eso0225-en-us — Organisation Release

Four Eyes Are Better

VLT Interferometer Passes Another Technical Hurdle

26 September 2002

During the nights of September 15/16 and 16/17, 2002, preliminary tests were successfully carried out during which the light beams from all four VLT 8.2-m Unit Telescopes (UTs) at the ESO Paranal Observatory were successively combined, two by two, to produce interferometric fringes . This marks a next important step towards the full implementation of the VLT Interferometer (VLTI) that will ultimately provide European astronomers with unequalled opportunities for exciting front-line research projects. It is no simple matter to ensure that the quartet of ANTU, KUEYEN, MELIPAL and YEPUN , each a massive giant with a suite of computer-controlled active mirrors, can work together by sending beams of light towards a common focal point via a complex system of compensating optics. Yet, in the span of only two nights, the four VLT telescopes were successfully "paired" to do exactly this, yielding a first tantalizing glimpse of the future possibilities with this new science machine. While there is still a long way ahead to the routine production of extremely sharp, interferometric images, the present test observations have allowed to demonstrate directly the 2D-resolution capacity of the VLTI by means of multiple measurements of a distant star. Much valuable experience was gained during those two nights and the ESO engineers and scientists are optimistic that the extensive test observations with the numerous components of the VLTI will continue to progress rapidly. Five intense, technical test periods are scheduled during the next six months; some of these with the Mid-Infrared interferometric instrument for the VLTI (MIDI) which will soon be installed at Paranal. Later in 2003, the first of the four moveable VLTI 1.8-m Auxiliary Telescopes (ATs) will be put in place on the top of the mountain; together they will permit regular interferometric observations, also without having to use the large UTs.

Combining the VLT telescopes 

Less than one year after the first combination of two 8.2-m VLT telescopes - described in detail in eso0123 - successful tests have now been carried out, during which all of the four telescopes were combined pairwise in rapid succession .

Of the six combinations possible (ANTU-KUEYEN, ANTU-MELIPAL, ANTU-YEPUN, KUEYEN-MELIPAL, KUEYEN-YEPUN and MELIPAL-YEPUN), only the last one could not be used, because of the current geometrical configuration of the three delay lines installed so far.

The combination of the light beams from two (or more) VLT Unit Telescopes is a daunting task. It involves pointing them simultaneously towards the same celestial object, ensuring optimal optical adjustment of the computer-controlled telescope mirrors (including the shape of the 8.2-m primary mirror by "active optics"), performing extremely smooth and stable tracking of the object as the Earth turns, guiding the light beams via additional ("coudé") mirrors into the "delay lines" installed in the Interferometric Tunnel below the telescope platform, keeping the total path lengths equal to within a fraction of a micron during hours at a time and finally, to register the interferometric fringes at the focal point of the VINCI instrument [1], where the light beams encounter each other.

Next year, the first adaptive optics systems for the VLTI will be inserted below the telescopes. By drastically reducing the smearing effects of the turbulent atmosphere through which the light has to pass before it enters the telescopes, this will further "stabilize" the imaging and increase the sensitivity of the VLTI by a factor of almost 100.

First results with four Unit Telescopes 

At this moment, three delay lines have been installed, but for the present first test, the VLTI engineers and astronomers used the telescopes in pairs, in order to set-up the various equipment configurations properly. In this way, they could also start "teaching" the computer control software to handle this very demanding process as efficiently and user-friendly as possible in the future. With the arrival of the science instrument AMBER in mid-2003, up to three beams can be combined simultaneously.

It turned out that the various predictions of mirror positions and angles were quite accurate and only a moderate amount of time was needed to "obtain fringes" in all different configurations. Measurements were then made on a number of stars, among them the brightest star in the southern constellation Eridanus (The River), known as Alpha Eridani or Achernar, that was observed several times with the different telescope pairings. This star is a hot dwarf (spectral type "B5 IV") that is located at a distance of about 145 light-years. It has also been extensively observed during earlier VLTI tests. It is a very suitable object for the present resolution tests as its angular diameter is only about 0.002 arcsec and it therefore remains unresolved at the near-infrared wavelength of the K-band used (2.2 µm).

In fact, the combination of these data (including also some that were obtained in October 2001) now makes it possible to reconstruct the first interferometric "point-spread function (PSF)" of a star obtained with the VLTI, cf. ESO Press Photo eso0225 . This is like an "interferometric image", except that the disk of this particular star remains unresolved.

The angular resolution is inversely proportional to the aperture of a telescope for single telescope observation, and to the length of the "baseline" between two telescopes for the interferometric observation. However, observing interferometrically with two telescopes will improve the resolution only in the direction parallel to this baseline, while the resolution in the perpendicular direction will remain that of a single telescope. But then the use of other telescope pairs with different baseline orientations "adds" resolution in other directions.

The reconstructed PSF of Achernar shown in ESO Press Photo eso0225 is obviously still very incomplete, due to the technical nature of the present tests and the limited time that was spent observing the star in each configuration. However, it already presents a powerful illustration of the extreme imaging sharpness that will be achieved with the VLTI.

Notes

[1]: The VINCI instrument was built under ESO contract at the Observatoire de Paris (France) and the camera in this instrument was delivered by the Max-Planck-Institute for Extraterrestrial Physics (Garching, Germany). The IR detector and the IRACE detector electronics were supplied by ESO.

Contacts

Andreas Glindemann
ESO
Garching, Germany
Tel: +49-89-3200-6590
Email: aglindem@eso.org

Francesco Paresce
ESO
Garching, Germany
Tel: +4989-3200-6297
Email: fparesce@eso.org

This is a translation of ESO Press Release eso0225.

About the Release

Release No.:eso0225-en-us
Legacy ID:PR 16/02
Name:Interferometry, Very Large Telescope Interferometer
Type:• Unspecified : Technology : Observatory : Telescope
• X - Paranal

Images

The VLT interferometric tunnel with delay lines
The VLT interferometric tunnel with delay lines
First steps towards a 2D interferometric image
First steps towards a 2D interferometric image

Also see our