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Abridged

The Atacama Large Millimeter/submillimeter Array (ALMA) with the planned electronic upgrades will deliver
an unprecedented amount of deep and high resolution observations. Sparse sampling, large variety of celes-
tial sources’ morphology and their intensities, instrumental responses, pervasive presence of noise increase
complexities to the demanding task of image reconstruction. Wider fields of view are possible with the conse-
quential cost of computing time. Alternatives to commonly used applications in image processing have to be
sought and tested.
Currently ALMA is generating 1 TB of scientific data daily. Within the next decade, at least one order of magni-
tude of increased daily data rate is foreseen. Receivers and correlator upgrades will improve ALMA sensitivity
and observing efficiency. In terms of imaging products, ALMA will produce single field and mosaic cubes of at
least two orders of magnitude larger than the current cube size in the GB regime. Since the number of observed
spectral lines at once will be duplicated, advanced algorithms are needed to provide shorter processing times
while handling larger images. Additionally, the imaging algorithms must provide robust and reliable results to
reduce human intervention.

We propose innovative research and developments exploring artificial intelligence methodologies, tackling
imaging of interferometric data with the scope to refine the Common Astronomy Software Applications (CASA)
package for the use of ALMA. Current challenging issues as stopping thresholding, continuum subtraction,
proper detection of extended emissions, separation of point-like sources from diffuse emissions, weak signal
detection, analysis of mosaics and speed up procedures are addressed. A number of prototype softwares
compatible with CASA are developed for the use of ALMA data employing astro–statistics and astro–informatics
techniques. In addition, a feasibility study will be performed to compare accuracy, precision, speed, data
volume handling for the prototyped softwares keeping the CASA CLEAN task as a reference.

Executive Summary

Through this study we provide the initial exploration of novel imaging techniques applicable to ALMA data
and in support of CASA. The novel imaging techniques are suited for the analysis of large data volume, thus
enabling efficiency improvements in data processing while requiring the least amount of human intervention.

We employ two distinct software to analyse ALMA data in view of the challenges arised by the ALMA2030
development roadmap. The two techniques are different in nature, one based on astro–statistics (RESOLV E)
the other on astro–informatics (a Deep Learning Pipeline developed during this study, named DeepFocus ). Both
techniques demonstrated to be equipped with essential strengths and by required features the Big Data era is
longing for.

Using real and simulated data sets, we investigate these Machine Learning techniques to tackle the syn-
thesis imaging challenges in view of the ALMA2030 era. Specifically for real ALMA data we make use of
Science Verification (SV) data and the DSHARP Large Program. SV is a process by which data quality is as-
sured for scientific analysis and their products are ready for quality assessment. The DSHARP Large Program
provides the perfect sample for testing RESOLV E’s potential in detecting extended emissions. For ALMA
simulated data we make use of CASA, the software package commonly used to calibrate, image and simulate
ALMA data. Comparisons of these techniques with tCLEAN [1] are performed. A documentation of the devel-
oped software is accessible on the GitHub and GitLab Integration Platforms.

RESOLV E is a robust algorithm and founded on a principled method. It outperforms current imaging tech-
niques for the detection of diffuse emission. Complex structures in the celestial signal and point-like sources
are well detected. Super-resolution imaging is achieved. The required data for this method are the ALMA
observed calibrated visibilities. The input variables, as celestial signal and power spectrum, are initialized and
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estimated by the data during the optimization to the most probable image configuration. The reconstructed im-
ages provide for a reliable solution with no need of extra human intervention. RESOLV E is applied to ALMA
continuum images. Applications of the technique to ALMA aggregate continuum, cubes as well as mosaick-
ing are ongoing. Although RESOLV E is computationally expensive, the algorithm delivers in addition to the
deconvolved image other informative products as uncertainty map, power spectrum, and its uncertainty. This
software has the potentials to lay the foundations for designing a fully automated pipeline capable to learn from
the data.

DeepFocus demonstrated high image fidelity and high-performance computing for image reconstruction
on ALMA data cubes. The technique makes use of ALMA dirty cubes. DeepFocus learns the celestial sources,
the noise, the instrumental point spread function from the input data. The learning process occurs both in
spatial and frequency domains, accounting for the information of each channel propagated throughout the fre-
quency space. It allows for extreme data compression by leveraging both spatial and frequency information.
In the near future, DeepFocus will be applied to ALMA continuum images and trained and tested on a large
variety of celestial signals. DeepFocus rests on a flexible and modular system, whose pipeline can be mod-
ified and refined to overcome the complexities at hand. Nevertheless, astro–informatics has the potential to
revolutionise data management in Science Archives. ALMA is currently producing roughly 300-400TB worth
of raw-data and reduced data products per year. Currently, 27.7% of the total data volume in the archive is
occupied by images. DeepFocus may allow to create images on user demand with a one-click system through
a web-interface. Moreover, catalogues creation of stored data per ALMA Cycle is feasible in an automated
fashion.

As a conclusive remark, based on the current investigations, RESOLV E is the algorithm of choice for
robust diffuse emission and faint source detection while DeepFocus implemented within CLEAN will make a
huge contribution to the performance problem introduced by the Wideband Sensitivity Upgrade (ALMA2030).
Because of the planned upgrades, ALMA image analysis strives for algorithms capable of discovering through
the data, to adapt when given new data and to get the most out of those.
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1 Study evolution and achievements

The starting of this study coincided with the beginning of the pandemic and a significant slow down affected
the developments during 2021. Although the outbreak, crucial advancements were made to demonstrate that
machine learning is suited to tackle both detection of extended emissions and to provide speed-up procedures.

A well attended kick-off meeting occurred on December 11, 2020. The great affluence to this meeting
demonstrated the importance to address current open questions in image analysis from a different perspective
and technology. In support of CASA, the goal of this study is to investigate advanced techniques, i.e. those
algorithms capable to learn from the data and to overcome known imaging issues as detection of extended
emissions and speed up convergence procedures. A core team was created with astro-informatics, astro-
statistics, ALMA and CASA experts to address the goals of this study.
Following the requests during the initial meeting, seminars were provided by Kumar Golap, Tak Tsutsumi, Ben
Bean (NRAO) and Dirk Petry (ESO) to address the tCLEAN task specifications, mosaicking issues and the
ALMA data structure.

A weekly work cadence is established to keep sense of achievements and to quantify the progress. A
group in Teams was created to keep track of the advancements, including minutes of the meetings, presenta-
tions, publications and sharable files.

The milestones of this study can be summarized as follows:

1. December 2020: Kick-off meeting

2. December 2020-February 2021: coordinated lectures on ALMA data structure and analysis

3. September 2021+: ALMA SV data applications

4. March 2022: Proposal submission to C2PAP, titled “Enabling Big Data Science in ALMA 2030 with
machine learning” (Delli Veneri M., Guglielmetti F., Testi L.)

∗ 3 computational nodes, 256 GB of RAM and 3 TB of storage

5. April 2022: application to Leibniz Data Center through C2PAP support

∗ Cloud services: CPU : 1 computational node, 256 GB of RAM, 3 TB storage, GPU: 2 GPUs with at
least 12 GB of memory, 480 hours for Training and Inference, between 720 and 2160 hours of fine
tuning depending on the cluster availability

6. May-June 2022: Michele Delli Veneri is an ESO visitor for one month

∗ Contributed talk at SciOps2022, titled “Data Cleaning, Detection and Characterization of Sources in
ALMA Data through Deep Learning” (Delli Veneri M., Tychoniec Ł., Guglielmetti F., Villard E., Longo
G.)

∗ ESO Azure MLS accounts (Delli Veneri M., Tychoniec Ł., Guglielmetti F.) CL-PROD-001 MLS workspace.
This is a Microsoft Data Science Solution for Machine Learning supported by ESO. MLS environment
tested with our software, but on limited practice due to unsafe ownership on the software.

∗ Contributed talk at AI Forum, titled “3D Source Detection and Characterization of Sources in ALMA
Data through Deep Learning” (Delli Veneri M.)

∗ ALMA data cubes simulation development and acceleration. Available on GitHub with 100 ALMA
data cubes (256x256x128) created in 20 seconds.

https://almascience.eso.org/alma-data/science-verification
https://www.origins-cluster.de/infrastruktur/c2pap
https://www.lrz.de/
https://www.eso.org/sci/meetings/2022/SCIOPS2022.html
https://zenodo.org/record/6557227#.Y4M9B7LMK7M
https://zenodo.org/record/6557227#.Y4M9B7LMK7M
https://azure.microsoft.com
https://www.eso.org/sci/meetings/garching/pasttalks.html
https://micheledelliveneri.github.io/AIForum/
https://micheledelliveneri.github.io/AIForum/
https://github.com/MicheleDelliVeneri/ALMASim
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7. July 2022:

∗ MaxEnt2022 conference: Invited talk “Bayesian and Machine Learning Methods in the Big Data era
for astronomical imaging” (Guglielmetti F., Arras P., Delli Veneri M., Enßlin T., Longo G., Tychoniec Ł.,
Villard E.) [6]

∗ MaxEnt2022 conference: Contributed talk “Bayesian statistics approach to imaging of aperture syn-
thesis data: RESOLVE meets ALMA ” (Tychoniec Ł., Guglielmetti F., Arras P., Enßlin T., Villard E.)
[7]

8. August 2022: article submission to MNRAS “3D Detection and Characterisation of ALMA Sources
through Deep Learning” (Delli Veneri M., Tychoniec Ł., Guglielmetti F., Longo G., Villard E.) [3]

9. September 2022: NFMCP (ECML-PKDD 2022) workshop: Contributed talk “3D Detection of ALMA
Sources through Deep Learning” (Delli Veneri M. et al.)

10. October 2022:

∗ ARC All–Hands Meeting: Contributed talk “Update on the ESO internal ALMA development study:
ALMA2030 Bayesian Reconstruction through Adaptive Image Notion” (Guglielmetti F.)

∗ RESOLVE Workshop 2022 at MPI for Radioastronomy. Contributed talk “Bayesian and Machine
Learning Methods in the Big Data era for astronomical imaging” (Guglielmetti F. et al.)

∗ Comparison of DeepFocus with tCLEAN on a set of 1000 ALMA data cubes simulations.
∗ First applications of RESOLVE to aggregate continuum and mosaicking in the search of SZ effect.

11. November 2022:

∗ Contribution to ORIGINS Annual Science Meeting for GPU usage employing the C2PAP infrastruc-
ture.

∗ Taking advantage of the DRM F2F meeting at NRAO (Charlottesville, VA): Presentation of the study
to Amanda Kepley (NRAO), Ryan Loomis (NRAO), Theodoros Nakos (JAO) with a talk titled:“ESO
internal ALMA development study: ALMA2030 Bayesian Reconstruction through Adaptive Image No-
tion” (Guglielmetti F.). Proposal from Ryan Loomis to make use of the new software in an hybrid
system in CASA.

12. January 2023: Contribution to VLTI and ALMA imaging workshop, since RESOLVE and DeepFocus
have the potential to overcome the challenges also for VLTI synthesis imaging.

13. RESOLVE is on GitLab at MPCDF: All improvements obtained during the development study are pub-
licly available.

14. The DeepFocus pipeline will be publicly available on GitHub as soon as the PhD Thesis of Delli Veneri
M. is accepted. The software is going to be available at this link.

https://maxent22.see.asso.fr/
https://arxiv.org/pdf/2210.01444.pdf
https://arxiv.org/pdf/2210.01444.pdf
https://maxent22.see.asso.fr/
https://arxiv.org/abs/2210.02408
https://arxiv.org/abs/2210.02408
https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://easychair.org/cfp/nfmcp2022
https://events.mpifr-bonn.mpg.de/indico/event/294/overview
https://indico.ph.tum.de/event/7082/contributions/6185/
https://www.eso.org/sci/meetings/2023/VLTI-ALMA-IW.html
https://gitlab.mpcdf.mpg.de/ift/resolve
https://github.com/MicheleDelliVeneri/DeepFocus
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2 The Core Team

Fabrizia Guglielmetti is ARC Scientist at ESO and P.I. of this study. Her interest is on the development of
advanced imaging techniques. She earned her PhD in astrophysics on image analysis employing Bayesian
Probability Theory for a joint estimation of background and celestial signals (LMU, 2010).

Philipp Arras, formerly PostDoc at MPA, is expert on Bayesian statistics applied to imaging algorithms for ra-
dio telescopes. He developed theoretical models for inference algorithms for the unification of calibration and
imaging, multi-spectral imaging, polarization imaging, data fusion with single dish data and Very Long Baseline
Interferometry (VLBI). Expert on the RESOLVE technique.

Michele Delli Veneri (UniNa) has a master in Astrophysics and currently PhD student at the Electrical Engi-
neering and Information Technology Department of the University of Naples Federico II. He is the developer
and designer of DeepFocus. He gained expertise on ALMA and Square Kilometer Array (SKA) imaging.

Torsten Enßlin (MPA), Associate Professor at the Ludwig-Maximilians-University and Information Field Theory
Group Lead. He is expert in image analysis for multi-wavelength observations, with special emphasis on radio
synthesis observations.

Giuseppe Longo (UniNa), Professor in astrophysics, chair of the Data Science Initiative at the University
Federico II: Data Science program, current president of the International AstroInformatics Association. His
research interests are in development and application of novel machine learning methods to a variety of prob-
lems.

Łukasz Tychoniec is Research Fellow at ESO, where he conducts his own scientific research using ALMA
telescopes, other ESO observatories and the James Webb Space telescope. He is expert in star and planet
formation, protostellar jets, protoplanetary disks, early planet formation, submillimeter interferometry. Part of
his functional work is dedicated to this study.

Eric Villard, ESO/ALMA Advanced Data Product Scientist (ESO) involved with ALMA observatory in opera-
tions since 2010: Commissioning Scientist, System Astronomer, Deputy Head of Data Management Group,
Head of the ALMA Array Performance Group.

Since November 2022, Philipp Arras (MPA) moved to new ventures. Jakob Roth and Carmen Blanco are
contributing to the study. They are both working at the IFT group (MPA), lead by T. Enßlin. Jakob Roth’ PhD
topic is Computational Structure Formation in Physical Cosmology. Carmen Blanco’ Master thesis is focused
on detection of SZ effect on ALMA data.
Aida Ahmadi (Allegro ARC node in Leiden) is going to contribute to the study with applications of RESOLVE
on own science topic (planet and star formation). Ivano Baronchelli (INAF) is new contributor to the study with
his machine learning and ALMA data analysis expertise.

This Study is also supported by Paola Andreani (ESO), Massimo Brescia (UniNa), Stefano Cavuoti (Un-
iNa), Ed Fomalont (NRAO), Alessandro Marconi (UniFi), Federico Montesino Pouzols (ESO), Urvashi Rau
(NRAO), Andy Strong (MPE), Udo von Toussaint (IPP), Crystal Brogan (NRAO), Sanjay Bhatnagar (NRAO),
Allen Caldwell (MPP), Sandra Castro (ESO), John Hibbard (NRAO), Elizabeth Humphreys (JAO), Mark Lacy
(NRAO), Dirk Muders (MPI for Radioastronomy), Martin Zwaan (ESO).

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html
https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html
http://datascience.unina.it/
http://astroinformatics.info/astroinfo
https://lukasztychoniec.github.io/
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3 Software selection

Applications of two algorithms (RESOLVE and DeepFocus) to ALMA data are shown. RESOLVE and DeepFo-
cus are thoroughly and distinctly discussed in two scientific papers [5] and [3], respectively. Both RESOLVE
and DeepFocus bring significant advantages in terms of the quality of data products, and they have the potential
to largely improve the user data-processing experience both if used as a standalone tool and in combination
with CASA. These algorithms were included in the original proposal. On the one hand, RESOLVE has been
successfully applied to VLA data [8], along with the ability to perform calibration and imaging with a joint un-
certainty quantification [9]. RESOLVE showed to be a promising candidate also for ALMA data applications
and for investigating possible advantages over traditional algorithms. This application exploits the participation
of the Information Field Theory group at the Max-Planck institute for Astrophysics. On the other hand, Autoen-
coders, i.e. neural network architectures, have been explored and set the base of the DeepFocus algorithm. The
Deep Learning models employed within DeepFocus took advantage of the team experience of the data science
group at the University of Naples on, e.g., SKA data cubes but also on other fields of science (e.g. autonomous
driving, medicine). The selection of the Deep Learning models were dictated on optimised tasks most suited to
ALMA data. Convolutional Autoencoders, Variational Autoencoders, U-NETs (convolutional neural networks),
and Region Proposal Networks were tested with extensive fine-tuning of each model architecture as well as
hyper-parameters. DeepGRU was tested against Transformers and Long short-term memory units (LSTMs),
while the ResNets were compared against EfficientNets, DenseNets, CNNs and several pre-trained models
available within the literature in a transfer learning approach. Due to a recent success on the application of
3D Deep Learning models for the resolution of the imaging problem for SKA, BlobsFinder and DeepGru are
planned to be ameliorated, including the introduction of a 3D Classification ResNet.

Two additional algorithms are accounted in the original study’s proposal. Firstly, the Bayesian Mixture
Model technique [10] is an unsupervised learning method. The mixture model technique [10] is equipped with
a defined model to explore the data and extract the required information from the data for a robust background-
source separation. Based on Bayesian probability theory, the technique is capable to jointly estimate source
signal and background, providing a multi-resolution analysis for the detection of faint sources. This technique
for the use of ALMA needs further development and exploration, mainly driven by technology advancements,
e.g. [11]. Please note that there is another technique worth of dedicating time and effort, that is described in
[12]. However, additional workforce is needed to achieve these developments. Secondly, the maximum entropy
deconvolution (MEM) algorithm [13] is not further supported. MEM is a nonlinear deconvolution algorithm and
useful to correct for the limited sampling of the u-v plane. However, it assumes a sky brightness of the sources
as a prior knowledge. This algorithm showed the prior knowledge not adapting to the data and hindering faint
source detection.

4 RESOLVE

The RESOLVE algorithm has been refined for the use of ALMA data. The input data are the ALMA calibrated
measurement set (MS). Taking the information from the calibrated visibilities in the u-v plane, the Response
operator R acquires the information of the dirty beam. R is an integral ingredient for the reconstruction of the
detectable celestial signal. The input data (or calibrated MS) d are modelled as a combination of celestial sig-
nal s corrupted by the dirty beam and by the noise n (systematic and random errors): d = Res + n. Synthesis
imaging reconstruction occurs through the posterior estimation of the possible true sky signal configurations
arised by the Hamiltonian sampling: P (s|d) = e−H(s,d)

Z(d) . More information on the foundations and description of
the algorithm can be found at [14, 15, 5, 16, 17].



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 9

Figure 1: On the left, HL-Tau press release combining bands 6 and 7 [18]. On the right, HL-Tau imaging with RESOLVE
on band 6 and one spectral window (one quarter of the available data for band 6).

4.1 Proof of concepts

Working on the u-v plane, the long lasting weighting issue of ALMA visibilities was addressed and solved
[6, 19]. The successful application to HL-Tau data (SV data) with RESOLVE and the comparison with CASA
provided the proof of concepts. In Fig. 1 (image on the right), the continuum image at 1.3 mm (233 GHz)
applied to one spectral window at 1.827 GHz (128 channels) is obtained with RESOLVE. The image on the left
shows the reconstructed IF image by the CASA team using the full band 6 and band 7 data [18].
The image, shown on the right of Fig. 1, is derived by the algorithm as representation of the posterior mean of
the Hamiltonian sampling of the reconstructed celestial signal. A full set of posterior density function estima-
tions of the celestial signal are provided and shown in Fig. 2. For each P (s|d) a corresponding uncertainty map
is estimated. At the converged sample, RESOLVE’s answer to the ill-posed problem of image reconstruction
provides a posterior mean of the sampled estimated signals and a mean uncertainty map: See Fig. 3, on the
upper/lower left are shown the posterior mean of the signal detection and the corresponding uncertainty map.
Still in Fig. 3, the power spectrum Ps(k⃗) of the process that generated the signal s as a function of spatial fre-
quency k and its uncertainty estimation are shown. A representation of the distribution of data weights versus
baselines is also reported (right).

4.1.1 The power spectrum

The signal’s power spectrum Ps(k⃗) describes how the signal’s variance is distributed over the different frequen-
cies of the signal [14]. Low- and high-frequency modes correspond to large- and small-scale features of the
signal, respectively. An example of power spectrum reconstructed from the RESOLVE procedure for image
reconstruction is shown in Fig. 3.

The power spectrum contains interesting information about the statistical properties of the physical signal.
If the power spectrum falls with higher frequencies, it corresponds to higher variations on large-scale features
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Figure 2: RESOLVE: Set of Hamiltonian samples showing the estimated posterior probability density function of the
estimated celestial signal for the HL-Tau data shown in Fig. 1, right. Each sample is similar with negligible deviations in
reconstructed intensity and shape. This is because the last iteration of the converged optimization procedure is shown.
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Figure 3: RESOLVE: Left, the mean posterior probability density function (upper) and its uncertainty (lower) of the es-
timated celestial signal for the HL-Tau data shown in Fig. 1, right. Center, power spectrum estimation corresponding to
the estimated posterior mean (upper) and its uncertainty (lower). Right, representation of RESOLVE’s distribution of data
weights versus baselines (upper) and number of visibility versus effective baseline length (lower) at the convergence itera-
tion.

compared to small-scale features. This is a typical behavior for many physical signals. When analyzed with suf-
ficient resolution, such signals are smooth functions. The slope of the power spectrum determines the degree
of smoothness. Steep spectra correspond to smooth signals, while flatter spectra correspond to signals with
more small-scale variations. Peaks and bumps in the power spectrum indicate oscillations with the respective
frequency. Flat power spectra correspond to white noise.

4.2 Simulations

The major advantage in using simulated datasets for quality assessment of the imaging procedures is the
selection of the input parameters, allowing to control the shape and brightness of the sources, as well as
configuration and behaviour of the telescope array. The downside of this approach is the difficulty to realisti-
cally model the noise acquired during an observation and the simplistic assumptions about the sky brightness.
Nonetheless, this test allows to understand how RESOLVE works and to compare source detection and flux
estimates with the tCLEAN task [1] in CASA [20, 2]. In the following, two applications are shown that are
tailored at testing the algorithm capabilities to overcome source confusion and weak signal detection in sin-
gle pointing and continuum images. The RESOLVE algorithm is shown to be successfully applied to ALMA
simulated data.

The simulation in Fig. 4 aims at challenging the algorithm to detect weak and extended as well as bright
point–like sources spread over an ALMA synthetic observation. The simulated data set is processed with
RESOLVE and the tCLEAN imaging task in CASA. Taking the simulated data set as benchmark, RESOLVE
provides both weak and extended source detection and more realistic source characteristics with respect to
tCLEAN. RESOLVE powerfully provides detection of diffuse emission, weak signal, point-sources embedded
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Figure 4: RESOLVE (left) and tCLEAN (center) application to an ALMA continuum simulated data set (right). The colorbar
shows a normalized flux intensity to allow for a visual comparison on recovered source characteristics.

Figure 5: Sky model which serves as an input for creating simulated ALMA Measurement Set: Single pointing and contin-
uum image.
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Figure 6: Iteration 0: First set of Hamiltonian sampling from the starting iteration of ALMA single pointing and continuum
simulated data set (Fig. 5). The initial uninformative guess of RESOLVE is shown.
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Figure 7: Iteration 5: After 5 iterations, the set of Hamiltonian sampling of the ALMA single pointing and continuum
simulated data set (Fig. 5) shows that the algorithm learns about the signal s.
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Figure 8: RESOLVE learns the signal s (Fig. 5) as shown at (almost) convergence stage (iteration twenty-four). The
mean of the posterior probability density functions of the detected signal s given the data d is shown in the lower left
image. The image on the lower right shows the reconstructed power spectrum samples, starting to deviate from the initial
uninformative guess.
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Figure 9: Maps of the brightness distribution in the sky plane of the simulated data (Fig. 5). Upper row: RESOLVE’s
reconstructed image (left) and its uncertainty map (right). Lower row: tCLEAN solution using natural weighting (left) and
robust = 0.5 following the Briggs weighting scheme (right).
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Parameter Mean
Offset 26

Zero mode 1±0.1
Fluctuations 5±1

Power spectrum slope -2±0.5
Flexibility 1.2±0.4
Asperity 0.2±0.2

Table 1: Example of input parameters for the RESOLVE application to simulated data and its estimated values.

in diffuse emissions.
Fig. 5 shows the sky model generated with simalma task in CASA. A simple 2D array consisting of five

Gaussian components of different brightness, size and position angle are generated. The sky model is gen-
erated, imposing physical properties to the sky, such as spherical coordinates, pixel dimensions, field-of-view
and brightness in physical units. Afterwards, the task is simulating observations of the given sky model with
the ALMA observatory. For this specific case we simulate observations with ALMA configuration C-3 at 230
GHz (ALMA band 6), which results in an effective resolution of 0.7 arcsec, due to the longest available baseline
being ∼ 500 m. The simalma task returns a calibrated MS, that consists of complex visibilities. Those visibilities
are a Fourier transform of the sky brightness, therefore inverse Fourier transformation provides a dirty image
of the observed sky.
In Fig. 9, lower row, the reconstructed images with tCLEAN are shown. The task tCLEAN is run without any
constraint on where to look for point sources in the image (i.e. without any masking as input parameter), for
20000 iterations, or until threshold of 0.3 mJy/beam is reached. The pixel size of the reconstructed image is
set to 0.1 arcsec and the image size is set to 512 × 512 pixels. The noise threshold level of 0.3 mJy/beam is
selected so that the tCLEAN algorithm does not attempt to find sources from the residual image consisting
purely of noise. The RMS of the dirty image is 0.1 mJy/ beam and the SNR is 3σ. In the default settings, the
weighting of the baselines is set to natural (image on the left), which means it associates the baseline with
weight proportional to the sampling density (i.e. the most covered baselines have the highest weight). Since at
larger scales the sampling is much denser, this puts more weight on lower resolution, which results in achieving
lower resolution than the sky model image. Natural weighting will give the largest beam and the best surface
brightness sensitivity. Therefore we also attempt imaging with Briggs weighting [21] with robust parameter 0.5
(image on the right), which moves the balance of weighting toward longer baselines increasing the resolution
but decreasing signal-to-noise ratio.
For RESOLVE image of the simulated data, 30 iterations are needed to reach convergence. In Figs. 6, 7, 8,
the first, sixth, twenty-fourth iterations of RESOLVE are shown. The P (s|d) samples are displayed, including
the posterior mean < P (s|d) > and the power spectrum samples Ps(k⃗). Given an initial state of no informa-
tion, the algorithm searches for the optimal sky configuration from the given data (visibilities and dirty beam).
In Fig. 9 (upper row), the converged posterior mean probability density function of the detected simulated
signal < P (s|d) > and its uncertainty map are shown. The uncertainty map displays the relative error as a
measurement of precision, to determine the magnitude of the absolute error in terms of the actual size of the
measurement process. No assumption was made on the presence of point sources in the data. Input param-
eters of the RESOLVE run are summarized in Table 1: See [8] for a detailed explanation of the parameters.

RESOLVE’s reconstructed image exhibit a smooth background in agreement with the simulation (Fig.5).
Bayesian probability theory allows us to estimate the uncertainty of the hypothesis of detecting a source sig-
nal. What is not a celestial source and potentially noise is captured by the description of uncertainty on the
full image. Therefore, the uncertainty map does not only address detected sources. Structures in the im-
age away from the detected sources provide evidence that the uncertainty quantification can not be a smooth
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Figure 10: Example of reconstructed fluxes (sources 1− 3)
from the application of RESOLVE and tCLEAN to Fig. 5

Comp model tCLEAN tCLEAN RESOLVE
natural Briggs

1 34.11 24.67 24.96 26.68±5.76
2 23.31 21.68 22.19 23.59±6.72
3 16.69 16.31 16.57 17.82±3.86

Table 2: Peak flux (in Jy arcsec−2) of different
components on the simulated image.

Parameter Mean
Offset 20

Zero mode 1±0.2
Fluctuations 3±1

Power spectrum slope -4±2
Flexibility 4±0.8
Asperity 2±0.8

Table 3: Example of input parameters for the RESOLVE application to DSHARP data’s Sz114 and its estimated values.

function. The tCLEAN reconstructed images are characterized by negative values in several areas. Negative
values arise by the recurrent application of subtraction during the major-minor cycles and residual estimations.
Although the non-physical representation of the background image with tCLEAN, it is known that those varia-
tions are only noise. Moreover, a comparison of the reconstructed fluxes [Jy ·arcsec−2] with the two algorithms
is shown in Table 2 where the corresponding components numbered 1-2-3 are indicated in Fig. 10. The model
column provides the simulated sky model’s flux values. Both algorithms provide flux reconstruction close to
the ideal values. tCLEAN with natural weigthing provides the worst estimates, being those simulated sources
mainly point-like sources. RESOLVE gives reconstructed flux values (and their uncertainties) 7% closer to the
simulated values with respect to tCLEAN.

4.3 DSHARP Large Program

The application of RESOLVE to real data is performed on a well-studied data set, whose survey was de-
signed to optimize the spatial resolution and contrast sensitivity to continuum emission substructures [4]. This
is the ALMA Large Project 2016.1.00484.L, known as Disk Substructures at High Angular Resolution Project
(DSHARP). The sample is shown in Fig. 11. The data were taken at long baselines allowing us to test RE-
SOLVE on high resolution data while detecting extended emission. In fact, a secondary goal of this project was
to identify corresponding gas structures and infer other relevant bulk disk properties (e.g. geometry). Exper-
tise on this science topic is brought into the study by Ł. Tychoniec (ESO). For more details on this application
please refer to [7]. The protoplanetary disk Sz114 is chosen within the sample, because of its relatively smooth
structure [7]. Sz114 is shown as first image on the left, second row, in Fig. 11.

Both tCLEAN and RESOLVE are applied to a single spectral window to directly compare the two tech-
niques. Currently, RESOLVE does not have a capability to make images of multiple spectral windows. From
the publicly available calibrated MS, we extracted spectral window 9 with split task in CASA and binned it into

https://scholarlypublications.universiteitleiden.nl/handle/1887/3147349
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Figure 11: This image is taken from [4]: Gallery of 240 GHz (1.25 mm) continuum emission images for the disks in the
DSHARP sample. Beam sizes and 10 au scalebars are shown in the lower left and right corners of each panel, respectively.
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Figure 12: Image reconstruction with RESOLVE and tCLEAN of ALMA observation of Sz114 (Fig. 11). Upper row:
reconstructed image by RESOLVE (left) and the relative error map (right). Lower row: tCLEAN reconstructed images
with standard cleaning algorithm (right) and with multi-scale algorithm (left).



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 21

Figure 13: On the left, the reconstructed image by RESOLVE of Sz114 as shown in Fig. 12. On the right, the reconstructed
image of Sz114 with tCLEAN as delivered by the Large Program team [4] (In table 4 indicated with ”best tclean”).

Radius best tclean tclean resolve
arcsec tclean hogbom multiscale
peak 1.57 1.55 1.49 5.8±3.82
0.06 8.63 8.85 8.95 9.48±1.07
0.15 22.79 22.82 22.53 23.21±0.68
0.35 47.45 47.07 47.24 47.24±2.79

Table 4: Peak (in Jy·arcsec2) and integrated flux at given radii of the Sz114 disk.

a single channel.
The estimated input parameters of the RESOLVE application to Sz114 is shown in Table 3. Please note

the power spectrum slope with respect to the result in Table 1. The achieved steeper power spectrum slope on
the real application is reasonable since less structures are present at small scales with respect to the simulated
case. This result is in agreement with the reconstructed image of Sz114 by the RESOLVE algorithm (Fig. 12),
upper left, and the uncertainty map, upper right. The uncertainty map shows that no aggregate structures are
detected and that the quantified uncertainty increases at increasing signal detection (absolute uncertainty).

Standard and multiscale tCLEAN imaging are used because the observed disk presents large variety of
spatial scales. Images are characterized by 0.005 arcsec (pixel size), 1024× 1024 pixels and 20000 iterations
or until the noise threshold of 0.05 mJy is reached. In case of multiscale clean, three scales (0, 7, 28 pixels) are
specified to find three types of sources in the data: point source (scale=0), extended (Gaussian) components
with FWHM of 7 and 28 pixels. The resulting tCLEAN images are displayed in Fig. 12, lower row.

In Fig.13, a visual comparison between the reconstructed images of Sz114 from RESOLVE and from
tCLEAN. This tCLEAN image is produced employing the aggregate continuum as delivered by the Large
Program team [4]. We define this tCLEAN solution on the aggregate continuum as the best tCLEAN image.
RESOLVE is capable to achieve improved emission detection. Table 4 provides a comparison of integrated
flux estimates measured over different areas of the disk (radius). The three tCLEAN solutions are very similar.
The fluxes provided by RESOLVE are close to the benchmark values. The only deviation found is at the peak.
tCLEAN approximate the dirty beam to a Gaussian, while RESOLVE encodes the dirty beam from the uv-
plane into the Response operator. The distribution at the peak collects more flux than a Gaussian. Therefore,
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it is reasonable that at the peak the measured flux is larger than the value provided by tCLEAN.
RESOLVE is providing an high-fidelity image of the protoplanetary disk Sz114 and robust estimation on

the fluxes and their uncertainties.

4.4 Ongoing developments and outlook

The technique RESOLVE, applied to ALMA data, provides for image reconstruction from sparse samples and
proper uncertainty quantification. Bayesian probability theory allows one to extend from point estimates to a
distribution of solutions whose critical mass under the multi-dimensional integral contains the information to
quantify optimal values and their uncertainties. Information Field theory allows us to tackle imaging on a pixel–
free approach. Input information to the imaging technique is the observed and calibrated visibilities. The dirty
beam is derived from the uv coordinates and incorporated into the Response operator in the deconvolution pro-
cess. The input data are processed within a probabilistic approach allowing one to model the celestial signal
and noise in the data in one unique algorithm. Products of the technique are reconstructed ALMA deconvolved
image and its uncertainty map, the power-spectrum and its uncertainty, estimates of input parameters and
their uncertainties. Through simulated and real data, we demonstrate that RESOLVE is applicable to ALMA
data. Detections of extended emissions and structures in protoplanetary disks are promising. Considering the
application to ALMA data with RESOLVE occurred on one spectral window for continuum detection only, when
comparing with tCLEAN’ solution on the aggregate continuum, RESOLVE is capable to provide an improved
detection of Sz114 while employing one quarter of the available data.

The capabilities of RESOLVE are currently under elaboration in order to

– apply to aggregate bandwidth for continuum imaging,

– detect the Sunyaev-Zel'dovich (SZ) effect (absorption detection),

– analyse mosaics of images.

RESOLVE showed outstanding detection of celestial signal in emission. We want to challenge the algorithm to
detect absorption features. Considering that a substantial cosmological radio beackground exists, the SZ effect
arises due to Comptonization of the background leading to a signal decrement at the ALMA high frequencies.
Currently an ALMA band 7 data set is under scrutiny. This application is planned to be completed by February
2023.

When the application to the aggregate continuum will succeed, the next step is to tackle cube imaging.
Ideally, the Information Field Theory (IFT) framework shall allow for a joint continuum and line detection. This
exploration may require few months of intense work and may go beyond the available time frame of end 2023.

RESOLVE has the functionality to be executed in parallel. Therefore we are going to test on our ARC
cluster at ESO the execution speed of RESOLVE in order to define its computational cost. Another exploration
worth of dedication and effort is the exploitation of distributed data objects to further accelerate the technique
[22]. While the latter application is intensive for providing conclusive results in a short time range, during the
beginning of 2023 we are going to have an answer for the former one. We consider the utilization of distributed
data objects of low priority at the moment and hardly it will be tackled in 2023.
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Figure 14: Deep Learning Pipeline schema. Numbers indicate the logical flow of the data within the pipeline.

5 DeepFocus

The Deep Learning Pipeline, named DeepFocus, is fully described in the refereed article accepted for publica-
tion on MNRAS: click on this link to be redirected to the article [3].
DeepFocus is designed as a modular system allowing to expand the pipeline according to the problem at hand.
In operations we always need to cope with new modes or instrumental improvements (e.g. electronic up-
grades) [23]. New units can be connected to the pipeline as well as replacements with others during software
refinements. The schema of the composition of the Pipeline can be seen in Fig. 14. Currently DeepFocus is
composed by six Deep Learning models: a Convolutional Autoencoder for source detection within the spa-
tial domain of the integrated data cubes (Blobs Finder, stage 3), a Recurrent Neural Network for denoising
and peak detection within the frequency domain (DeepGRU, stage 6), and four Residual Neural Networks for
source characterization (ResNets, stage 10).
The algorithm solves for ID = Idb ∗ I + n, where ID, Idb, I and n are the ALMA dirty cube, the dirty beam,
the target sky image and any additional noise in the image, respectively. The information contained in each
channel in the ALMA cube is accounted in the whole frequency domain, correlating information between pixels
along the frequency axis of the cube. It has been demonstrated that the combination of spatial and frequency
information has the capability to improve completeness while decreasing spurious signal detection. Compar-
ison with tCLEAN perfomed analysing a set of 1000 simulated ALMA data cubes indicated that DeepFocus
improves in speed up procedures by a factor of at least 140.

5.1 Proof of concepts

Supervised Machine Learning techniques need training, testing and validation to become that powerful tool to
outperform any current algorithm to date in processing time. Most of ALMA archived data are galaxies, with
compact and almost point-like shape. The potential capabilities of this algorithm have been tested on ALMA
SV interferometric data: BR1202-0725 [24]. Please refer to the article [6] (reachable clicking this link) to get
more details on this application (Subsection 2.2 and Figure 4).

https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://arxiv.org/pdf/2210.01444.pdf
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This trial shows that both galaxies in the ALMA cube are detected with DeepFocus, while the standard approach
in CASA missed the serendipitous quasar (southernmost object). In [24], self-calibration was performed to
detect this serendipitous source. The source fluxes derived by DeepFocus agree with the ones reported in [24].
The computing time for the image restoration of one ALMA cube for BR1202-0725 with DeepFocus occurred in
∼ 35 µs.

5.2 Simulations

Simulated ALMA cubes are used for training/testing/validation as well as reliability and quality assessment of
the developed Deep Learning pipeline. Section 3 of the journal article “3D Detection and Characterisation of
ALMA Sources through Deep Learning” [3] provides a detailed description of the developed artificial data sets.
The CASA simulator capabilities [2],[25] were extended for the creation of ALMA cubes. 2D Gaussian Com-
ponents in the spatial plane with 1D Gaussian component (emission lines) in frequency space are used to
create the artificial emission lines in addition to the continuum signal. ALMA Cycle 9 C-3 configuration with
43 antennas was chosen within the simalma task in CASA. ALMA interferometric measurement sets are cre-
ated employing the CASA’ simobserve task. Dirty cubes are produced employing tCLEAN. Corrupted by white
noise, the dirty cubes’ RMS is adjusted to a wished SNR.

A set of 5000 ALMA cubes (360x360 pixels, 128 channels and total bandwidth of 1.28 GHz) are created
with a source at the center and other randomly distributed in the image with random extension. The brightest
source is located at the center and characterized by a SNR > 10. The minimum and maximum flux densi-
ties generated are respectively 0.97 and 407.4 mJy/beam. Uniformity on the distribution of simulated source
parameters is achieved (Fig. 3 in [3]). See upper and middle rows of each set in Figs. 21 and 22 for some
examples of produced ALMA dirty cubes and model images.

At the following link in GitHub, the python package developed to create the simulations of ALMA cubes for
observations of galaxies and/or point sources can be downloaded.

5.3 Novelty of the method

The pipeline architecture can be roughly divided into three phases, based on the assumptions made on the
data. First, sources are assumed to be present within the image and the algorithm is trained to detect those
sources. Second, sources to be deemed true must show emission lines in the frequency domain. The algorithm
searches for those emission lines by removing noise in order to boost SNR and recognise spectral peaks. If
spectral peaks are found, the algorithm preserves the sources for characterization, otherwise those initial
identifications are discarded as false detection. The latter operation is performed through SNR and geometrical
criteria involving the reference integrated dirty image and all images produced by integration along the detected
emission ranges. Third, sources passing the selection criteria are fed to an array of ResNets to regress the
morphological source parameters.

5.3.1 Blobs Finder

Blobs Finder solves for the deconvolution problem in the image domain, i.e. to recover the normalized denoised
integrated sky images from the integrated dirty images (stage 3 in Fig. 14). The output probability maps are
censored and all pixels with probability higher than a given threshold are connected into potential sources
through a friend of friend algorithm. Bounding boxes are extracted around the islands of connected pixels to
define source spatial boundaries. Bounding boxes around source candidates are used to extract dirty spectra
from the input dirty cube by summing, for each frequency slice (channel), all pixels within the bounding boxes.
Figures 15, 16, and 17 show, respectively, an example of an input integrated dirty cube containing 6 simulated

https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://github.com/MicheleDelliVeneri/ALMASim
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sources (green boxes) with two spatially blended sources, the target sky model image (green and red highlight
the target and the predicted bounding boxes), and the 2D prediction map (red bounding boxes).

5.3.2 DeepGRU

The obtained spectra are standardized and fed to DeepGRU (step 6 in Fig. 14) which is tasked to solve a
1D denoising problem and outputs 1D probabilistic maps of source emission lines which are then analyzed in
search for peaks. Each peak is fitted with a 1D Gaussian function. Position z and extension ∆z = 2 ∗FWHMz

(where FWHMz is the FWHM of the Gaussian peak) are recorded. Fig. 18 shows the dirty spectrum extracted
from the two blended sources shown in Fig. 17, and the DeepGRU’s predicted emission probability map. Blue
and red vertical bars limit the true and predicted, respectively, emission ranges of the two sources within the
spectrum. In order to detect possible false positives produced by Blobs Finder, all potential candidates showing
no meaningful peak in their spectra are removed. If more than one peak is found alongside the spectrum, three
possibilities may arise: detected peaks may indicate distinct celestial sources which are spatially blended,
detected peaks may belong to the same source, or one or more peaks are false detection(s). None of these
possibilities can be excluded a priori. On each peak we perform spectral focusing, i.e. we crop a 64× 64 pixel
image around the source center in the spatial plane and integrate within the peak extension in frequency. In
order to estimate the SNR of a source, two SNR measurements are accounted:

Global SNR:

SNR
def
=

median(xs(r))

var(xn(R− r))
(1)

where xs(r) are the pixel values of the source within a radius r inscribing the bounding box, and xn(R− r)
are the pixel values within an annulus of internal radius r and external radius R which has the same area
of the inscribed circumference;

Pixel SNR:
snr

def
=

xi

var(X)
(2)

where xi is the value of the given pixel, and var(X) is the variance computed on the full image.

The two signal-to-noise ratio measurements are used to distinguish falsely detected from true sources and to
deblend overlapping sources within a blob. Fig. 19 summarises the false positive detection pipeline. In case of
not blended detections, the process works as follow:

◦ if SNR ≥ 6 eq. (1) (empirical bright source SNR threshold) in the integrated dirty cube and the source is
not flagged for deblending, the detected source is focused;

◦ if SNR < 6 eq. (1) in the integrated dirty cube, the detected source goes through a check for focus:

■ if SNR eq. (1) increases, the source is kept;
■ otherwise the source is discarded as false positive.

This is the condition marked with 1 in Fig. 19. In case of blended sources, the procedure for the identification
of true sources proceed as follows:

1. focusing on the highest peak (primary peak) by integrating within its extension allows for the SNR eq. (1)
calculation. The same logic described above is followed.

2. the snr measurement eq. (2) is used to identify the pixel with strongest intensity in the image p(x, y).
This reference pixel is used in the next phase of the deblending process.
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Figure 15: An example of Blobs Finder’s input 2D integrated dirty cube produced by integrating an input dirty cube over
the entire frequency range. Superimposed in green, are the target bounding boxes outlining the emissions of the 6 sources
present in the cube. The image contains an example of two spatially blended sources located around the centre of the
image, one is a bright point-like source, the other a fainter and diffuse source laying behind.
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Figure 16: An example of Blobs Finder’s target 2D Sky Model image with the target bounding boxes highlighted in green
and the predicted bounding boxes extracted through the tresholding operation on Blobs Finder’s probabilistic output, high-
lighted in red. Predicted and true bounding box centers are also plotted as, respectively, red and green dots.
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Figure 17: An example of Blobs Finder’s output 2D probabilistic source detection map with the predicted bounding boxes
extracted through thresholding, highlighted in red.



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 29

Figure 18: In blue the dirty spectrum extracted from the central source bounding box predicted by Blobs Finder (Fig. 16),
in dotted-red the DeepGRU’s prediction. Vertical blue bars delimit the true emission ranges, while red bars the predicted
emission ranges. A secondary fainter source emission peak is detected by DeepGRU and thus the source is flagged for
deblending.

3. secondary peaks not overlapping in frequency with the primary peak are analysed:

■ the snr measurements eq. (2) find the reference pixel in the image s(x, y).
■ friend of friends algorithm is used to link pixels around the new reference pixel in s(x, y) until a satu-

ration level is reached when calculating the SNR eq. (1) iteratively.
■ a bounding box is created to encompass all the selected pixels, and a [64, 64] pixel image is cropped

around the bounding box.

4. secondary peaks overlapping in frequency with the primary peak are inspected:

■ if the primary and secondary peaks coincide spatially (p(x, y) = s(x, y)), then the secondary peak is
discarded as a false detection (condition marked as 2 in Fig. 19).

∗ e.g. DeepGRU may predict a single peak as two separate peaks or Blobs Finder predicts a single
true source as two very close blobs.

■ if p(x, y) = s(x, y) but SNR eq. (1) increases : the secondary peak is deemed as part of the primary
source and the source emission range is extended accordingly.

∗ it may happen if DeepGRU overpredicts the true emission range.

Finally all spectrally focused sources with SNR lower than 1 eq. (1) are flagged and removed.
Fig. 20 gives an example of Spectral Focusing applied to the potential sources detected by Blobs Finder

and DeepGRU in the test cube already displayed in Fig. 15. By focusing on the two peaks detected by the
DeepGRU Fig. 18, the two blended sources produce two different images (Focused Source 0 and 1) which can
be analysed independently.
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Figure 19: Schema of the False Positives detection and source deblending pipeline which constitutes step 9 in Fig. 14.
Numbers 1 and 2 show two possible conditions: a potential source being defined as false positive and discarded from
further analysis. The subscript FG (focused global) indicates that the Global SNR is measured on the focused source,
while L implies a (local) Pixel SNR measurement. Flagged expresses that multiple peaks are detected within the potential
source’s spectrum and thus the source is flagged for deblending.
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Figure 20: An example of source spectral focusing of sources within a test set image. On the Left, as reference, we plot
the dirty integrated cube with the predicted 2D bounding boxes obtained by Blobs Finder highlighted in different colours.
The legend matches the source number to the bounding box colour in the image and the measured Global SNR eq. (1).
On the right, there are the 6 Spectrally Focused images obtained by integrating over the predicted line extensions found by
DeepGRU and cropping a [64, 64] pixel image around Blobs Finder’s predicted bounding boxes centres. In each focused
image it is also showcased the measured Global SNR. A substantial increase in SNR occurs when sources are focused
around their actual emission ranges.
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An additional advantage of focusing is the improved dynamic range of the detected signal with respect to the
registered one in the reference dirty integrated image.

Generalization to more complex spectral profiles: DeepGRU makes the assumption that emission lines are
mostly consisting of a single Gaussian. This simple approximation is valid for a large fraction of ALMA targets,
but there are other sources with complex velocity structures such as lopsided gas distributions in galaxies,
combinations of Giant Molecular Clouds, etc. In order to generalize the treatment to cover more complex spec-
tral profiles, improved simulations are needed to train the model. In fact, DL models do not generalize well
outside the boundaries of their training set. The improvement of the simulation is planned as follow: 1. Em-
ployment of multiple ALMA array configurations and observational parameters to address QSO simulations
and, e.g. through the collaboration with the SKA Source Finding Focus group, complex morphologies of el-
liptical and spiral galaxies are generated through physics based modelling. This will be further extended to
simulate other objects with complex structures (for instance gas distributions, molecular clouds) and multiple
spectral lines but at a later stage; 2. Recover a targeted and comprehensive selection of simulated ALMA
observations of interesting objects. Real data and simulated data will be labelled as True and False and a
Generative Adversarial Network will be tasked to modify the simulated images until they cannot be discerned
anymore from the real data. This will allow us to generate truly realistic moc data on which to re-train our
pipeline.

5.3.3 ResNets

Prediction of morphological parameters of the detected sources (FWHM, coordinates x and y, projection an-
gle pa) is performed by ResNets (stage 10 in Fig. 14). Celestial coordinates are computed as photometric
baricenters (pixel-weighted centers) of the Blobs Finder predicted bounding box. Source fitting in spatial and
frequency domains are combined to create a 3D Gaussian profile.
A 3D segmentation map is created. The segmentation map is dilated by a factor of 1.5 to account for the
convolution process spreading the continuum and the line emission signals in the image. This is performed to
make sure that all the source signal is contained within the 3D segmentation map. A dilated 3D segmentation
mask is used to create the model-masked cube by multiplying it with the dirty cube. The inverse mask is in-
stead used to capture the continuum cube. The continuum image is created by averaging the continuum cube
in frequency. The line emission cube is created through the following formula:

Lz[x, y] = Mz[x, y]− f(z) ∗ C[x, y] with z ∈ ∆z (3)

where Lz[x, y] is the 2D line emission image at slice z, Mz[x, y] is the model masked 2D image at slice z,
C[x, y] is the continuum image and f(z) is the 1D continuum model. The line emission cube is integrated along
the frequency to create the line emission image which is fed to a specialized ResNet predicting the source flux
density in mJy/beam.

In summary, ResNets allow us to estimate morphological parameters of the detected sources, measure
their continuum and the line emission in addition to create the reconstructed cubes. Please note that in case
of overlapping/blended sources, the fitting of the morphological parameters is executed simultaneously. Each
detected source (primary or discovered seconday source) is fed to the ResNet to regress the source morpho-
logical parameters. The characterization is thus performed simultaneously and no information about the two
sources, or any previous source seen in inference, is employed to predict the source parameters.

5.4 Train, Test, Validation

The 5000 simulated ALMA Dirty cubes (described in Subsec. 4.2) are grouped in sets and a split ratio of
60-20-20 to train, test and validate is employed.
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◦ The training set is used to train the DL models within the pipeline.

◦ The test set is used to measure the pipeline performances in detecting sources and in regressing their
parameters.

◦ The validation set is used to measure the training progress and assess generalization capabilities.

5.4.1 Training and Validation

The training allows the model to learn initially a median representation of the data (which should contain
information about the dirty beam and the noise patterns) up to the nuances in the data, such as source positions
and morphological properties (the shape and sizes of the galaxies). Details on of the training strategies are in
Subsec. 4.5 of [3].
At first training occurs in parallel on the whole pipeline starting from pairs of dirty input images (dirty cubes
integrated along the frequency) and target sky model images (target sky model cubes integrated along the
frequency) with the Blobs Finder model. DeepGRU is trained on pairs of dirty spectra (extracted from the
dirty cubes) and clean spectra (extracted from the sky model cubes). The DeepGRU predictions are used in
combination with Blobs Finder’s predictions to extract the spectrally focused galaxy images. Targets for training
are the simulated source parameters. The three ResNets for morphological parameters estimation are trained
simultaneously. In the first training iterations, care is taken in DL model to prevent overfitting. Successively,
each model is trained independently on the un-augmented training set predictions of the previous model. In
this way, each model corrects for biases introduced by the previous one.
Validation is used to fine tune the training stage. Sec. 4 of [3] provides the description of the validation loss
implemented in the algorithm.

5.4.2 Testing: Accuracy evaluation of detected sources after training

The test set is used to evaluate whether the algorithm can generalize well to an unseen dataset (i.e. the 1000
ALMA simulated cubes). Blobs Finder and DeepGRU detection capabilities are performed quantifying the
overlap of the Ground Truth and the Prediction region, given by the Intersection over Union (IoU). For Blobs
Finder, the 2D IoU between the true 2D bounding box and the predicted one is measured. For DeepGRU, the
1D IoU is measured between the true emission ranges and the detected ones. At least 60% of the 3D emission
range of a source has to be captured and a true positive (TP) is detected. The 0.6 IoU threshold is chosen
to guarantee that 90% of the true emission range is captured within it, given that the line emission image is
created through the dilated segmentation mask.

Blobs Finder succeeds with an 89% efficiency and a 0.1% contamination. Spectra from the detected dirty
cubes are extracted and fed to DeepGRU, that provides a 99% efficiency and a 0.02% contamination. Sources
are “spectrally focused” within the predicted frequency emission ranges ∆z, and SNR checks are made. It
allows to further investigate false (FP) and true positives. The full logic of the FP removal process is shown in
Fig. 19. Blobs Finder’s false detection is eliminated by DeepGRU, as described in conditions 1 and 2. Figs. 21
and 22 show some examples of Blobs Finder predictions on the test set. For each block, the upper, middle
and bottom rows show the input integrated dirty cubes, the target sky models, and Blobs Finder predictions,
respectively.

The clean peaks found by DeepGRU are characterized by the ResNets. Fig. 18 of [3] shows the scatter
plots of the true parameters versus the predicted ones and the corresponding residuals histograms. The vast
majority of residuals lies within ±1σ, indicating that the process is perfectly under control.

Last, DeepFocus is shown to obtain better results than other machine learning techniques when applied
on the same test data set. Please refer to Sec. 5 of [3] for more details.

https://academic.oup.com/mnras/article/518/3/3407/6825518?login=true
https://academic.oup.com/mnras/article/518/3/3407/6825518?login=true
https://academic.oup.com/mnras/article/518/3/3407/6825518?login=true
https://academic.oup.com/mnras/article/518/3/3407/6825518?login=true
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[b]1
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Figure 21: Examples of Blobs Finder predictions on the test Set. The first row shows input integrated dirty cubes, the
middle row the target sky models, and the bottom row, Blobs Finder predicted 2D Source Probability maps. In green are
outlined (in the dirty and sky models images) the true bounding boxes, while in red the predicted bounding boxes extracted
by thresholding the probability maps.
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Figure 22: Examples of Blobs Finder predictions on the Test Set. The first row shows input integrated dirty cubes, the
middle row the target sky models, and the bottom row, Blobs Finder predicted 2D Source Probability maps. In green are
outlined (in the dirty and sky models images) the true bounding boxes, while in red the predicted bounding boxes extracted
by thresholding the probability maps.
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5.5 Comparison with tCLEAN and speed-up estimation

Preliminary results on comparing the capabilities of DeepFocus with respect to tCLEAN on a sample of 1000
simulated ALMA cubes (256x256x128) are provided. In Fig. 23 part of the sample is shown with the first
and second columns representing a sample of the integrated ALMA cubes and sky models. The third column
shows the solution provided by DeepFocus. tCLEAN solution run with 200 cleaning iterations is given in the last
column. Both algorithms are capable to find all sources in this sample. Residuals are measured to compare
the true sky model reconstruction performance of the two algorithms: Blobs Finder’s residuals are within ±1σ,
while for tCLEAN the residuals are deviating above the ±5σ threshold.

The measured residuals will certainly decrease while increasing the number of cleaning iterations within
tCLEAN, but to the detriment of the computational cost. Employing the sample of 1000 ALMA cubes, we can
compare the computational cost of the two algorithms when using 200 cleaning iterations for tCLEAN:

■ Blobs Finder made its predictions on the entire Test set in 23 seconds employing a single NVIDIA
Tesla K20.

■ tCLEAN took 4.3 minutes per cube utilising 8 Intel Xeon E5-2680 CPUs. Given the 400 CPUs at our
disposal, we run it on 50 cubes at a time in parallel obtaining a total computational time of 1.5 hours.

Employing BlobsFinder for the reconstruction task on the entire Test set results in a speed-up factor of
200 on our system with respect to tCLEAN. If we consider the possibility to accommodate DeepFocus within
tCLEAN, if we account for the major cycle procedure execution time, this workout will provide an improvement
in speeding up the CASA procedures of at least a factor of 150.

We are aware that the promising speed up in the procedures when employing DeepFocus within tCLEAN
will not solve unfortunately the performance problem of the Wideband Sensitivity Upgrade [23] alone. However,
it will make a huge contribution. If this is not enough for ALMA2030 era, we may explore the generalization of
the algorithm to perform a whole deconvolution process independently to tCLEAN.

Note on the speed calculation and sustainability: We are planning to measure execution speed of Deep-
Focus and tCLEAN in a setting suited to ALMA operations. Estimates of costs will also be accounted and
compared.
So far, the provided comparison in speed is made with prediction time only. The total pipeline training time
lasted around 5 hours, while tCLEAN 1.5 hours (as tCLEAN does not need training time). Nevertheless this
is a one time investment when DeepFocus is used within the CASA framework. DeepFocus is shareable as a
python script plus a series of weight files (like pre-trained networks are shared by Google, Pytorch and so on),
and the community would thus benefit of an active learning paradigma (the model is periodically trained on
new and improved data) in order to provide the best possible performances.
DeepFocus algorithm is run on a graphics rather than central processing units, with a potential lower cost than
several CPUs on a long run operational perspective.

5.6 Ongoing developments and outlook

So far DeepFocus is applied to simulated data sets. An application of DeepFocus to real data is ongoing. An
archived ALMA QSO sample is under development to be fed to the algorithm in the search of serendipitous
galaxies. This work will stand on previous work of a well-known sample. Although the goal is to detect faint
serendipitous objects, the robustness of the algorithm is going to be strengthened. In fact, while Deep GRU
and Blobs Finder may produce false detections, previous work on other Radio Interferometric data (such as
SKA Data Challenge 2, Westerbork Synthesis Radio Telescope data) seems to suggest that the problem of
false detection can be reliably solved by running classifiers after the detection process. Those classifiers are
capable to distinguish true from false detections. ResNets Classificators and Random Forests have been



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 37

Figure 23: Comparison of DeepFocus and tCLEAN on a set of 1000 simulated ALMA cubes. In the images, the first,
second, third and fourth columns shows a sample of Dirty Images, target Sky Models, Blobs Finder’s reconstruction and
tCLEAN reconstructions with niter = 200.



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 38

already successfully tested for this task.
Simulations for the creation of the ALMA cubes have been discussed for further improvements. On the short
term, tests shall be performed to cross-check if sources that are off axis from one channel to another are well
detected by the algorithm: introducing extreme cases with respect to what already implemented. Larger data
cubes shall be created and tested to meet the challenges introduced by the approved upgrades [23]. The
technique shall also be tested and trained to detect continuum only in continuum imaging and noise only in
cubes and continuum imaging.
On the long term, we want to refine the simulations employing physical properties to include more complex
source morphologies, use physically-based models for the galaxy kinematics, and employ spectral catalogues
to generate several spectral profiles for different class of sources with the primary goal to improve the quality
of our simulations, and the additional goal of having a publicly available, and easy to use simulation code that
the community may use to generate common data sets on which compare different architectures. The pipeline
is foreseen to be modified to account for such more complex spectral profiles.
Refinements on the simulation code and detection algorithm are also needed to detect other complex and
reach environments as when observing the galactic center or the SZ effect for absorption lines.
Because of the several and complex celestial radio sources detectable with ALMA, the algorithm shall be
expanded to allow for transfer learning. For instance, domain adaptation will allow the algorithm’s ability to
learn from both artificial and real data. The basis of this development are important in operations in view of
ALMA2030 [23].
Last, we want to start the endevour to support CASA in an attempt to develop an hybrid approach, as suggested
by Ryan Loomis (NRAO), to have both full tCLEAN and ML capabilities implemented. This approach has the
big advantage to allow DeepFocus to learn during operation and refine the ML algorithm while still relying on an
established and understood technique as tCLEAN.

6 Final remarks and future perspectives

We demonstrated the capabilities of two machine learning techniques applicable to ALMA data and capable to
overcome current issues in synthesis imaging. RESOLVE is capable to detect diffuse emissions as well as point
sources. DeepFocus has exceptional capabilities in speeding up procedures. Both techniques need further
testing. The team is motivated to move forward with further developments. A number of young and enthusiastic
researchers would like to join our enterprise. We appreciate your feedback and support for continuing this
study.

7 Appendix

■ Bayesian and Machine Learning Methods in the Big Data era for astronomical imaging (Guglielmetti, F. et
al.)

■ Bayesian statistics approach to imaging of aperture synthesis data: RESOLVE meets ALMA (Tychoniec,
L. et al.)

■ 3D Detection and Characterisation of ALMA Sources through Deep Learning (Delli Veneri, M. et al.)
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