deviations 

of the computer clocks were all below 10 ms. Thus we adopt this value as a conservative estimate 

of the error in the times of the images.  
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Site and 
Telescope 

Pixel 
scale 
(“)  

Integrat
ion 
time (s) 

Filter 
name 

Dead 
time (s) 

Instrument 
name/ 
detector 

Immersion time 
UTC 

Emersion time 
UTC 

Longitude 

Latitude   

Height 

La Silla, 
3.5m NTT 

0.35  0.272 r’ 0.0036 ULTRACAM 
channel r’ 

1:35:44.59±0.07 1:36:43.51±0.08 289°15'58.5''E, 

29°15'31.8''S, 

2345.4 m 

La Silla, 
3.5m NTT 

0.35 0.272 g’ 0.0036 ULTRACAM 
channel g’ 

1:35:44.64±0.04 1:36:43.66±0.07  289°15'58.5''E, 

29°15'31.8''S, 

2345.4 m 

La Silla, 
0.6m 
TRAPPIST 

0.64 5 Clear 1.435 FLI- 
PL3041BB 

1:35:46.82±1.6 1:36:45.47±1.6 289°15'38.2''E, 

29°15'16.6''S, 

2317.7 m 

Paranal, 8m 
VLT 

0.148 1.521 J 0 ISAAC 1:35:46.00±0.35 1:36:49.60±0.35 289°35'50.1''E, 

24°37'30.3''S, 

2635 m 

Armazones, 
0.84m 

0.57 10 Clear 3.5 SBIG-
STL6303E 

1:35:46.30±1.1 1:36:48.52±3 289°48'13.6''E, 

24°35'51.9''S, 

2705.7 m 

S. Pedro de 
Atacama,0.5
m Harlingten 

1.61 5 Clear 1.048 Apogee U42 1:35:37.86±2.7  1:36:43.56±3.1  291°49'13.0''E, 

22°57'12.2''S, 

2305 m 

S. Pedro de 
Atacama 
0.4m ASH2 

1.21 15 Clear 5.966 SBIG-
STL11000 

1:35:38.66 ±4 1:36:41.16±2 291°49'13.0''E, 

22°57'12.2''S, 

2305 m 

Pico Dos 
Dias, 0.6m 
Zeiss 

1.98 5 Clear 3.851 SITe 
SI003AB 

1:33:57.27±1.6 1:35:01.08±2.2 314°25'02.5''E, 

22°32'07.8''S, 

1810 m 
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Fig. 1. Light curves of the Makemake event observed from 7 telescopes on April 

23rd 2011. Note that the brightness drop in the Pico dos Dias light curve happens 

earlier than the rest because the observatory is at a very different longitude on 

Earth than the rest (see map in Fig. S1 of the supplementary information). Also note 

that the Ultracam camera provided two channels of useful data (one in the red and 

the other in the green part of the spectrum). The light curves show the sum of the 

star and Makemake fluxes, arbitrarily normalized to unity outside the occultation. 

The R-band star magnitude is ~18.22 according to the NOMAD catalogue vs. ~17.2 

for Makemake. Therefore, the expected brightness drop was around 0.35 in 

normalized flux, as observed. The error bars are 1σ. The NTT and VLT light curves 

are shown without error bars. The blue lines show square well models that fit the 

observations and from which the occultation chords of Fig. 2 are obtained. Possible 

features in the centre of the occultation light curves are analysed in the 

supplementary information.  

Fig. 2. Occultation chords obtained at 5 different sites plotted in the projected plane 

of the sky. The g axis indicates the North-South direction in the projected plane of 

the sky and the f axis indicates the East-West direction. Units are milliarcseconds 

(mas).  Note that the Paranal and Armazones chords almost overlap. The Paranal, 

Armazones, Pico dos Dias and S. Pedro chords sampled the central part of 

Makemake. The star disappearance takes place in the left part of the plot. The 

chord extremities can be fitted by two different models: a circle of diameter 

38.28±0.22 mas (1σ level) equivalent to 1,430±9 km, with a reduced 



2

 of 1.032. 
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The brown line is the fit to a circle. An ellipse model can also fit the limb of 

Makemake. The ellipse that fits the chords best is the black line. The fit corresponds 

to a minor axis of 1,428±17 km and an axial ratio of 1.15±0.17 with the long axis of 

the ellipse tilted by 9±24 degrees (1σ level) with respect to the local celestial north. 

The reduced 



2

 of the fit is 1.027. The dashed line shows the axes of the best fitting 

ellipse. As discussed in the supplementary information, the best shape is between 

the two models. The distances of Makemake from the Earth and the Sun at the time 

of the occultation were 51.5 AU and 52.21 AU respectively. 

Fig. 3. Observed and synthetic lightcurves. A comparison of two CH4 pure 

atmosphere models with data (ingress and egress profiles) is made here. The data 

(colored points) are plotted versus the distance to Makemake's shadow centre 

assuming a circular limb for simplicity, while the bars are the radius intervals 

corresponding to each integration bin (green: NTT g' points, red: NTT r' points, blue: 

VLT J-band). For better reading, and contrarily to Fig.1, the fluxes have been 

normalized between zero (average value of the flux during the occultation) and unity 

(full stellar flux). The models correspond to a CH4 atmosphere with a surface 

temperature of 30 K, a near-surface temperature gradient of 17 K km-1 followed by 

an isothermal profile with T=100 K for higher altitudes. Solid line: surface pressure 

of Psurf=8 nbar, compatible with the data at 1σ. Dashed-dotted line: model with Psurf 

= 100 nbar (compatible with the data at 3σ). See supplementary information for a 

full description of the models. 
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Fig. 1 
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Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 



20 

 

Fig. 3 

 


