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ABSTRACT

IAC-pop is a code designed to solve the star formation history (SFH) of a complex stellar population system,
like a galaxy, from the analysis of the color–magnitude diagram (CMD). It uses a genetic algorithm to
minimize a χ2 merit function comparing the star distributions in the observed CMD and the CMD of a
synthetic stellar population. A parameterization of the CMDs is used, which is the main input of the code.
In fact, the code can be applied to any problem in which a similar parameterization of an experimental
set of data and models can be made. The method’s internal consistency and robustness against several error
sources, including observational effects, data sampling, and stellar evolution library differences, are tested. It
is found that the best stability of the solution and the best way to estimate errors are obtained by several
runs of IAC-pop with varying the input data parameterization. The routine MinnIAC is used to control this
process. IAC-pop is offered for free use and can be downloaded from the site http://iac-star.iac.es/iac-pop.
The routine MinnIAC is also offered under request, but support cannot be provided for its use. The only
requirement for the use of IAC-pop and MinnIAC is referencing this paper and crediting as indicated in the site.
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1. INTRODUCTION

Galaxies evolve on two main paths: dynamically, including
interaction with external systems, and through the process
of formation, evolution, and death of stars within them. The
latter has the following relevant effects on the galaxy: (1) the
evolution of gas content, (2) the chemical enrichment, and (3)
the formation of the stellar populations with different properties
as the gas from which they form evolves. The star formation
history (SFH) is therefore fundamental to understanding the
galaxy evolution process.

The color–magnitude diagram (CMD) is, in practice, the
best tool to study and derive the SFH of resolved galaxies.
Deep enough CMDs display stars born all over the lifetime
of the galaxy and are indeed fossil records of the SFH. An
approximate, qualitative sketch of the stellar populations present
in a galaxy can be done from a quick look at a good CMD. The
presence of stars in characteristic evolutionary phases indicates
that star formation took place in the system in one or another
epoch of its history. For example, the presence of RR-Lyrae
stars is indicative of an old, low-metallicity stellar population; a
substantial amount of red giant branch (RGB) stars is associated
to an intermediate-age to old star formation activity; a well-
developed red tail of asymptotic giant branch (AGB) stars
shows that intermediate-age to young stars with relatively high
metallicity are present in the system, and even a few blue, bright
stars as well as H ii regions are evidences of a very recent star
formation activity.

A higher degree of sophistication is provided by isochrone
fitting to significant features of the CMD. Indeed, this method
is simple and powerful enough to determine age and metal-
licity of simple stellar populations as the ones present in star
clusters. However, actually deciphering the information con-
tained in a complex CMD and deriving a quantitative, accu-
rate SFH is complicated and requires some relatively sophisti-
cated technique. Although other approaches are possible (see

below), the most extended and probably most powerful tech-
nique is the one based on synthetic CMD analysis. The standard
procedure involves three main ingredients: (1) a CMD ideally
reaching the oldest main-sequence turnoffs; (2) one (or several)
synthetic CMDs, computed assuming a set of input physical
parameters, and (3) a method to derive the SFH from the com-
parison of the star distributions in observational and synthetic
CMDs.

In Aparicio & Gallart (2004), we presented IAC-star, a code
for synthetic CMD computation. In short, the algorithm is in-
tended to be as general as possible and allows a variety of inputs
for the initial mass function (IMF), star formation rate, metal-
licity law, and binarity. Stars with age and metallicity following
a continuous distribution are computed through interpolation
in a stellar evolution library, providing synthetic CMDs with
smooth, realistic stellar distributions.

In this paper, we present an algorithm corresponding to ingre-
dient (3), i.e., designed for deriving the SFH from the compari-
son of observed and synthetic CMDs. Several approaches have
been used in the past. Indeed, interest in the process of forma-
tion of stellar populations is not new. The early works by Baade
(1944) can be considered a starting point. However, the amount
of information and results have been largely increased in the last
few decades and it is only since relatively recently that we have
been able to speak properly about quantitative determinations
of complex SFHs. Tosi et al. (1991) used a method based on the
comparison of luminosity functions of observed and synthetic
CMDs. They were the first to sketch SFHs of nearby galax-
ies using synthetic CMDs. Bertelli et al. (1992) introduced the
R-method, the first to make use of the global morphology and
number counts of the distribution of stars in synthetic and ob-
served CMDs to derive the SFH of a galaxy (the LMC). Gallart
et al. (1996) used an extended, more complete version of the
R-method to study the SFH of the Local Group galaxy NGC
6822. Tolstoy & Saha (1996) used maximum likelihood to find
out the synthetic CMD, of a set of them, best reproducing the
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observed one. Vergely et al. (2002) presented an inverse method
to interpret the CMD in terms of the SFH.

Aparicio et al. (1997) introduced a new approach in which
the SFH is derived by linear combination of several simple
populations. This method allows a SFH derivation free from
initial assumptions about it and has the important advantage
of requiring only a single synthetic CMD. The same idea was
independently introduced by Dolphin (1997) and also has been
applied by Holtzman et al. (1999), who, for the first time,
derived the star formation rate (SFR) as a function of time
and chemical enrichment law (CEL) simultaneously, making no
assumptions about the CEL morphology, by Olsen (1999), by
Harris & Zaritsky (2001), and by Rizzi et al. (2003) and has
been used in several works of the former authors (e.g., Gallart
et al. 1999; Aparicio et al. 2000, 2001; Holtzman et al. 2000;
Dolphin 2000a, 2000b; Wyder 2001; Sabbi et al. 2007; Chiosi
& Vallenari 2007; see Aparicio 2002 for a review).

The former methods do in general include some kind of pa-
rameterization of the CMD. In this short historical overview, we
must also mention the contribution by Hernández et al. (1999) as
an alternative, nonparametric method for the derivation of SFH
of galaxies which make direct use of the information contained
in a stellar evolution library and it is not based on synthetic
CMDs.

The code we present here is based on the same principle
as that used by Aparicio et al. (1997) but makes use of a
genetic algorithm (pikaia; Charbonneau 1995) for the solution
convergence. Applied in the most general way it derives the SFR
as a function of both time and metallicity or, from a different
point of view, the SFR and the CEL as a function of time of a
system from the comparison of its CMD star distribution with
the star distribution in a single template synthetic CMD.

The code is made available for free use. It can be downloaded
from the Internet site http://iac-star.iac.es/iac-pop with the only
requirement of referencing this paper and crediting as indicated
in that site. It is worth mentioning that the code is not restricted
to the SFH solution only, but to any problem that can be
parameterized in a similar way. The present paper should
be considered as the reference for the code. This paper is a
complement of our previous one presenting IAC-star, the code
for synthetic CMD computation (Aparicio & Gallart 2004).

This paper is organized as follows. In Section 2, the method is
presented. In Sections 3–6, the IAC-pop code self-consistency,
error sources, and reliability of solutions are discussed under
different input assumptions. In Section 7, a brief “manual” for
IAC-pop execution is given. Finally, in Section 8 some final
remarks are made and the main conclusions are summarized.

2. IAC-pop: A METHOD TO SOLVE THE STAR
FORMATION HISTORY

2.1. Basic Definitions

The SFH is composed by several pieces of information. The
rate at which stars form as a function of time (SFR) and the
metallicity distribution of those stars, also a function of time
(CEL), are the most important characteristics. The IMF and
the binarity of stars are also related to the SFH (see Aparicio
2002). For simplicity we will adopt here the following approach:
considering that time and metallicity are the most important
variables in the problem, we define the SFH as a function ψ(t, z)
such that ψ(t, z)dtdz is the number of stars formed at time t ′
in the interval t < t ′ � t + dt and with metallicity z′ in the
interval z < z′ � z + dz, per unit time and metallicity. ψ(t, z) is

a distribution function and can be identified with the usual SFR,
but as a function of both time and metallicity.

There are several other functions and parameters related to the
SFH that we will consider here as auxiliary. The aforementioned
IMF, φ(m), and a function accounting for the frequency and
relative mass distribution of binary stars, β(f, q), are the
main ones. The solution found for the SFH depends on the
assumptions made for φ(m) and β(f, q). In the most general
case, they should be free and solved together with the SFH.
In practice, the amount of available information may not be
sufficient to attempt such an assumption-free solution, but, in
any case, several choices of both φ(t) and β(f, q) should be
tried.

Other parameters affecting the solution of ψ(t, z) are dis-
tance and reddening, including differential reddening. But the
strongest limitation on the observational information is pro-
duced by the observational effects. These include all the factors
affecting and distorting the observational material, namely, the
signal-to-noise limitations, the defects of the detector, and the
crowding and blending between stars. The consequences are loss
of stars, changes in measured stellar colors and magnitudes, and
external errors larger and more difficult to control than internal
ones. A comparison of Figures 2 and 12 shows the distortion
introduced by observational effects (see below). It must be kept
in mind that IAC-pop does not account for the observational
effects that must be considered and simulated in advance by the
user into the synthetic CMDs.

In the following, we will concentrate in the determination of
ψ(t, z) on the understanding that all the remaining functions and
parameters are externally checked and that proper assumptions
are made for them.

2.2. The IAC-pop Methodology in Short

The procedure used by IAC-pop is based on the one intro-
duced independently by Aparicio et al. (1997) and Dolphin
(1997). Its fundamentals have been adopted and extended by
several groups since then (see Section 1). The method is based
on the following steps.

1. The synthetic CMD computation code IAC-star or any other
code intended for the same purpose is used to generate
a single global synthetic stellar population with a large
number of stars with ages and metallicities following
some convenient distribution over the full interval of
variation of ψ(t, z) in time and metallicity. The simplest
case is using a constant distribution, but other approaches
would be convenient in order to better sample some age
or metallicity intervals. Observational effects (crowding,
blending, external errors, etc.) should be simulated in the
synthetic CMD.

2. The former synthetic stars are distributed in an array of
partial or simple models (see Figure 3). Each contains
the stars within small intervals of age and metallicity.
They constitute a set of n × m models with no star
in common between any two of them. Arbitrary stellar
populations can be obtained by linear combinations with
non-negative coefficients of the simple models of this set.
These properties are similar to those of a base of a vectorial
space. However, the simple model set cannot be defined as
such because of their statistical nature and because of the
fact that coefficients cannot be negative.

3. A set of boxes is defined in the CMD. In practice, several
approaches are possible, including uniform and a la carte

http://iac-star.iac.es/iac-pop
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grids. A uniform grid is more objective and less dependent
on human criteria. An a la carte grid takes advantage of our
knowledge of stellar evolution and allows different sam-
pling of well- and poorly known stellar evolution phases.
The approach we use here is a bit more sophisticated and
takes advantage of the strengths of the two aforementioned
approaches. Several regions, which we will call bundles,
are defined in the CMD. Each of them is sampled by a uni-
form grid, but the grid bin size can be different from one
bundle to another (see Figure 4).

4. An array, M
j

i , containing the number of stars from partial
model i populating the CMD box j is computed. The same
operation is made in the observational CMD, producing a
vector, Oj, containing the number of observed stars in the
box j. This step defines the parameterization of the CMD.

5. With the former information, the distribution of stars in the
CMD boxes can be calculated for any model SFH as a linear
combination of the M

j

i values:

Mj = A
∑

i

αiM
j

i . (1)

It should be noted that αi � 0. A is a scaling constant.
6. The SFH best matching the distribution, Oj, of the ob-

servational CMD can be found using a merit function. In
particular, Mighell’s χ2

γ (Mighell 1999) is used:

χ2
γ =

∑
j

(Oj + min(Oj, 1) − Mj )2

Oj + 1
. (2)

We will use χ2
ν = χ2

γ /ν, where ν is the number of freedom
degrees. In our case ν = k− (n×m), where k is the number
of boxes defined in the CMD.

Minimization of χ2
ν provides the best solution as a set of

αi values as well as a test on whether it is good enough.
IAC-pop makes use of a genetic algorithm for an efficient
searching of the χ2

ν minimum. Such a procedure is required
because of the large number of the problem dimensions
(n × m).

7. The solution SFH can be written as

ψ(t, z) = A
∑

i

αiψi, (3)

where ψi refers to partial model i, with i taking values from
1 to n × m, and A is a scaling constant.

3. RUNNING IAC-pop

We have made several tests to check IAC-pop efficiency, self-
consistency, solution stability, and whether it can deal with real
astrophysical data. To this purpose, a synthetic stellar population
has been generated with IAC-star from some arbitrary SFH. We
will call this the mock population and denote the corresponding
CMD as mCMD. The mock population is solved as if it were
real data and the solution is compared with its input SFH. The
IAC-star input parameters used to compute the mock population
were as follows. The Teramo-BaSTI stellar evolution library
(see Pietrinferni et al. 2004) and the Castelli & Kurucz (2003)
bolometric correction library were used. The number of stars
in the mCMD was 105. The star formation ranges from 14
Gyr ago to date with a constant SFR, ψ(t), for that period. The
metallicity increases with time, with initial and final metallicities
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Figure 1. SFH ψ(t, z) of the mock population. Age and metallicity are given
in the horizontal axis. The volume below the curved surface and over the age–
metallicity plane gives the mass that has been ever transformed into stars within
the considered age–metallicity interval. The monodimensional ψ(t) and ψ(z) are
shown on the ψ–age plane (red in the online version) and on the ψ–metallicity
plane (blue in the online version), respectively.

(A color version of this figure is available in the online journal.)
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Figure 2. CMD of the mock population (mCMD). Gray levels show the density
of stars. A factor of 2 in density exists between each two successive gray levels.
The single dots are shown where the density is less than 8 stars per (0.1)2 mag.
Gray levels start respectively at 8, 16, 32, 64, 128, 256, 512, 1024, and 2048
stars per (0.1)2 mag interval.

z0 = 0.0001 and zf = 0.008 and some metallicity dispersion at
each time (see Figure 1). Finally, no binary stars were considered
and the IMF by Kroupa et al. (1993) was used. The integral of
ψ(t, z) (i.e., the total mass ever transformed into stars) for this
system is ΨT = 2.02 × 106 M�.

The SFH ψ(t, z) of the mock population is shown in Fig-
ure 1. The volume below the curved surface and over the
age–metallicity plane gives the mass that has been ever trans-
formed into stars within any considered age–metallicity inter-
val. The SFRs as a function of time only, ψ(t), and of metal-
licity only, ψ(z), are also shown. The mCMD is shown in
Figure 2.

According to Section 2.2, item (1), a global synthetic popu-
lation has been computed as the starting point for the solution
searching. We will call its CMD, sCMD. Binary stars, IMF, and
stellar evolution and bolometric correction libraries used are the
same as for the mock population. A constant SFR, ψ(t, z), was
used for the full age (from 0 to 14 Gyr) and metallicity (from
0.0001 to 0.008) ranges. The sCMD contains 3 × 107 stars. The
SFH of this population is shown in Figure 3. Age and metallicity
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Figure 3. SFH of the global synthetic population associated with sCMD. The
caption is the same as in Figure 1. The bars show the simple populations in
which the global one has been divided for the analysis of the problem. See the
text for details.

(A color version of this figure is available in the online journal.)
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Figure 4. CMD of the global synthetic stellar population (sCMD). Gray levels
show the density of stars as in Figure 2. Bundles (red in the online version) and
one of the used box distributions (blue in the online version) are shown.

(A color version of this figure is available in the online journal.)

have been divided into 14 and 16 intervals, respectively. These
intervals define one of the simple population sets that have been
used for the solution searching, as mentioned in Section 2.2,
item (2). The sCMD is shown in Figure 4.

As mentioned in Section 2.2, item (3), several bundles have
been defined onto the mCMD and the sCMD. Each one has
been sampled by grids of different box sizes, which depend on
the CMD region or bundle. Grids are thinner in regions where
age and metallicity resolution are better, like the main sequence
(MS), and coarser in regions in which the distribution of stars
strongly depends on poorly known parameters, like the RGB
or the horizontal branch (HB). The number of boxes in a grid
ranges from one to several hundreds depending on the CMD
region. Figure 4 shows the bundles and one of the used box
distributions, overplotted on the sCMD.

The particular box distribution used and the division of the
global synthetic population in several simple populations as a
function of which the solution is searched may introduce some
bias and binning effects on such solution. In order to minimize
them, several sets of grids and simple populations have been
used. Each one is defined by shifting the set with respect to the
initial one. In particular, in our case, bundles were fixed, and a
total of three grid sets and 40 partial model sets were used and
a solution computed for each one. The average of all of them is
adopted as the final solution. Our many tests have disclosed that
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Figure 5. Solution of ψ(t, z) obtained for the mock population. No observational
errors have been simulated. It is the average of 120 single solutions found using
the several solutions procedure described in the text. The caption is the same
as in Figure 1. Projection of the solution onto the ψ(t)–age and ψ(z)–Z planes,
obtained as integration of ψ(t, z) over metallicity and time, respectively, are
also shown. The monodimensional input ψ(t) and ψ(z) are shown by solid lines
(see Figure 1). Error bars have been obtained applying the several solutions
procedure.

(A color version of this figure is available in the online journal.)
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Figure 6. The CMD corresponding to the SFH shown in Figure 5 (to be
compared with the mCMD shown in Figure 2).

this procedure provides very stable solutions and the best way
to estimate errors (see Section 4).

A set of routines called MinnIAC is used to control the full
computation process. The MinnIAC input consists of a set of
parameters that define (1) the bundles to be used in the CMDs;
(2) the grid size in each bundle; (3) the number of different
grids to be used and the shifts to be applied to define them;
(4) the division of the global synthetic population into simple
populations; (5) the number of different input sets of simple
populations and the shifts to be applied to define them. For each
set, MinnIAC counts stars in the grids of the observational and
simple population’s CMDs and generates an input parameter
file for IAC-pop. Once all the solutions have been obtained,
MinnIAC averages them and computes errors for each age and
metallicity interval as the root mean square of the solutions.
MinnIAC will be provided under request but should be used at
user’s risk, since no support can be provided by the authors at
this moment.

Figure 5 shows the ψ(t, z) solution for the mock population
given in Figure 1. Comparison between input and solution is
simpler for the monodimensional ψ(t) and ψ(z) functions, also
shown in Figure 5. Agreement is good, being the differences
between input and solution within the error bars (see the dis-
cussion of error computation in the next section). As a further
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ν as a function of the number of IAC-pop genetic generations. The

latter is proportional to the computing time. The dashed and solid lines show
χ2

ν for two different selections of input values of genes, size of the population,
and mutation rate, which are internal parameters of the genetic algorithm.

visual test, Figure 6 shows the CMD corresponding to the so-
lution shown in Figure 5. It is to be compared with the input
mCMD shown in Figure 2.

As mentioned, IAC-pop uses a genetic algorithm to look
for the set of positive or null αi parameters minimizing
the χ2

ν function given in Section 2.2, item (6). The conver-
gence velocity depends on the choice of input parameters for
the genetic code (see Charbonneau 1995). Figure 7 shows the
evolution of χ2

ν as a function of generation for our test case. The
dashed and solid lines show the χ2

ν for two different selections
of input values of genes, number of individuals, and mutation
rate of IAC-pop. Both inputs get almost the same χ2

ν if the num-
ber of generations is large enough. In other words, changes in
the genetic input values do not affect the final solution if the
number of generations is large, but computation time, which is
proportional to the number of generations, may be large if the
parameter choice is not good.

4. ERROR SOURCES

Providing reliable error estimates is fundamental for the
solution’s meaningfulness. In principle, we can identify three
kinds of error sources in the problem of retrieving the SFH
from a CMD. The first one is that of internal errors, inherent to
the numerical problem or related to the parameterization, i.e.,
the way in which bundles, grids, and also partial models are
selected. The second one is that associated with observational
effects (crowding, blending, etc.). They blur the CMD, distorting
the information provided by it. Observational effects must be
simulated in the global synthetic CMD before parameterizing
it. Also, any estimate of errors of the first kind will include the
observational effects. Finally, an additional uncertainty source is
related to our limited knowledge of stellar evolution theory. It is
difficult to test this, but using different stellar evolution libraries
will produce somewhat different solutions for the same input
observational data. Differences between these solutions provide
a representation of this kind of uncertainty. In the following, we
will discuss each of the former kinds of error sources.

4.1. Errors of the Solution

Calculating the internal error of the best solution for the SFH
is not straightforward. The χ2 test allows computing 1σ errors
of the solution parameters (see Bevington & Robinson 2003;
Arndt & MacGregor 1966). But this works only for Gaussian
random variables. The fact that the SFH problem can depart
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Figure 8. The projection onto the ψ(t)–age of the solution for the SFH given
in Figure 5 is shown. The horizontal line corresponds to the input ψ(t). Thick
error bars have been obtained applying the several solutions procedure described
in the text. In this case, 24 solutions have been used. Thin (red in the online
version of the paper) error bars result from the Poisson statistics formal error
computation. See the text for details.

(A color version of this figure is available in the online journal.)

significantly from Gaussian makes this approach unuseful for
our purposes, as we have checked in several examples not shown
here for brevity.

Errors related to the data sampling can be calculated assuming
that the number of stars in each CMD box behaves according
to a Poisson statistics. We will call this the Poisson statistics
criterion. Errors are computed as follows. Once the best solution
has been found, the input observational data, i.e., the number
of stars in each grid box, are randomly modified according to
a Poisson statistics. The best solution for the new data set is
computed. This procedure is repeated several times, providing
a set of solutions, the average of which is expected to be similar
to the best original one. Also, if nr such solutions have been
obtained and solution r is given by the set αr,i , then

σαi
=

(∑
r (αr,i − αi)2

nr − 1

)1/2

(4)

can be used as an estimate of the errors affecting αi arising from
data sampling. These errors are provided by IAC-pop. Upward
and downward error bars can be obtained using only the subsets
αr,i � αi and αr,i � αi , respectively, and are also provided by
IAC-pop.

The former criterion does not include all error sources and
it will likely produce error underestimates. In particular, it
does not take into account the effects introduced by the CMD
parameterization through bundles and grids nor those related to
the division of the global synthetic CMD into partial models. A
simple way to evaluate these errors is using the dispersion of the
120 solutions computed and explained in Section 3. This is the
procedure used in this paper. We will see below that it is a good
estimate of all the internal error sources. For brevity, we will
call this the several solutions criterion. The error bars shown
in all the figures have been calculated in this way. It is time
consuming, but we think it is necessary if a stable solution and
a realistic estimate of errors are sought. The routine MinnIAC
delivers the errors computed in this way (see Section 3).

Figure 8 shows the input and solution ψ(t) together with
the error obtained by the several solutions (thick, black error
bars) and the Poisson statistics (thin, red error bars) criteria.
That the latter are underestimates of total errors should be
clear from the fact that in 12 out of 14 intervals differences
between solution and input are larger than the error bars and,
in several cases, much larger than three times that. However,
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Figure 9. ε parameter is represented as a function of age interval order
number, after sorting by increasing values of ε. The parameter is defined as
εi = |ψout

i (t) − ψ in
i (t)|/σi where i stands for the age interval and ψout

i (t) and
ψ in

i (t) refer to the output (or solution) and input values of ψ(t), respectively.
In other words, ε parameters are the absolute values of the differences between
solution and input measured in units of the corresponding σ values. The thick
squares show the values of the solution given in Figures 5 and 8. The thin
circles and the line connecting them show the behavior of a normalized Gaussian
random variable. 105 experiments in which 14 values are randomly selected have
been done to obtain this. The circles show the averages of the 105 experiments
and error bars give their rms dispersions.

this does not seem to be the case for the errors computed by
the several solutions criterion. To test if the errors obtained in
this way are similar to what should be expected in a Gaussian
case the following test has been done. For each age interval, the
parameter εi = |ψout

i (t) −ψ in
i (t)|/σi has been computed, where

i stands for the age interval, σi is the rms of the solutions,
and ψout

i (t) and ψ in
i (t) refer to the output (or solution) and

input values of ψ(t), respectively. In other words, ε parameters
are the absolute values of the differences between solution and
input measured in units of the corresponding σ values. The ε
parameters have been sorted and plotted in Figure 9 together
with the values of a standard Gaussian random variable. For the
latter, 105 experiments have been done. For each one, 14 values
have been randomly given to the random variable and then sorted
from smaller to larger. The values represented in Figure 9 (open
circles) are the averages for the 105 experiments while the errors
bars show the corresponding rms dispersions. It can be seen
that a reasonable agreement exists between our results and the
Gaussian case, indicating that the several solutions approach
produces reliable estimates of total internal errors.

4.2. Including Observational Effects

Observational effects include limited signal-to-noise, incom-
pleteness, source blending, image read-out noise as well as not
fully removed artifacts in the data reduction process (flat-field
correction, etc.). All together, their effects on the CMD are the
loss of stars and dispersion and shift of points, all depending on
magnitude and color.

The best way to test how all these effects influence the SFH
solution is working with synthetic CMDs, in which they have
been simulated. For our particular purpose we have introduced
random rejection and Gaussian dispersion of points, both de-
pending on magnitude, in the mCMD and the sCMD. This ap-
proach is enough for this test although a more realistic simula-
tion of observational effects should be used in real cases (see
Hidalgo et al. 2009). For rejection, we have used the complete-
ness curve obtained for the CMD of the Phoenix dwarf galaxy
(Hidalgo et al. 2009) and displayed in Figure 10. This curve
shows the probability that a star of magnitude I is conserved
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Figure 10. Function used to simulate incompleteness in mCMD and sCMD.
The fraction of remaining stars (ΛI ) is given as a function of I. Values 1 and 0
mean that all or none stars remain, respectively.
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Figure 11. Shifts applied to the magnitudes in the mCMD and sCMD to simulate
data dispersion.

0 1 2 3

0

2

4

M
I

Figure 12. CMD of the mock population after simulating observational errors
in it. The figure legends are the same as in Figure 2.

in mCMD or sCMD. A shift in δV and δI magnitudes is then
applied to conserved stars. δV and δI are decided stochasti-
cally according to Gaussian distributions of σV and σI which
are functions of V and I, respectively, and have been estimated
using the CMD of the Phoenix dwarf galaxy (Hidalgo et al.
2009). Figure 11 shows the δV and δI actually used. Figure 12
shows mCMD after simulation of the observational effects.

Figure 13 shows the solution after simulating observational
effects in mCMD and sCMD. Figure 14 shows the CMD
corresponding to the SFH given in Figure 13. As a result
of the effects introduced in the CMD, ψ(t, z) and also the
projected ψ(t) and ψ(z) appear noisier than for the observational
effect free case. However, results are similar to those of the
observational effects free case, showing IAC-pop robustness
against observational effects.
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Figure 13. Solution of ψ(t, z) obtained for the mock population with observa-
tional effects simulated. It is the average of 120 single solutions found using the
several solutions procedure described in the text. The input monodimensional
ψ(t) and ψ(z) are shown by solid black lines. Error bars have been obtained
applying the several solutions procedure. As a consequence of the observational
effects, solutions appear noisier than for the observational effect free case shown
in Figure 5.

(A color version of this figure is available in the online journal.)
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Figure 14. CMD corresponding to the solution SFH shown in Figure 13. To be
compared with the mCMD shown in Figure 12.

4.3. The Effects of Different Stellar Evolution Libraries
Predictions

Working on CMDs in which observational effects have been
simulated allows testing the capability of IAC-pop to handle real
observations. However, sCMD and mCMD have been built with
the same stellar evolution library, which removes the uncertainty
introduced by our limited knowledge of stellar evolution. An
idea of how this modeling affects results can be obtained by
using different libraries to generate mCMD and sCMD. To this
purpose, IAC-star has been used to compute an sCMD using
the Padua stellar evolution library (Bertelli et al. 1994). The
input parameters have been the same as before. Figure 15 shows
the corresponding solution. Discrepancies between input and
solution show now significant systematic effects. Differences
are attributed to the stellar evolution model differences and
therefore the use of more than one stellar evolution library is
recommended when analyzing a real population to test these
effects.

Table 1 summarizes the tests carried out in the present section.
Column 1 identifies the test. Column 2 gives the χ2

ν value of
the solution obtained for each test. Columns 3, 4, and 5 give,
respectively, the total mass (MT ), mean age (〈age〉), and mean
metallicity (〈z〉) of the stars in the mock population (first row)
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Figure 15. Solution using different stellar evolution libraries to compute sCMD
and mCMD. It is the average of 120 single solutions found using the several
solutions procedure described in the text. The Teramo-BaSTI (Pietrinferni et al.
2004) library is used to compute the mock population (mCMD) and the Padua
one (Bertelli et al. 1994) for the global synthetic one (sCMD). Error bars have
been obtained applying the several solutions procedure.

(A color version of this figure is available in the online journal.)

Table 1
Results for the Self-Consistency Test

CMD χ2
ν MT (106 M�) 〈age〉 (Gyr) 〈z〉

Mock CMD 2.02 7.00 0.0026
No observ. effects 1.1 2.00 ± 0.02 6.9 ± 1.1 0.0026 ± 0.0005
With observ. effects 0.9 2.00 ± 0.02 6.9 ± 1.1 0.0026 ± 0.0005
BaSTI-Padua 4.6 2.03 ± 0.03 6.7 ± 1.0 0.0030 ± 0.0006

and the solutions. Agreement on integral and average values
between mock population and solutions is good in all the cases,
but χ2

ν is large for the case in which different stellar evolution
libraries are used to compute the mock and the global synthetic
populations.

5. A FURTHER TEST: SHARP BURSTS AND TIME
RESOLUTION

Time resolution is an important issue in the solution of the
SFH. In general, it worsens for older ages. Moreover, it is
ultimately limited by the quality of the data—which depends
on the signal to noise with which each feature in the CMD
is observed, the spatial resolution of the data, and the number
of stars in the CMD—but not by the choice of the temporal
sampling, which can be arbitrarily small. Olsen (1999), in his
Figure 10, shows how the solution found for a synthetic stellar
population is closer to the input as time sampling intervals
become larger. This indicates that solutions averaged over
large time intervals may be quite accurate, but that short time
sampling could result in spuriously fluctuating solutions as also
shown in Aparicio et al. (1997) (see also Skillman & Gallart
2002).

To test both time resolution and accuracy, a mock population
in which star formation has proceeded in sharp bursts has been
solved. To this purpose the mock population shown in Figure 16
has been used together with the Teramo-BaSTI (Pietrinferni
et al. 2004) library to compute the mCMD of Figure 17 in
which observational effects have been simulated. A solution
has been sought using a sCMD computed from the global
synthetic population shown in Figure 3 and the Teramo-BaSTI
library also, following the same procedure explained above.
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Figure 16. Mock stellar population composed by two narrow bursts used to test
IAC-pop time resolution and precision.

(A color version of this figure is available in the online journal.)
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Figure 17. mCMD corresponding to the SFH shown in Figure 16. Observational
effects have been included.
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Figure 18. IAC-pop solution of ψ(t, z) for the mock population shown in
Figure 16. It is the average of 120 single solutions found using the several
solutions procedure described in the text. The Teramo-BaSTI (Pietrinferni
et al. 2004) library has been used to compute the mock and global synthetic
populations. The dotted lines in the monodimensional representations ψ(t) and
ψ(Z) show the input functions. Error bars have been obtained applying the
several solutions procedure.

(A color version of this figure is available in the online journal.)

The solution is shown in Figure 18. The solution accuracy
and precision are good, which provide a further test of internal
consistency of IAC-pop, now including its capability to recover
age and burst sharpness, at least for the time resolution and
observational effects used in our example.

6. GENERALIZING IAC-pop

IAC-pop has been designed with the idea in mind of solving
for ψ(t, z). However, the code, as it is, is blind to the nature
of the parameters behind the models used to generate the input
information provided to it. Rigorously, the code searches for the
linear combination (with positive or null coefficients) of a set
of l reference vectors best reproducing a set of k properties of a
template vector of dimension k. If run for solving the SFH, the
latter is associated with the stellar population, k is the number
of bins in which the CMD is divided, and l = n × m is the
number of simple populations into which the global synthetic
sCMD has been divided. We have discussed the SFH case in
detail, but it should be kept in mind that the code is of more
general application and that, if the l reference vectors are defined
otherwise, the found solution will include other properties of the
galaxy or, in general, of the problem being analyzed.

7. IAC-pop MANUAL

IAC-pop is made available for free use. It can be downloaded
from the Internet site http://iac-star.iac.es/iac-pop. Together with
IAC-pop, a number of interactive software facilities will also be
made available from this site or from sites accessible from it,
including the synthetic stellar populations and CMD generator
IAC-star. IAC-pop is currently offered for several computer
operating systems, such as Linux, MacOS, or Windows. In the
following, we will describe the input parameters and summarize
the content of the output file.

7.1. Input Data

The input is provided in two files. The first one, which we
call the input parameter file, provides several choices about the
computation procedure as follows.

1. The input and output data files (see below).
2. The number of age and metallicity bins, n and m.
3. The number of boxes, k, defined in the observational and

synthetic CMDs.
4. A seed for the random number generator used by the genetic

algorithm.
5. The number of computed solutions, i.e., the number of

times that the genetic algorithm is run. Each run starts with
a different random number generator seed and provides
an independent solution. In this way, the possibility that
the genetic code is trapped in a secondary minimum is
minimized (see Charbonneau 1995).

6. The number of generations computed for each single
genetic solution.

7. The number of solutions changing input star count values
according to a Poisson statistics. This provides a way of
formal error estimation based upon the internal accuracy
of the input observational data. This step is quite time
consuming and should be set to 0 when not necessary.

8. A good enough χ2
ν value. The program will accept as good

enough a solution with a χ2
ν less or equal to this even if it

has not reached the number of generations provided above.
To switch off this condition, set this value to 0.

The second file, which we call the input data file, is a list
of (l + 1) × k numbers. For more clarity we can assume them
organized as l + 1 rows each one containing k numbers, but it
must be noted that separation into different rows is not necessary.
The content of the rows is as follows.

http://iac-star.iac.es/iac-pop
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1. First row: observational data. The k values provide the
number of stars in each of the k boxes defined in the
CMD for the observational data. For a general problem,
they provide the values of the evaluated property.

2. Rows from second to last (i.e., (l + 1)): data for the simple
synthetic populations. Explicitly, the ith row provides the
number of stars in each of the k boxes defined in the CMD
of the (i −1)th simple population extracted from the global
synthetic population. For a general problem, they provide
values corresponding to the (i − 1)th simple model.

In other words, each row contains the star counts in the boxes
defined in the observational (first row) and the simple synthetic
population (second to last rows) CMDs. Note that the k boxes are
the same for all the involved CMDs, observational and synthetic,
and that the latter should contain a simulation of observational
effects. The boxes set definition and the time and metallicity
resolution are to be decided by the user. For simplicity, in the
following we will refer only to the case of interest in this paper
of solving a SFH using CMDs, but it should be kept in mind
that any other, similarly parameterized problem could be faced.

7.2. Output File

Upon completion, IAC-pop produces an output file containing
the solutions and the formal errors. The content of the output file
is structured in several labeled sets with the following content.

1. The solutions obtained in the several independent code runs.
Each row corresponds to one solution and contains l+1 data:
the l αi parameters of the solutions plus its χ2

ν value.
2. The best of the former solutions, i.e., the solution having

the χ2
ν,min value.

3. The average of the former solutions and their dispersions.
This average could in some cases be preferable to the
solution having the χ2

ν,min value as it smooths out possible
no realistic fluctuations. The dispersions are indicative of
the solution stability, but not of its actual error.

4. Dispersions of the computed solutions around the best one
and the number of solutions found above and below the
best one. This information is complementary to evaluate
solution stability and fluctuations.

5. Formal error estimate. Solutions found for several observa-
tional input data sets in which the star counts corresponding
to each of the k boxes defined in the CMD are randomly
changed according to a Poisson statistics within

√
nj , where

nj is the actual number of stars in the box j. It must be noted
that these errors are underestimates of the total internal
errors.

6. Standard deviations of the former solutions. Upward and
downward error bars and number of solutions above and
below the best one are obtained in the same way as above.

8. FINAL REMARKS AND CONCLUSIONS

Summarizing, IAC-pop is a program designed to solve the
SFH of a complex stellar population system, like a galaxy, from
the analysis of the CMD. To this purpose, IAC-pop uses a genetic
algorithm (Charbonneau 1995) to minimize a reduced Mighell’s,
χ2

ν , merit function (Mighell 1999) obtained from comparison of
the parameterization of an observed and a synthetic CMD. The
code main characteristics can be sketched as follows.

1. The code needs the computation of only a single global
synthetic CMD. As many simple population model CMDs
as necessary are later extracted from it. We call this sCMD
initial global synthetic CMD.

2. It is designed to solve simultaneously for age and metallicity
distributions, i.e., for the star formation rate as a function
of time and metallicity, which also provides the chemical
enrichment law.

3. The parameterization of observed and synthetic CMDs is
done by dividing the CMDs in several boxes and counting
out the stars in each one. This is the information provided
to the code.

4. The former implies that the code application is not restricted
to solve the problem of the SFH, but it is of general
application to problems in which a similar parameterization
can be done.

5. It is important to note that observational effects (crowding,
blending, completeness, etc.) must be simulated in the
synthetic global data or in the input parameterization prior
to running the IAC-pop.

6. A genetic algorithm is used to minimize the aforementioned
merit function χ2

ν .
7. The final solution is provided as a linear combination of

positive or null coefficients of the input simple population
models.

8. In its current version, IAC-pop provides the best solution
for one or several runs. It also provides a formal error
estimate based on Poissonian random fluctuations of the
input. It should be noted that these formal errors seem
to be underestimates of the total internal errors of the
problem. More realistic error estimates are obtained as
the dispersion of several solutions obtained with several
input parameterization to IAC-pop (which we have named
several solutions procedure). The IAC-pop user is strongly
encouraged to implement it. The routine MinnIAC will be
provided under request to help in this job.

IAC-pop has been run through several consistency tests. To
this purpose a mock stellar population has been computed using
IAC-star and analyzed with IAC-pop to obtain its SFH as if it
were a real one. Results have been compared with the input used
to compute the mock population under different assumptions.

1. For the first test, an SFH continuously varying as a function
of time and metallicity was used for the mock population.
The test simply consisted in deriving the SFH in an
observational error free scenario and using a global sCMD
computed with the same stellar evolution library as for the
mock population. Results were in quite good agreement
with input, proving the IAC-pop code internal consistency.

2. The second test was a repetition of the former but after
simulating observational effects both in the mock popula-
tion mCMD and the global sCMD. Although noisier, the
resulting SFH was also in good agreement with the input
SFH, showing the robustness of the method against realistic
observational effects.

3. The third test was a repetition of the former, including
observational effects, but using different stellar evolution
libraries to compute the mock population mCMD and the
global sCMD. This is expected to reproduce the effects
introduced in the solution by the inaccurate knowledge of
the stellar evolution physics. Systematic trends show up
due to the differences in the stellar evolution models, and
therefore the use of more than one stellar evolution library is
recommended when analyzing a real population to control
these effects.

4. Finally, the fourth test is done on a mock population made
of two sharp bursts at young and intermediate to old ages.
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The bursts are well reproduced, even if observational effects
are simulated, if the same stellar evolution library is used
to compute the mock population mCMD and the global
sCMD.

In summary, IAC-pop has been shown to be a useful
tool to obtain the SFH from the CMD of resolved stel-
lar systems. The program can be downloaded from the site
http://iac-star.iac.es/iac-pop, with the only requirement of ref-
erencing this paper and acknowledging the IAC in any derived
publication. The routine MinnIAC is also offered under request
and at user’s risk. Its use also requires referencing this paper. It
is intended to produce further improved versions of the program
after feedback by the user community.

Developing IAC-pop and MinnIAC has been greatly bene-
fited from long discussions maintained with and many tests per-
formed by S. Cassisi, C. Gallart, M. Monnelli, and E. Skillman
and by the very interesting comments of the anonymous ref-
eree. The authors are funded by the IAC (grant 310394) and by
the Science and Technology Ministry of the Kingdom of Spain
(grants AYA2004-3E4104 and AYA2007-3E3507).
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