ESO Phase 3 Data Release Description

Data Collection	GIRAFFE
Release Number	2
Data Provider	ESO, Science Data Quality Group
Document Date	2025-09-24
Document version	2.3
Document Author	Isabelle Percheron, Burkhard Wolff

Abstract

This is the release of reduced 1D spectra from the FLAMES/GIRAFFE¹ spectrograph, taken in the MEDUSA mode. This is the most frequently used multi-object spectroscopy mode of GIRAFFE, as opposed to its two IFU modes. FLAMES is the multi-object, intermediate and high resolution spectrograph of the VLT, having two components: GIRAFFE and UVES. The GIRAFFE spectrograph allows the observation of up to 130 targets in one shot with intermediate resolution.

This release is an open stream release. The data content grows with time as new data are being acquired and processed (with a delay of up to a few weeks). The release covers all GIRAFFE MEDUSA data starting from the begin of operations, 2003-04-13, until now.

The data have been reduced with the GIRAFFE pipeline, version giraf-2.16.3 and higher. The data have their instrument signature removed: they have been de-biased, flat-fielded, extracted, and wavelength-calibrated. Their wavelength scale has been corrected to the heliocentric reference system. The sky has not been subtracted.

The GIRAFFE pipeline extracts spectra from a single exposure. For those OBs² where more than one exposure exists, the individual 1D spectra are stacked in a second step, this data product being the intended output of the observation.

The processing is performed by the Science Data Quality group in an automated process. The pipeline processing uses the archived, closest-in-time, quality-controlled, and certified master calibrations. It is important to note that the reduction process itself is automatic, while the quality assessment and certification of the master calibrations is human-supervised.

The pipeline products come in the ESO 1D standard binary table³, along with a set of ancillary files. The data products cover many different science cases (defined by their parent programmes, in the case of GIRAFFE several hundreds).

The data format follows the ESO 1D spectroscopic standard³ for science data products. Each spectrum is a multi-column binary table. There are N product files for each input science raw file, where N corresponds to the number of science fibres (, i.e., objects). N can be as high as 130 (the number of science or sky fibres in each Medusa fibre system)⁴. If an OB contains M exposures identical in instrument mode and setup, each of the M products from a given fibre is also combined into a stacked data product.

This data release offers science-grade data products, with the instrumental signature removed to a large extent. The spectra come with error estimates and a signal-to-noise column (SNR), and with a list of known shortcomings. They are considered to be ready for scientific analysis. They are expected to be useful for any kind of medium resolution spectroscopic research, including abundance and line profile studies, and radial velocity studies. There has been no attempt to correct for sky

¹ https://archive.eso.org/docurl?GIRAFFE

² OB = Observing block, a single pointing on the sky and the fundamental unit of the VLT observations.

³ http://www.eso.org/sci/observing/phase3/p3sdpstd.pdf

 $^{^4}$ Five more fibres can be used for the simultaneous calibration, so that the total number of fibres is 135.

background. We provide the signal from all SKY fibres but leave it to the user to select the appropriate ones for a given target. See more under 'Data reduction and calibration'.

Disclaimer. Data have been pipeline-processed with the best available calibration data. However, please note that the adopted reduction strategy may not be optimal for the original scientific purpose of the observations, nor for the scientific goal of the archive user.

Release Content

The GIRAFFE release is a stream release. The overall data content is not fixed but grows with time as new data are being acquired and processed. The data are tagged "GIRAFFE" in the ESO archive user interface⁵.

The single-exposure data products are described in Part I, the OB-stacked spectra in Part II.

2

⁵ http://archive.eso.org/wdb/wdb/adp/phase3 spectral/form https://archive.eso.org/scienceportal/home?data collection=GIRAFFE

Part I: Single-exposure data products

Data Selection

Data selection is rule-based. The following rules apply:

- instrument=GIRAFFE;
- observing technique (FITS key DPR.TECH) = MOS, INS.MODE = MED, INS.SLIT.NAME = Medusa1 or Medusa2;
- category (DPR.CATG) = SCIENCE;
- type (DPR.TYPE) = OBJECT,OzPoz or OBJECT,SimCal;
- 'normal', 'slow' and 'fast' read modes supported; however, as non-standard modes, both the 'slow' and the 'fast' read modes frequently have incomplete master calibrations and then could not be processed into data products.

No selection is made on the basis of the observing mode (visitor or service), nor on settings.

Settings. GIRAFFE MOS settings are defined by the combination of INS.SLIT.NAME (*Medusa1* or *Medusa2*) which is actually the fibre system; central wavelength (in nm); and grating name (HR or LR). For some central wavelengths, two different order separation filters are offered for the observations. In those cases the setting is made unique by appending a letter A or B (e.g., H525.8B). In all other cases the setting is marked as L543.1 or H665.0. The setting is stored in the FITS key INS.EXP.MODE.

Input files. Each spectral data product is based on a single input raw file. Stacks from setup-identical raw files from the same OB execution are also available, see the Part II of this release description. We did not combine multiple exposures with different wavelength setups within the same OB. We did not combine multiple OBs.

SimCal vs. OzPoz. For the DPR.TYPE, two different values exist:

- OBJECT,OzPoz: this is the classical GIRAFFE Medusa observation, using the OzPoz fibre positioner on plate 1 (with the fibre system Medusa1) or plate 2 (Medusa2). Both are logically equivalent (one plate is used to configure the next OB while the other one is still observing) but need their own fibre and calibration system and are therefore always distinguished. An OzPoz observation has *always* been processed into a set of products, unless, very rarely, the processing failed or an OzPoz observation has no science fibre configured.
- OBJECT, SimCal: this is also a GIRAFFE Medusa observation taken with OzPoz, with additional simultaneous arclamp calibrations ("SimCal") illuminating the 5 SimCal fibres. The purpose is to provide a reference for incremental shifts against the daytime arc-lamp calibrations. This observing mode is chosen for high-precision radial-velocity studies.

Beyond about 700 nm there are some very strong arc lines which easily saturate and contaminate the signal of neighbour fibres. Therefore many observers have designed their OBs such that they contain multiple exposures, with one or more short SIMCAL observations and one or more longer OZPOZ observations, taken with the same fibre configuration and setting. The short SIMCAL observations are designed to deliver the signal of the SIMCAL lamp (5 fibres) without saturation, but the signal of the science fibres is just noise. These SIMCAL data can be considered as *calibrations*. Unfortunately, they are not formally marked as such but still carry the DPR.CATG value SCIENCE.

Below about 700 nm, there exist many SIMCAL observations with long exposure times, in settings where the SIMCAL emission lines do not saturate. These data are clearly science-type observations, with the SIMCAL fibres adding RV precision.

There are very rarely false suppressions, with a SIMCAL file intended by the PI as science file. This could have happened for a SIMCAL short exposure (less than 120 sec) taken in the settings beyond 700nm. In the few cases which we discovered and checked these were "exotic" observations, like 1 science fibre with lots of sky fibres. These likely are flux or RV standard star observations.

There are very rare cases when an OZPOZ file did not contain a single SCIENCE fibre (only SKY fibres). In that case no product was created.

General processing pattern. We have processed only those Medusa science data for which certified master calibrations exist in the archive. These master calibrations exist normally at daily frequency. All master calibrations used here were certified, meaning checked for quality and proper registration of instrument effects.

In general, the master calibrations were processed with different (earlier) pipeline versions than the science data in this release. The most significant change in the GIRAFFE pipeline was related to the replacement of the old CCD by the new CCD in 2008-05. While data from the old CCD often have a glow induced by a diode, the new CCD does not have this artefact. The old CCD also had two bad columns while the new CCD has no such imperfections. The reduction strategy required the subtraction of a scaled master dark for the old CCD, and the masking of the bad columns with a bad pixel mask. Both calibration steps are not required for the new CCD. See "Master calibrations" below for a discussion of the main differences.

Science data with the OBS.PROG.ID starting with 60. or 060. have been de-selected, considering them as test data. Data taken at daytime (with obviously wrong 'SCIENCE' tag) have been ignored. Otherwise the header tag 'SCIENCE' has been blindly accepted from the raw data (originally defined by the PI), thus including sometimes standard stars intended by the observer for use as calibrators for flux or radial velocity. Please check the OBJECT header key for such cases. It is likely that most of the products with just one science fibre fall into that regime. Also, there are rare cases when test observations were executed under the SCIENCE label. Some very short exposures with no signal fall into that category but have not been suppressed. For a discussion of the science vs calibration property of the SIMCAL data see the above section.

GIRAFFE does not foresee flux calibration for the Medusa mode. The data come extracted and wavelength-calibrated but with no flux calibration.

There is no raw science data selection based on quality. Likewise, we have not selected by OB grades⁶: the observations might have any grade between A and D (if taken in Service Mode, SM), or X (in Visitor Mode, VM). The availability, or non-availability, of a particular file in this release does not infer a claim about the data quality. OB grade and comments are stored in the product FITS header.

Release Notes

Pipeline Description

The data reduction uses the standard GIRAFFE pipeline recipe giscience. Find its description in the FLAMES/GIRAFFE Pipeline User Manual⁷.

Find the pipeline version used for processing in the header of the product file, under "PROCSOFT".

For the recipe parameters, almost any are set to the pipeline defaults. The only exceptions are:

- bsremove-method=PROFILE+CURVE (in order to take into account the structure of the master bias which has some curvature);
- bsremove-yorder=5 (the polynomial coefficient for the curvature fit);
- flat-apply=TRUE;
- the technical parameters required to make a product compliant with the ESO Data Product Standard⁸.

⁶ As given by the observatory staff to assess the match with user-defined constraints, for SM data.

⁷ Under the GIRAFFE pages in http://www.eso.org/sci/software/pipelines/.

⁸ Namely: generate-SDP-format=TRUE (to generate the output format of the spectra)

Furthermore, for those single SIMCAL spectra that qualify for the stacking (see part II), we have added:

• scal-zmax=-1.

This parameter value disables the (very small) simultaneous wavelength correction which might fail in case of saturated spectra. This would be an issue for the stacking, since some of the input files for the stack could have this correction applied, others not (if it failed due to saturation). If the SIMCAL spectrum is the final product, we have used the default value (which enables the little shift).

Find more details in the Pipeline User Manual⁷, section 9.6 (for issue 6).

Information about the GIRAFFE pipeline (including downloads and manual) can be found under the URL http://www.eso.org/sci/software/pipelines/.

Data Reduction and Calibration

Pipeline processing. The main reduction steps are the following:

- The input spectrum is bias-corrected, using a polynomial fit to the provided master bias.
- For data taken earlier than 2008-05 (with the old CCD), the closest-in-time master dark is scaled for exposure time and subtracted. This helps removing the glow in the upper right part of the CCD. The master darks have been taken about monthly and are associated closest-in-time to the science frame. No such correction is needed for data taken after that date (new CCD).
- For the same date range, the bad-pixel mask is applied, to suppress the wrong and meaningless signal in the two bad columns. No such correction is needed for data taken after that date (new CCD).
- Using the localization and fibre-width tables (coming together with the master flat as solution from the gimasterflat recipe), the science spectrum is extracted. We have used the default (SUM) extraction. The optimal extraction has issues with high-frequency oscillations, and would also have required the creation of new master flats.
- The master flat is used to correct for fringing, pixel-to-pixel gain variations and fibre-to-fibre transmission.
- Finally the dispersion solution is used to apply the wavelength calibration, and the resampling to a wavelength grid.
- For SIMCAL data, the provided line-mask is used to cross-correlate with the obtained wavelength solution, in order to derive a residual wavelength drift. The resulting differential shifts are applied to the SIMCAL data and are written into the binary output table of the SIMCAL observation. (But see the remark about scal-zmax in the previous section.)
- The individual spectra have been shifted to the heliocentric RV system. The ancillary 2D products are not RV corrected (since the RV shift has subtle differences from fibre to fibre).

Note:

- In the cases where the observer has chosen to have separate OZPOZ and SIMCAL observations, the shift as derived in the SIMCAL observation(s) has not been applied to the OZPOZ data.
- No SKY subtraction has been applied. Instead, all fibres with a sky signal (as defined by the observer) are collected in the associated MOSSKY file. It is generally not possible for an automatic reduction process to select the appropriate sky signals. Many observers configure their sky fibres across the entire field of view. The user may want to use a mean, a 2D fit, or fine-tuned strategies depending on fibre location. If you need SKY subtraction and want to use the signal registered in the SKY fibres, please keep in mind that you may have to *correct back* the correction to the heliocentric rest frame that has been applied to the science spectrum (header key HELICORR).

Master Calibrations used for data reduction9.

All data products from 2005-06-01 onwards have been reduced using the historical master calibrations, as available in the archive. These master calibrations have been processed close to the time of the data acquisition, to control the quality of the instrument. They have been processed with the respective pipeline version available at that time, which is in general different from the current one used for the science processing. We have carefully checked that the quality of these "historical" master calibrations is comparable to the ones as produced by the current pipeline. More about this in the section "Data quality/master calibrations" below.

The master calibrations from the start of operations (2003-04) until just before 2005-06-01 have been reprocessed using a newer pipeline version. This was done for two reasons:

- in those early years, the processing scheme for GIRAFFE master calibrations was not complete but focussed on Service Mode data only; for Visitor Mode data no master calibrations existed;
- for the Medusa1 fibre system, there was the peculiar effect that the "slit geometry setup" tables, in their versions used for later data, were not listing the fibre #27 which was however giving a signal in the first half year until 2003-08-27. Later that fibre was disabled for poor performance. This situation could not be handled properly by the pipeline and hence only Medusa2 master calibrations were available.

Both deficiencies were considered serious enough to be remedied by a complete (re)processing of the master calibrations. Therefore, the initial set of data products has been reduced using a fully consistent set of master calibrations processed with the same pipeline version.

Wavelength scale. The GIRAFFE Medusa products are wavelength calibrated. The wavelength scale is *heliocentric*. The correction values for the different reference systems are stored in the header (HELICORR, BARYCORR, GEOCORR, in km/s).

Telluric absorption. No correction for telluric absorption lines has been applied. Generally telluric correction is not a major concern for GIRAFFE observations. No dedicated telluric standard star observations exist. Users may want to visit the ESO *skytools* web page¹⁰ for appropriate tools.

Table 1. Set of master calibrations used for data reduction

Type (pro.catg)	Mandatory*/ op- tional	content
MASTER_BIAS	optional	created from 5 raw bias frames; removes bias level and bias structure.
MASTER_DARK	optional (but always provided for data be- fore 2008-04)	created from 3 raw dark frames; removes or reduces diode glow (dark current is negligible).
FF_LOCWIDTH, FF_LOCCENTROID, FF_EXTSPECTRA, FF_EXTERRORS	mandatory	tables derived from flat field (3 input flat frames), with localization information for each fibre, and with extracted signal for pixel-to-pixel gain correction (incl. error)
DISPERSION_ SOLUTION	mandatory	Dispersion table derived from single arc frame
BAD_PIXEL_MAP	Optional (but always provided for data before 2008-04)	Static bad pixel map, corrects for bad columns
LINE_MASK	Optional	Static line mask, required for cross-correlation of SIMCAL data
GRATING_TABLE	mandatory	Static grating table
SLIT_GEOMETRY_ SETUP	mandatory	Static slit geometry table, describing fibre arrangement in the slit (Medusa1: 2003-08-

⁹ Please check Sects. 8 and 9 of the Pipeline User Manual for the description of calibration data.

_

¹⁰ http://www.eso.org/sci/software/pipelines/skytools/

Type (pro.catg)	Mandatory*/ op- tional	content
		28 and later; Medusa2: since start of operations)
SLIT_GEOMETRY	mandatory	Static slit geometry table, used for Medusa1 until 2003-08-27

^{*} Mandatory: if missing, pipeline would fail; optional: not strictly required but always provided for science data products

Bad pixel map. We have used the same bad pixel map throughout the epoch of the old CCD. This is generally a reasonable strategy but we cannot exclude that in certain cases a custom bad pixel map would mask the affected bad columns in a better way. We have marked the potentially affected data products with a quality flag (see below).

Master calibration names and recipe parameters used for reduction. The product header contains a list of all used master calibrations, look for keys "HIERARCH ESO PRO REC1 CAL<n> NAME" and "... CATG", with the index n. The used pipeline parameters and their values are listed as "HIERARCH ESO PRO REC1 PARAM<n> NAME" and "... VALUE".

Products. The final GIRAFFE science data product in the binary spectroscopic data format combines information from the following 2D pipeline products:

- 2D extracted spectrum (de-biassed and if applicable dark-corrected, flat-fielded, extracted, wavelength-calibrated, rebinned): all fibres combined (SCIENCE, SKY, SIMCAL if used).
- Corresponding 2D error file.

The spectra are extracted by the pipeline from the 2D pipeline product, one spectrum per SCIENCE fibre. Each spectrum is a binary FITS table file, with the wavelength values as first column, then the extracted signal for the corresponding fibre, the corresponding error, and the SNR as ratio of the signal and the error (provided for convenience, it does not contain new information).

The following additional files are delivered as ancillary FITS files:

- The entire 2D extracted spectrum is delivered for quality checks.
- If SKY fibres exist, there is an extraction from the 2D file of all SKY fibres, with the product category 'ANCILLARY_MOSSKY'.
- If existing, the attached SIMCAL observations are added (see 'File Structure' below).

Finally, there are overview plots added as ancillary non-FITS files to each product spectrum.

The spectra contain some header keywords that have been added by the pipeline. They are listed in the following table:

Table 2. FITS keywords added by the pipeline

parameter	values	meaning
OB related informa	tion:	
VM_SM	SM or VM	Data taken in Service Mode or Visitor Mode; VM data are less constrained in terms of OB properties; they have no user constraints defined and therefore no OB grades
OB_GRADE	A/B/C/D; X	Immediate grade given by night astronomer, considering ambient conditions checked against user constraints (VM data are formally graded X meaning 'unknown')
OB_COMM <i>n</i>	Free text	Any optional comments added by the night astronomer, together with the <i>approximate</i> UT hh:mm (truncated after 200 characters). The comments are put into <i>n</i> keywords with maximum length of 68 chars for the comment. [Note that OBs might have been executed several times during the night, with or without comments. In those cases the user should always carefully check that the listed comment applies to the data product with the closest <i>previous</i>

parameter	values	meaning
		timestamp.]
QC related informat	ion:	
QCFLAG	e.g. 000000100	QC flag composed of 9 bits, discontinued after June 2025
QC_COMMn	Free text	Automatically added comment if a quality issue is discovered by the processing system (human-provided comments also exist but are very rare): • SCIENCE SIMCAL (a stand-alone SIMCAL observation processed as SCIENCE) • No SKY fibres defined • More than 1000 pixels saturated The comments are put into <i>n</i> keywords with maximum length of 68 chars for the comment.

Rejected or failed processing. The GIRAFFE pipeline evaluates the binary OZPOZ table (FITS extension of the raw file), column TYPE, value M (for "Medusa science"). The TYPE values (could also be S for "sky") are user-defined. Products are created only for fibre type M. If a user has not assigned a science fibre (by mistake or by intent), there will be no product.

If no certified master calibrations exist, no processing can be done. This is a very rare event.

Data Quality

Master calibrations. All used master calibrations have been quality-reviewed and certified at the time of acquisition, as part of the closed QC loop with the Observatory which also includes trending. The set of master calibrations for the initial period 2003-04 until 2005-06 has been completely reprocessed. As part of the certification process there is always a scoring to bring non-compliant behaviour of the calibrations to the attention of the QC scientist. All these cases have been handled as part of the certification procedure. Hence there is reasonable evidence that the master calibrations catch all instrument properties, as relevant for the reduction, correctly and completely.

The most important parameters for the quality of the products are the SNR of the master flats, and the *rms* of the dispersion solution. The SNR of the master flats was always high enough (both for the old and the new CCD) to be dominated by the fixed-pattern (gain) noise, which is important to not compromise the SNR of the science data.

The *rms* of the wavelength dispersion (Figure 1) was slightly higher in the first few years than later, due to a slight degradation of the focus over the years. This effect is entirely instrumental and not due to evolving quality of the pipeline. The red bullets represent data from the reprocessing of early master calibrations (2003-2005) and demonstrate their homogeneous quality despite using different pipeline versions.

SNR. There is a column "SNR" in the spectral product that is calculated from the signal and the corresponding error. It has no independent information but is calculated from the two columns FLUX_REDUCED and ERROR_REDUCED and is provided for convenience. Its mean value across the spectrum is written into the header as key SNR.

SPEC_RES. The resolving power is derived from the arclamp calibrations for the same setting as the science data. The actual resolution of the science data has not been measured directly but very likely is the same as for the arclamp calibration, since all spatial information (position, FWHM of the source due to seeing) is lost due to scrambling within the fibre. The header key SPEC_RES has been filled from a look-up table containing mean values for each setting, derived from the master calibrations. The stability of SPEC_RES is illustrated in Figure 2 for a reference setting. As in the

Figure 1. Performance of the RMS of the dispersion solution for the reference setting Medusa1 H525.8B. This Health Check plot is based on ARCLAMP calibrations taken every 3rd day.

previous figure, red bullets mark the initial 2003-2005 dataset from the reprocessing.

Figure 2. Resolving power measured from ARCLAMP frames for the reference setting Medusa1 H525.8B.

QC flag. This section is valid only for data taken before July 2025.

The header key "QCFLAG" in the GIRAFFE products contains a quality flag. It is composed of nine binary bits which are listed in Table 3. For each bit, the value 0 means "no concern".

The final QC flag is composed of all components. For instance, 000000000 is a pristine product. 010000000 or 100000000 or 110000000 describe products that have been processed with an ARCLAMP calibration product that deviates in ambient temperature, or time, by more than a nominal value (1.5 degrees or 1 day). The motivation for this comes from the temperature sensitivity of the grating which moves slightly in both cross-dispersion and dispersion direction with temperature. These thermal drifts are minimized by the daily calibration plan which foresees these calibrations to be taken right after the science data, in daytime. Occasionally this rule cannot be satisfied, and the score #2 (deltaTime) flags this. This occurs only rarely, and is likely to be uncritical, but in principle the wavelength scale could be less accurate in those cases.

The QC flag 001000000 marks an issue with the number of saturated pixels. In practise, saturated pixels are not intrinsic to the spectrum but arise from cosmics, or sky emission lines. Flag #4 is for process control only. Flag #5 indicates if no SKY fibre is available (or not marked as such by the observer). In practice this happens rarely.

Flag #6, if 0, marks an OZPOZ file that has attached SIMCAL file(s). Although it is very normal for an OZPOZ file to have *no* SIMCAL file attached, it was decided to encode flag #6 in this way since with an attached SIMCAL, the observation can have in principle the highest possible wavelength accuracy. It follows that a value 1 *does not imply any issue with the data*. The value 0 is only possible for an OZPOZ file.

Bit	Content (if YES, value is 0, otherwise 1)	Motivation
#1 -deltaTemp	abs(deltaTemp) below 1.5 degree? (del- taTemp=difference be- tween ambient tempera- ture for science and for arclamp calibration)	increased probability of calibration mis- matches between science and arclamp cal- ibrations (rarely violated)
#2 - deltaTime	abs(deltaTime) below 1 day? (deltaTime=difference between acquisition time of science and arclamp calibration)	usually daytime calibrations come within 0.5 days; if more than a day difference, probability is higher that shifts have occurred for arclamp data (impacts wavelength scale) (rarely violated)
#3 – saturated pixels	number of saturated pixels below 1000?	not critical if due to cosmics; never due to saturation of larger spectral portions
#4 – number of science fibres	≥ 10?	relevant for process control only
#5 – number of sky fibres	≥1	flag cases where no sky fibre is available
#6 – flag for simcal attached	attached SIMCAL file(s) exist(s)?	O is possible for OZPOZ files only; if at- tached SIMCAL file exists, accuracy of wavelength scale can be checked and cor- rected to highest possible level
#7 – OBJECT type	OBJECT,OzPoz?	if yes, that product does not suffer from contamination by SIMCAL fibre signal; if no (value=1), be aware of possible contamination
#8 – bad column flag	product unaffected by bad column (old CCD)?	if no (value=1), be careful with the signal, it could have wrong offsets
#9 – glow flag	product unaffected by CCD glow (old CCD)?	if no (value=1), be careful with the signal; the master_dark could have over/under- corrected the glow

Table 3. QC flags. Flags #1-#7 apply to all products from the same raw file in the same way. Flags #8 and #9 apply to individual fibres (could be 1 for some products and 0 for others), depending on their position on the CCD. These flags have a meaning only for data before 2008-05 (old CCD).

Flag #7, if 0, marks that the file itself is from an OZPOZ observation. The SIMCAL fibre signal in the neighbourhood of emission lines could in principle cause some cross-talk, or even saturation in extreme cases, for the SCIENCE fibres. Therefore a SIMCAL product is always marked by the value 1, to make the user aware of potential issues¹¹. In combination, the flags #6 and #7 can have the values 000000000 (OZPOZ file, with SIMCAL file attached); 000001000 (OZPOZ file, no SIMCAL attached); or 000011000 (SIMCAL science file). Of course all other flags could be 0 or 1.

While flags #1-#7 apply to all products from the same parent raw file in the same way, flags #8 and #9 may vary among them. They are applicable to data from the old CCD. Flag #8 marks products from a fibre that is affected by the bad columns, and flag #9 is for fibres that are affected by the CCD glow.

Science products. The pipeline processing of the science data is done automatically, with some internal quality control, monitoring:

- the quality of the associations of calibration data (checking that the master calibrations used are applicable to the science data);
- flags for the number of saturated pixels, and for potential issues from the data reduction;
- on-demand QC reports and quick-look overviews.

_

 $^{^{11}}$ Therefore some observers have chosen a long OZPOZ exposure and one or more short SIMCAL exposures in the same setting and same OB.

This information has largely been used to improve and fine-tune the reduction process. An individual one-by-one inspection of the products has not been done. The QC reports are delivered along with the spectral products.

Previews. Preview plots are available as quick look. They are delivered as ancillary files along with the products. For observations taken until June 2025, there are two plots:

- 1. the main QC plot (Figure 3), one per dataset (the same for all products from the same raw file);
- 2. the preview plot (Figure 4), one per product.

For observations taken after June 2025, there is one preview plot for each product (Figure 5).

Process quality control. The quality of the data reduction is monitored with quality control (QC) parameters.

QC parameters are used to monitor the reduction quality. The most important check is the "SNR versus signal" control plot (the signal being expressed as the mean across the entire reduced spectrum, and the SNR being the mean over the entire spectral range).

Figure 6 shows data points from the reference setting H665.0 which has been selected because it has a rich selection of products. Only data for the brightest fibre are displayed, to avoid confusion. Two data sets are displayed: one (in red) is for the data from 2014 only, the other (in blue) is for products from 2009-09 on. (From that date on, the pipeline version giraf/2.8 was used for the calibration data processing. Previous versions had a bug with the computation of the error and hence with the SNR.)

Figure 3. Main QC plot for the whole dataset (for data taken before July 2025). Description:

- on top: acquisition date, setup information, run ID; product ID, DPR.TYPE, OB ID, OB name;
- boxes 1 and 2: crosscuts from the raw file;
- box 3: SNR vs. counts for all fibres (SCIENCE in black, SKY in blue, brightest SCIENCE in red);
- box 4: histograms for 2D product; 4a: product file, the histogram focusing on the region around the background, counts are on a logarithmic scale; 4b: histogram for the parent raw file, focusing on the region around saturation, 65000 ADUs;
- boxes 5: spectral overviews; *top*: all available sky spectra plotted in blue; *middle*: signal from *brightest fibre*, in blue the last sky fibre; *bottom*: SNR plot for *brightest fibre*;
- at bottom: a set of QC parameters applicable to the parent raw file and the 2D products, including
 the flag for attached SIMCAL (Y/N), number of fibres (total, science, sky, simcal), spectral coordinates
 in nm, resolving power, deltaTime and deltaTemp values, number of saturated pixels, and SNR of
 brightest spectrum.

Figure 4. Preview plot, one per spectral product, for data taken before July 2025. Description:

- on top: acquisition date, setup information, run ID; product ID, DPR.TYPE, OB ID, OB name, target name;
- panel 1a: all sky fibres (same plot as #5 a) of the previous figure);
- panel 1b: the spectrum, plus the sky signal (last fibre) for comparison;
- panel 1c: the SNR of the spectrum;
- also displayed: the SNR plot for all spectra of the same raw file, with the current one highlighted in red.
- At bottom: a set of QC parameters applicable to this spectrum, including the score bits (QC flag), the
 flag for attached SIMCAL (Y/N), mean flux and SNR, resolving power, deltaTime and deltaTemp
 values, and object properties like FPS (fibre index), object name, and user defined magnitude (if
 available).

Figure 5. Preview plot associated to a single-exposure spectrum (new version). The top plot shows the full extracted spectrum (blue) together with the spectrum of the last sky fibre. Below this plot are the signal-to-noise ratio spectrum and the spectra from all sky fibres. The four smaller plots at the bottom show a cut through the input raw frame, the SNR vs. measured counts for each fibre, a histogram of the SCIENCE_RBNSPECTRA product, and a histogram of the raw frame around the saturation limit.

This figure shows the square-root law expected if the data quality is limited by photon shot noise. Out to SNR values as high as 400 there is no flattening observed, as one might otherwise expect if the SNR is limited by imperfect data reduction, e.g. by imperfect flat-fielding. Another effect is visible in this figure, namely the stability of the reduction scheme and of the instrument. There is no significant difference between the entire dataset displayed in this figure (blue points) and the data from 2014 only (red points).

Figure 6. SNR vs signal. All data points are from the same setting, H665.0, both Medusa fibre systems. Only the signal from the brightest fibre is displayed here. Data points in red refer to the year 2014. The other data points cover the range 2009-09 until 2014.

The highest values for SNR found are in excess of 700 (Figure 7).

Figure 7. All Medusa1, HR data (brightest fibre), data from 2010 until end of 2014. Maximum SNR found is in excess of 700.

Known features and issues

Issues

Old CCD (data acquired until 2008-04), dispersion solution. All care has been applied to process the data with the proper master calibrations. Since visual checks were unaffordable, we cannot entirely exclude that there are minor differential shifts across the fibre dispersion solution. We recommend to inspect the GI_SRBS (ANCILLARY.MOSSPECTRA) file with an image browser. Any sky emission or absorption lines should be perfectly straight across all fibres.

Old CCD, bad columns. The old CCD has two bad columns that cover part of the CCD and affect mostly the signal in fibre FPS24. Depending on the spectral format, the impact may be strong or negligible. A bad pixel table has been used to mask out these two bad columns. But the extent and strength of the artefact (non-linear or negative counts) may have been variable and hence the masking imperfect. We have marked those spectra with the bad column flag #8 (see QC flag in section "Data Quality"). Please check those spectra carefully, their count level might be off (with the shape of spectral features being still correct).

Old CCD, glow correction. With the monthly master darks, the strength of the glow may have been over/under-subtracted occasionally. The affected area is the upper right part of the CCD which translates into a fibre index between approximately FPS109 and FPS124 and affects about the last quarter of the spectrum at most. Such data are marked in the previews and scores, check your preview. If the slope is flat, all is ok. If there is an upwards or downwards slope, the spectrum is affected by the improper glow correction. The glow has low spatial frequencies only, hence neither the shape of spectral lines nor their RV are affected. If a proper slope is important, correcting with a low-frequency fit to the slope is likely to be sufficient. In more severe cases a full reprocessing is required, with appropriate scaling of master dark.

Old CCD, fringing in red setups. The old CCD has a significant fringing in the red settings. The

correction by the flat-fielding is very good, as is visible in Figure 8.

New CCD (since 2008-05). For the period 2011-11-20 until 2011-12-22, and the fibre system Me-

Figure 8. The lower panel (the SNR plot from the spectral preview plot) shows the fringing pattern typical of the red settings observed with the old CCD. The master flat shows exactly the same pattern which then cancels out in the extracted signal (top panel).

dusa1, one fibre (FPS27) was enabled that was never enabled before or after. There is no precise configuration available for the pipeline to process that fibre, and it was decided to not process those datasets into data products. A total of 13 input raw GIRAFFE files is affected. Medusa2 data are not affected by this issue, and their products have been processed.

General (old or new CCD).

SKY spectra to correct back. If you need SKY subtraction and want to use the signal registered in the SKY fibres, please keep in mind that you may have to correct back the correction to the heliocentric rest frame that has been applied to the science spectrum (header key HELICORR).

For cases with no observer-defined SKY fibres, this file contains SIMCAL fibres only and should be ignored. Naturally, for OBJECT,OzPoz files (the typical case) there is no such issue.

Last fibre(s). The pipeline extracts only fibre signals falling entirely onto the chip, meaning out to FPS135 at most. Any signal in incomplete fibres is ignored.

Sky/science type in FPOSS. The type is configured by the observer. The pipeline extracts spectra for fibres assigned type "M" (science), and collects fibres assigned type "S" into the ANCIL-LARY_MOSSKY file. If the observer has confused sky and science in one or more fibres, the pipeline cannot correct for this. See Figure 9 for a possible example.

Possibly wrong OB grades in FITS keywords. If in Service Mode an OB is executed twice (or in general more than once) during the same night, this is typically done because during the first attempt the ambient conditions unexpectedly degraded, resulting in a C grade. A second attempt might have been undertaken, often resulting in a B or A grade. In such case, the grade (as recorded in the OB_GRADE FITS keyword) is always taken from the last execution. This is wrong in the typical case of a grade C-A pair and due to a bug. The grade as retrieved from the nightlog tool NLT is correct. For repetitions in different nights this bug does not appear, and the quoted grades are correct.

Features

Attached flats. Occasionally observers have acquired single flat field exposures during the night, attached to the science template ("attached flats"). These have been taken with the Nasmyth flat screen. Their purpose is very user specific and their quality is lower than that of the daytime flats provided by the calibration plan. Their main purpose is likely quality control, to have localization information very close in time with the science data. They have been ignored for this release. Users interested in these calibrations should query the archive.

Calculated SNR too low before 2009-09-01. Pipeline versions earlier than giraf/2.8 created master flats with an error computation that was too high. This error propagates to the computed

SNR of the products which is too low, by roughly 20-30%. The error does not affect the quality of the data but only the values listed in the ERROR and the SNR columns of the data products. The header key SNR is also affected.

QC preview plots. For fibres with indexes between FPS109 and FPS124 there is the message "Check for residual glow" in the preview plot. By mistake, this note is displayed not only for spectra taken with the old CCD (where it is correct) but also for many spectra taken with the new CCD (where it is a false alert and should be ignored).

Parallel FLAMES/UVES observations. The FLAMES spectroscopic facility on UT2 is able to feed

Figure 9. The upper row in the preview plots displays all sky signals. Occasionally it shows a sky signal with signature from a point source. This might indicate a target confusion.

up to 8 science fibres into the UVES spectrograph, in parallel to the FLAMES/GIRAFFE observations, as part of the same OB and observing field. Those UVES data are not processed and are not part of this data release.

Data Format

File Types

The primary GIRAFFE Echelle product is the extracted fibre spectrum, in binary spectroscopic data format:

product category HIERARCH ESO PRO.CATG and PRODCATG	format	how many?	which fibres	Description
SCIENCE_RBNSPEC_IDP SCIENCE.SPECRUM	binary table, sig- nal plus error plus SNR	1	SCIENCE	main data product; extracted, rebinned, heliocentric scale, identified by FPS in- dex

There are *N* products per parent raw file, if the raw file contains *N* science fibres (marked as type "M" in the OzPoz table attached to the raw file).

Each product has one or more ancillary FITS files delivered with it:

product category HIERARCH ESO PRO CATG and PRODCATG	format	how many?	which fibres	Description
SCIENCE_RBNSPECTRA	2D image,	1	all: SKY,	extracted, rebinned
ANCILLARY.MOSSPECTRA	plus		SCIENCE, SIMCAL	
	FIBRE_SETUP			
	table			
ANCILLARY_MOSSKY	2D image,	1	SKY only (due to a	extracted, rebinned; useful for
ANCILLARY.MOSSPECTRA.SKY	plus	(in rare	bug, it also contains	determination of SKY to be
	FIBRE_SETUP	cases:	the SIMCAL fibres	subtracted from 1D data prod-
		none)	for OBJECT,SimCal	uct

	table; SKY fi- bres ex- tracted for convenience from GI_SRBS		files, until 2015-07- 31). This can be checked in the fibre setup table (see Sect. File size)	
SIMCAL_RBNSPECTRA ANCILLARY.MOSPSECTRA. CALSIM	2D image, plus FIBRE_SETUP table, includ- ing residual shifts WLRES; origin: at- tached expo- sures, same OB	0, 1 or more	all : SKY, [SCIENCE*], SIMCAL	

^{*}Formally, the fibres in this product also have the type 'M' but due to the short exposure time contain only noise.

The list of ancillary FITS files is identical for all products from the same raw file.

Furthermore the following non-FITS files are delivered with each spectrum:

PRODCATG	format	how	Description
		many?	
ANCILLARY.PREVIEW	Gif or PNG file	1	see Figure 3 / Figure 5
ANCILLARY.MOSSPECTRA.	Gif or PNG file	1	see Figure 4; labelled "Spectral overview" (not delivered
PREVIEW			for observations taken after June 2025)

Naming convention until June 2025.

The following naming convention applies to the ORIGFILE product (until June 2025): e.g. the name $GI_SIDP_964735_2013-05-07T01:58:20.737_F122_Med1_H504.8_o11.fits$ has the components:

GI	SIDP	964735	2013-05-	F122	Med1_H504.8_o11.fits
			07T01:58:20.737		
GIRAFFE	product type	OB ID	timestamp of first	fibre with	setup string:
	(S stands for		raw file archival	index	Med1 for Medusa1; H504.8_o11 for central
	science)			FPS122	wavelength and grating order

The ancillary files have the following ORIGFILE names:

Table 4. Naming conventions of ANCILLARY files

Table 4. Nathing conventions of Anvertebrate mes					
type	example	rule			
ANCILLARY.MOSSPECTRA	GI_SRBS_964735_2013-05-07T01:58:20.737_	Same as primary product except for fibre			
	Med1_H504.8_o11.fits	index, name starting with GI_SRBS			
ANCILLARY.MOSSPECTRA.	GI_SSKY_964735_2013-05-07T01:58:20.737_	Same as GI_SRBS, name starting with			
SKY	Med1_H504.8_o11.fits	GI_SSKY			
ANCILLARY.	GI_SSIM_964735_2013-05-	Same as GI_SRBS, starting with GI_SSIM			
MOSSPECTRA.CALSIM	06T23:37:37.133_Med1_H504.8_011.fits				
ANCILLARY.MOSSPECTRA.	r.GIRAF.2013-05-07T01:58:20.737_0005.fits.gif	Technical filename of the GI_SRBS file, with			
PREVIEW		0005.fits.gif appended			
ANCILLARY.PREVIEW	r.GIRAF.2013-05-	same name, plus fibre index			
	07T01:58:20.737_0005.fits_f122.gif	_			

The user may want to read the ORIGFILE header key and rename the archive-delivered FITS files.

Naming convention after June 2025.

The ORIGFILE product name for observation from July 2025 onwards follow a naming convention which is

GIRAFFE_<PRO CATG>_<DATE-OBS>.fits

Using the header keywords HIERACH ESO PRO CATG and DATE-OBS. The value of DATE-OBS can deviate by a millisecond from the time stamp given in the PROV1 header keyword. The preview files follow the same naming convention with the file type 'fits' replaced by 'png'.

File structure

The primary GIRAFFE product SCIENCE_RBNSPEC_ID comes as binary FITS table in multi-column format. The columns are labelled as follows:

Table 5. Internal structure of the GIRAFFE 1D spectra.

column	label	content
#1	WAVE	wavelength in nm, corrected to heliocentric system
#2	FLUX_REDUCED	extracted, wavelength-calibrated but not fluxed SCIENCE signal
		in counts
#3	ERR_REDUCED	Error of FLUX_REDUCED (same units)
#4	SNR	Signal-to-noise ratio = FLUX_REDUCED/ERR_REDUCED

The SNR column is provided for convenience.

The ancillary FITS files (no matter which type) have a 2D image format, with the fibre index as horizontal axis and the heliocentric wavelength as vertical axis. Since the correction from topocentric to heliocentric is slightly different for each fibre (it depends on target coordinates), it is *not* applied to any of the 2D products, but to each 1D spectrum individually. The correction is stored in the product header (as key HELICORR; listed are also the barycentric correction BARYCORR and the geocentric correction GEOCORR). Each 2D ancillary file also has the *fibre setup* table, merged by the pipeline from the two binary raw file tables *ozpoz table* (user-provided FPOSS target parameters) and *fibre table* (technical fibre parameters). Here the user finds information connecting fibre properties and target properties, like the fibre types and indexes, target coordinates, names and estimated magnitudes etc.

fibre type	content	
S	sky fibre	assigned by observer; contained in SCIENCE_RBNSPECTRA and
		ANCILLARY_MOSSKY
M	science	assigned by observer; contained in SCIENCE_RBNSPECTRA and
		SCIENCE_RBNSPEC_IDP
<none></none>	CALSIM	simultaneous calibration fibre

File size

The GIRAFFE science data products have about 0.2 MB size. The ancillary 2D files come with several MB size (depending on number of fibres). Files are always uncompressed.

Part II: OB-stacked data products

Data Selection

The OB-stacked data products are created from single-exposure data products. All selection rules for single data products apply (see Part I). The following additional rules apply for the OB-stacks:

- There must be more than one exposure per OB execution 12.
- Type (DPR TYPE) can be OBJECT,OzPoz or OBJECT,SimCal but not mixed; the frequently used pattern OzPoz | SimCal | OzPoz (with a short SimCal exposure and longer OzPoz exposures) is stacked into OzPoz spectra, with the SimCal exposure ignored.
- Only identical setups are combined.
- Only SCIENCE fibres are stacked (no SKY, no SIMCAL).

We have filtered out those files in an otherwise valid stack that deviate by 40% or more in exposure time from the average value. This cleans up stacks of the type "10|20|20 sec", or stacks with aborted exposures. We have not combined multiple executions of the same OB.

In Table 6 we have collected some typical patterns.

Table 6: Possible OzPoz/SimCal combinations in an OB and their data products

Within the same OB: DPR.TYPE	Single products	Stacked products?
OZPOZ (single exposure)	one product file	No
OZPOZ OZPOZ	N product files	Yes
SIMCAL SIMCAL	N product files	Yes
OZPOZ SIMCAL OZPOZ	two OZPOZ products, with the SIM-	OZPOZ yes
	CAL file attached	

Pipeline Description

The stacking has been done using the High-level Data Reduction Library (HDRL) recipe esotk-spectrum1d-combine. Find the pipeline version used for processing in the header of the product file, under "PROCSOFT". The version for the initial datasets is esotk-0.8.1.

For the stacking we have used the sigma clipping method (--collapse.method=SIGCLIP). Input spectra are normalized to the flux level of the first input file (--rescale-spectra=TRUE), then the clipping is performed, using a kappa value of 7 (--collapse.sigclip.kappa-low=7; --collapse.sigclip.kappa-high=7).

This stacking strategy provides the best results for the relatively small number of input files used by the observers for GIRAFFE stacking (often 2, rarely beyond 4). The main benefits of the stacking are the improved SNR and the suppression of cosmics.

We have applied a filtering rule for those cases where the exposure time of the stack candidates was different. This typically happens when the last exposure in a template is aborted. Accepting such candidates for a stack would result in adding more noise than signal. We have rejected those candidates when they differed by more than 40% from the average exposure times of the input files. Such cases were rare.

There are cases when – despite formally the same exposure time - the signal level in the input files differed strongly, e.g. because of degrading extinction. We have not rejected those cases automatically.

⁻

¹² Strictly speaking we always refer to a single OB execution, with all candidate files having the same OBS.START key. If an OB has been executed several times, no matter whether in sequence or not, it has created several datasets which are not stacked together.

Data Quality

SNR. The stacked products have a column "SNR_REDUCED" that is calculated from the signal "FLUX_REDUCED" and the corresponding error "ERR_REDUCED". Its mean value across the spectrum is written into the header as key SNR. There is also the column "CONTRIB_REDUCED" that lists the number of contributing pixels in every wavelength bin. If lower than the number of input spectra, the signal of one or more input files has been rejected, e.g. because of a cosmic or a noise outlier. The average number of contributing spectra is written into the header of the stacked product as key "QC CONTRIB AVG".

QC flag. (Only valid for data taken until June 2025). Like for the single spectra, the header key "QCFLAG" in the GIRAFFE stack products contains a quality flag. It is composed of nine binary bits inherited from the single spectra (Table 3), and of two added bits, mean_dev and contrib. The value 0 means "no concern". Inheritance of the single spectra bits means that they are set to 0 if they are 0 for all input files, and to 1 if at least one input file has a value 1. The bit mean_dev is based on the mean flux differences of all spectra of the OB stack, since it is reasonable to assume that it is due to extinction variations and hence applicable to all spectra of the OB stack in the same way. The bit contrib is based on the average of the CONTRIB_REDUCED column of the individual stacked spectrum. It is a property of the reduction process and might differ for each spectrum in the OB stack.

Bit	Content (if YES, value is 0,	Motivation
	otherwise 1)	
#1-#9 propagated	d from the bits of the single spe	ectra, as defined in Table 3; set to 0 if they are 0
for all input files, o	otherwise set to 1.	
#10 - mean_dev	Mean deviation of fluxes be-	All input spectra are normalized to the first
	low 20%	one; if they differ too much in their flux levels,
		this might indicate a low-quality stack since
		too much noise has been added.
#11 - contrib	Maximum of 5% of the pix-	Pixels are lost if cosmics outside the 7sigma
	els lost in stacking	range are clipped; higher values might indicate
		an issue with one of the input files, SNR might
		get compromised.

Table 7. QC flags for stacked spectra.

Science products. Like for the single exposures, the pipeline processing of the stacked data is done automatically, with some internal quality control monitoring.

Previews. For observations until June 2025, there are two preview plots, delivered as ancillary files along with the products:

- 1. one main QC plot which is the same for all spectra from the stack (dataset), i.e., the same for all products from the same set of raw files, see Figure 10; this plot is essentially the same as for the single-exposure spectra (Figure 3), except for some added labels: the total exposure time TEXPTIME for the stack (instead of EXPTIME for the single exposure); the number of combined spectra; the maximum deviation between exposure levels, max_dev, for the brightest fibre.
- 2. the preview plot (Figure 11), one per product. It is equivalent to the preview for the single spectra (Figure 4).

Figure 10. Main QC plot for the whole dataset (old version). Description:

- On top: acquisition date, setup information, run ID; product ID, DPR TYPE, OB ID, OB name, and number of combined spectra for the stacks.
- Boxes 1 and 2: crosscuts from the first raw file (#1).
- Box 3: SNR vs. counts for all fibres (SCIENCE in black, SKY in blue, brightest SCIENCE in red), from the first single exposure (#1).
- Box 4: histograms for 2D product of the first single exposure (#1); 4a: product file, the histogram focusing on the region around the background, counts are on a logarithmic scale; 4b: histogram for the first parent raw file, focusing on the region around saturation, 65,000 ADUs.
- Boxes 5: spectral overviews; top: all available sky spectra for the first exposure, plotted in blue; middle: signal from the brightest fibre, first exposure; in blue: the last sky fibre for this exposure; bottom: SNR plot for the brightest fibre, first exposure;
- At bottom: a set of QC parameters applicable to the first raw file and the 2D products, including the flag for attached SIMCAL (Y/N), number of fibres (total, science, sky, simcal), spectral coordinates in nm, resolving power, deltaTime and deltaTemp values, number of saturated pixels, and the maximum deviation between the flux levels of the contributing exposures, for the brightest spectrum.

Figure 11. Preview plot, one per stacked product (old version). Description:

- On top: acquisition date, setup information, run ID; product ID, DPR.TYPE, OB ID, OB name, object name, and number of combined spectra for the stack.
- Panel a: stacked product (black), all *N* input spectra (red), last input spectrum (blue); this to visualize potential flux variations; with no flux variations, only blue or red spikes due to cosmics are visible.
- Panel b: the stacked product, plus the sky signal (last sky fibre) for comparison; sky emission lines
 are marked if any.
- Panel c: the SNR of the stacked spectrum (in black), of all input spectra (in red), and of the last input spectrum (in blue).
- The plot of the column CONTRIB_REDUCED with the number of contributing spectra per wavelength bin.
- Also displayed at right: the SNR of this stacked product (full red dot), the SNR of the first input spectrum (open red circle), and the SNR values for all other fibres of the first exposure of this OB stack, establishing the SNR curve for a single exposure and visualizing the SNR gain of this stack.
- At bottom: Score bits (QC flag), averaged contribution, maximum deviation of flux levels from the mean; other parameters as applicable for all input spectra, see previous Figure 10.

One preview plot is delivered for observations taken after June 2025:

Figure 12. Preview plot associated to a combined spectrum (new version). The top plot shows the full combined spectrum. The plot below shows the input spectra with the highest and lowest flux together with the combined spectrum. Since the combined spectrum is normalised to the first input, it often is superposed to the lowest or highest spectrum. The two smaller plots show the signal-to-noise ratio spectrum and the contribution.

Process quality control. The quality of the data reduction is monitored with quality control (QC) parameters, which are stored in a database.

QC parameters are used to monitor the reduction quality. The most important check is the "SNR versus signal" control plot (both parameters being averages across the entire spectrum). Figure 13 displays this plot for stacked data from 2016 and 2017.

Figure 13. SNR vs. signal for N=2 and N=4 GIRAFFE stacks. 'mean_flux' is the average pseudo flux of a spectrum, SNR its average signal-to-noise. By combining multiple spectra of the same mean_flux, the SNR is expected to increase by a factor sqrt(N). This figure is based on the complete stacked data from 2016 and 2017,

all settings. The N=2 data points refer to the brightest fibre in the OB stack (to avoid crowding). For the N=4 data (which are much rarer) we display all data points.

In Figure 14 and Figure 15 we display the main panels of the spectral preview plots for two examples of N=2 and N=4 stacks. They demonstrate the efficient suppression of cosmics and the improvement of SNR in the stacked products.

Figure 14. Cosmics suppression and SNR improvement for N=2 stacks, from an example preview plot. From top to bottom: a) two single spectra (in red and blue) plus the stacked product; since flux levels differ by less than 2%, the only noticeable differences occur in the spikes (red or blue) due to cosmics; b) the stacked product only, where the cleaning effect of the N=2 pre-processing is visible (no spikes left); c) the SNR plot for the two single spectra (red and blue) plus for the stacked product which is higher by about sqrt(2); the contribution plot has N=2 almost everywhere (contrib=1.97). Finally, the rightmost box shows the SNR vs. signal control plot (all fibres) for one of the input files, and the comparison of the single SNR (open red circle) and the stack SNR (full red circle) for this spectrum.

Figure 15. Cosmics suppression and SNR improvement for N=4 stacks, from an example preview plot. The improvement in SNR is about a factor 2. The cosmics cleaning is provided by the clipping routine. The SNR curve in panel c) reflects the contribution function which oscillates between 2 and 4. With an average contribution of 3.93 it looses less than 2% of the bins in the input spectra.

Known features and issues

Issues.

In rare cases, observers apply small telescope offsets between consecutive exposures in an OB. These offsets can be recognized only by comparison of the raw files belonging to the OB. The information in the OzPoz table (in particular target names and coordinates) is not reliable anymore and should not be trusted. It relies on the assumption that the telescope is NOT moved between individual exposures. Nevertheless, these offsets have been applied by observers to support two different scenarios: a) mapping background nebular emission, or b) getting an accurate sky background in exposure #2 for all stellar signals in exposure #1 by applying an offset by a few arcseconds. When recognized, such OBs have been rejected for stacking, and the products from the single exposures are available.

If data from a stack look suspicious:

- compare the SNR of the stacked product with the SNR of the first single product for a given
 fibre: if the stack SNR is lower than the single SNR, this indicates the stacking of an object
 exposure with a sky exposure, with the sky exposure not marked as such and with tiny
 offsets; use the first ancillary file for scientific analysis instead of the delivered stacked file.
- the mapping pattern can only be recognized from the raw files; in case of concern, compare line profiles in the individual ancillary files; if they look different, check RA and DEC in the raw file headers, to check for potential offsets.

Features.

Pseudo-flux. The "FLUX_REDUCED" scale in the stacked products is not flux-calibrated in physical units, but is in flat-fielded counts per sec. There is no response curve for the MEDUSA mode. This is also true for single exposures.

Ambient parameters. Ambient parameters like airmass and seeing in general have evolved in the OB stack. They are always inherited from the first input file.

SKY spectra. We have not stacked the SKY spectra, for technical reasons. We have not subtracted the sky signal since in general we do not know which one, or which subtraction strategy, is the best suited for a given object. If you need to subtract the sky:

- Stack the 2D sky files (which come with the single spectra), or (better) create a smoothed version.
- If sky subtraction is critical, check also for variability of the sky.
- Select the best (closest) sky fibre (if it contains background) and subtract it from the stacked spectrum.

SIMCAL corrections. The binary tables in the SIMCAL_RBNSPECTRA (PRODCATG: ANCILLARY.MOSPSECTRA. CALSIM) files attached to the stacked spectra have information about the SIMCAL shift.

For those single SIMCAL spectra that qualify for the stacking we have disabled the (very small) simultaneous wavelength correction which might fail in case of saturated spectra. This would be an issue for the stacking, since some of the input files for the stack could have this correction applied, others not (if it failed due to saturation).

Single exposure spectra. The spectra from all single exposures are added as ancillary (ANCIL-LARY.SPECTRUM) files to the stacked spectra. We recommend to download them in order to obtain additional quality information, and also to judge the significance of spectral features if in doubt.

Data Format

File Types

The primary GIRAFFE stack product is the stacked fibre spectrum in binary spectroscopic data format:

product category HIERARCH ESO PRO CATG and PRODCATG	format	how many?	which fibres	Description
SCIENCE_RBNSPEC_STACK SCIENCE.SPECTRUM	binary table, signal, error, contribution, and SNR	1	one SCIENCE	main data product; stacked from <i>N</i> single GIRAFFE spectra of the same OB

There are n products per OB stack, if each of the parent raw file contains n science fibres (marked as type "M" in the OzPoz table attached to the raw files).

Each stack product has several ancillary FITS files delivered with it:

product category HIERARCH ESO PRO CATG and PRODCATG	format	how many?	which fibres	Description
SCIENCE_RBNSPEC_IDP ANCILLARY.SPECTRUM	binary table, signal, error, and SNR	N	One SCIENCE	N corresponds to the number of input spectra for the stack; these spectra have the same format and content as the single-exposure GI_SIDP products
SCIENCE_RBNSPECTRA ANCILLARY.MOSSPECTRA	2D image, plus FIBRE_SETUP table	N	all: SKY, SCI- ENCE, SIMCAL	extracted, rebinned; one for each single exposure
ANCILLARY_MOSSKY ANCILLARY.MOSSPECTRA.SKY	2D image, plus FIBRE_SETUP table; SKY fi- bres extracted for conven- ience from GI_SRBS	N or 0 (in rare cases: none)	SKY only	extracted, rebinned; useful for determination of SKY to be subtracted from 1D data product; one for each single exposure
SIMCAL_RBNSPECTRA ANCILLARY.MOSPSECTRA. CALSIM	2D image, plus FIBRE_SETUP table, includ- ing residual shifts WLRES; origin: at- tached expo- sures, same OB	0, N, or more	all : SKY, [SCIENC E*], SIM- CAL	extracted and rebinned

^{*}Formally, the fibres in this product also have the type 'M' but due to the short exposure time contain only noise.

Furthermore the following non-FITS files are delivered with each spectrum:

PRODCATG	format	how	Description
----------	--------	-----	-------------

		many?	
ANCILLARY.PREVIEW	Gif or	1	see Figure 10, labelled "QC report" / Figure
	PNG file		12
ANCILLARY.	Gif or	1	see Figure 11; labelled "Spectral overview".
MOSSPECTRA.PREVIEW	PNG file		(not delivered for observations taken after
			June 2025)

Naming convention until June 2025.

The following naming convention applies to the ORIGFILE product *(for data until June 2025)*: e.g. the name

GI_SOBS_200413581_2017-01-06T01:23:22.218_F89_Med2_H665._o8.fits has the components:

GI	SOBS	200413 581	2017-01- 06T01:23:22.218	F89	Med2_H665o8.fits
GIRAFFE	product type (SOBS stands for "science OB stacked")	OB ID	timestamp of first raw file	fibre with in- dex FPS89	setup string: Med2 for Medusa2; H665o8 for central wavelength (665.0nm) and grating order (8)

The ancillary files have the following ORIGFILE names:

Table 8. Naming conventions of ANCILLARY files

PRODCATG	example	rule
ANCILLARY.SPECTRUM	GI_SSXP_964735_2013-05- 07T01:58:20.737_F89_ Med1_H504.8_o11.fits	Timestamp from raw file name; other name fields from GI_SOBS file
ANCILLARY.MOSSPECTRA	GI_SRBS_964735_2013-05- 07T01:58:20.737_ Med1_H504.8_o11.fits	Same as corresponding SSXP file except for fibre index; name starting with GI_SRBS
ANCILLARY.MOSSPECTRA. SKY	GI_SSKY_964735_2013-05- 07T01:58:20.737_ Med1_H504.8_o11.fits	Same as GI_SRBS, name starting with GI_SSKY
ANCILLARY. MOSSPECTRA.CALSIM	GI_SSIM_964735_2013-05- 06T23:37:37.133_Med1_H504.8_011.fits	Same as GI_SRBS, starting with GI_SSIM
ANCILLARY.MOSSPECTRA. PREVIEW	r.GIRAF.2013-05- 07T01:58:20.737_tpl.fits.gif	Technical filename of the first GI_SRBS file, with 'tpl.fits.gif' appended
ANCILLARY.PREVIEW	r.GIRAF.2013-05- 07T01:58:20.737_tpl.fits_f122.gif	same name, with fibre index included

The user may want to read the ORIGFILE header key of the archive-delivered FITS file and rename it to the ORIGFILE name.

Naming convention after June 2025.

The ORIGFILE product name for observation from July 2025 onwards follow a naming convention which is

GIRAFFE_<PRO CATG>_<DATE-OBS>.fits

Using the header keywords HIERACH ESO PRO CATG and DATE-OBS. The value of DATE-OBS can deviate by a millisecond from the time stamp given in the PROV1 header keyword. The preview files follow the same naming convention with the file type 'fits' replaced by 'png'.

File Structure

The stacked spectrum SCIENCE_RBNSPEC_STACK comes as binary FITS table in multi-column format. The columns are labelled as follows:

Table 9. Internal structure of the GIRAFFE stacked spectra binary table.

column	label	content
#1	WAVE	wavelength in nm, corrected to heliocentric system
#2	FLUX_REDUCED	extracted, wavelength-calibrated but not fluxed SCIENCE signal
		in counts
#3	ERR_REDUCED	Error of FLUX_REDUCED (same units)
#4	QUAL_REDUCED	Not significant for GIRAFFE stacks (always 0)
#5	CONTRIB_REDUCED	Contribution per WAVE bin (number of actually used input files,
		either N or less)
#6	SNR_REDUCED	Signal-to-noise ratio = FLUX_REDUCED/ERR_REDUCED

Acknowledgement text

All users are kindly reminded to notify Mrs. Grothkopf (esodata at eso.org) upon acceptance or publication of a paper based on ESO data, including bibliographic references (title, authors, journal, volume, year, page-numbers) and the program ID(s) of the data used in the paper.

According to the Data Access Policy for ESO Data held in the ESO Science Archive Facility, all users are thus required to acknowledge the source of the data with an appropriate citation in their publications. Since processed data downloaded from the ESO Archive are assigned a Digital Object Identifier (DOI), the following statement must be included in any publications making use of them: Based on data obtained from the ESO Science Archive Facility with DOI(s): https://doi.eso.org/10.18727/archive/27.