Press Releases 2003

Subscribe to receive news from ESO in your language!
eso0339-en-ie — Science Release
The Colour of the Young Universe
19 December 2003: An international team of astronomers [1] has determined the colour of the Universe when it was very young. While the Universe is now kind of beige, it was much bluer in the distant past , at a time when it was only 2,500 million years old. This is the outcome of an extensive and thorough analysis of more than 300 galaxies seen within a small southern sky area, the so-called Hubble Deep Field South. The main goal of this advanced study was to understand how the stellar content of the Universe was assembled and has changed over time. Dutch astronomer Marijn Franx , a team member from the Leiden Observatory (The Netherlands), explains: "The blue colour of the early Universe is caused by the predominantly blue light from young stars in the galaxies. The redder colour of the Universe today is caused by the relatively larger number of older, redder stars." The team leader, Gregory Rudnick from the Max-Planck Institut für Astrophysics (Garching, Germany) adds: "Since the total amount of light in the Universe in the past was about the same as today and a young blue star emits much more light than an old red star, there must have been significantly fewer stars in the young Universe than there is now. Our new findings imply that the majority of stars in the Universe were formed comparatively late, not so long before our Sun was born, at a moment when the Universe was around 7,000 million years old." These new results are based on unique data collected during more than 100 hours of observations with the ISAAC multi-mode instrument at ESO's Very Large Telescope (VLT), as part of a major research project, the Faint InfraRed Extragalactic Survey (FIRES) . The distances to the galaxies were estimated from their brightness in different optical near-infrared wavelength bands.
Read more
eso0329-en-ie — Science Release
Optical Detection of Anomalous Nitrogen in Comets
12 September 2003: A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles.
Read more
eso0326-en-ie — Science Release
New Insight into the Cosmic Renaissance Epoch
21 August 2003: Using the ESO Very Large Telescope (VLT) , two astronomers from Germany and the UK [2] have discovered some of the most distant galaxies ever seen. They are located about 12,600 million light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to traverse this huge distance. We therefore observe those galaxies as they were at a time when the Universe was very young, less than about 10% of its present age . At this time, the Universe was emerging from a long period known as the "Dark Ages," entering the luminous "Cosmic Renaissance" epoch. Unlike previous studies which resulted in the discovery of a few, widely dispersed galaxies at this early epoch, the present study found at least six remote citizens within a small sky area, less than five per cent the size of the full moon! This allowed understanding the evolution of these galaxies and how they affect the state of the Universe in its youth. In particular, the astronomers conclude on the basis of their unique data that there were considerably fewer luminous galaxies in the Universe at this early stage than 500 million years later. There must therefore be many less luminous galaxies in the region of space that they studied, too faint to be detected in this study. It must be those still unidentified galaxies that emit the majority of the energetic photons needed to ionise the hydrogen in the Universe at that particularly epoch.
Read more
eso0325-en-ie — Science Release
The VLT Measures the Shape of a Type Ia Supernova
6 August 2003: An international team of astronomers [2] has performed new and very detailed observations of a supernova in a distant galaxy with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). They show for the first time that a particular type of supernova, caused by the explosion of a "white dwarf", a dense star with a mass around that of the Sun, is asymmetric during the initial phases of expansion. The significance of this observation is much larger than may seem at a first glance . This particular kind of supernova, designated "Type Ia", plays a very important role in the current attempts to map the Universe. It has for long been assumed that Type Ia supernovae all have the same intrinsic brightness , earning them a nickname as "standard candles." If so, differences in the observed brightness between individual supernovae of this type simply reflect their different distances. This, and the fact that the peak brightness of these supernovae rivals that of their parent galaxy, has allowed to measure distances of even very remote galaxies . Some apparent discrepancies that were recently found have led to the discovery of cosmic acceleration. However, this first clearcut observation of explosion asymmetry in a Type Ia supernova means that the exact brightness of such an object will depend on the angle from which it is seen. Since this angle is unknown for any particular supernova, this obviously introduces an amount of uncertainty into this kind of basic distance measurements in the Universe which must be taken into account in the future. Fortunately, the VLT data also show that if you wait a little - which in observational terms makes it possible to look deeper into the expanding fireball - then it becomes more spherical. Distance determinations of supernovae that are performed at this later stage will therefore be more accurate.
Read more
Showing 1 to 20 of 40