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ABSTRACT

There is no doubt that the future telescopes of diameter more than 10m, dubbed
"ELTs’, will employ segmented mirrors. The performance of these telescopes may
be severely limited by discontinuities in the wavefront, caused by segmentation errors
such as segment piston, tip-tilt, figure errors and edge effects. These will particularly
affect AO performance, and it is therefore of interest to know what techniques are
available to reduce these errors, and what performance can be expected of them. In the
framework of a Research and Training Network on Adaptive Optics for ELTs, funded
by the European Commission, we are in the process of evaluating the performance of
various piston measurement techniques which are either in use on current segmented
telescopes, or which have been proposed. In this article we present an overview of
these phasing techniques and the performance criteria we will use to compare them.
We give detailed results on our study of one particular technique, the Chanan narrow-
band phasing technique, which is employed on the 10m Keck telescopes and will also
be employed in a modified form on the 10m Gran Telescopio Canarias (GTC). We
have developed a new algorithm for extracting the phase information and show that
this leads to improved performance. We show that the technique can work with suffi-
cient precision on telescopes as large as 100m.

1. INTRODUCTION

In addition to the usual optical errors associated with monolithic telescopes, segmented mirror telescopes present other
errors due to segment misalignment. In general, the segments have six degrees of freedom; translation along two axes in
the plane of the segment, rotation about a vertical axis, rotation about two horizontal axes (tip and tilt), and translation
along the vertical axis (piston). Undesired motion in any of these degrees of freedom will give rise to departure from the
ideal mirror shape and hence affect the wavefront quality. Movement in piston or tip-tilt generally produces wavefront
discontinuities. Movement in the first three degrees of freedom is restricted by attachment to the primary mirror cell and
will not be considered further here. The segments usually have three actuators each, allowing the segment to be positioned
in tip, tilt and piston. The effect of these errors on long-exposure image quality has been examined elsewhere (Bello et
al., 2000) and the effect on diffraction-limited images has also been presented (Zeiders, 1998). As it is planned that
practically all ELT observations will employ adaptive optics, we are particularly concerned with the effect of these errors
on diffraction-limited images.

We will consider piston and tip-tilt separately. The effect of random segment piston errors on Strehl ratio depends
on the statistics of the piston errors. However, in the limit of small piston errors, the average Strehl ratio is given by
('aitskova, 2000)

<S>nxl-0 (1 <) Q)

where N is the number of segments and o2 is the variance of the segment piston errors. The effect is larger as the number
of segments increase, and for ELTs the Strehl ratio can be approximated by 1 — o2 . In the near infrared, this expression
may be taken to imply quite relaxed values of piston. However, since piston will be only one term in a long list of
wavefront error sources, it will in fact be necessary to control it precisely. For example, a Strehl requirement of 0.95 at
a wavelength of 1.25 microns implies an accuracy of 44nm in the segment piston control (note that in this article piston
values are referred to the wavefront, values at the mirror are a factor of two smaller). Of course, if it is hoped to carry out



Adptive Optics at visible wavelengths, then the piston errors will have to be small. For example, a Strehl ratio larger than
0.9 at a wavelength of 0.55 microns implies piston errors less than 25nm (12.6nm at the mirror).

In the case of small tip-tilt errors, the Strehl ratio is given by (Yaitskova, in prep.)

<S>~1-0k-v, @)

where o7 is the variance of the tip-tilt angle and v = 5/36 in the case of hexagonal segments. For example, for a segment
dimension of 2m, a Strehl ratio greater than 0.95 at a wavelength of 1.25 microns corresponds to rms tip-tilt errors of less
than 54 nrad (0.011 arcsec). Tip-tilt errors can be measured with high precision using, for example, a Shack-Hartmann
wavefront sensor.

This discussion assumes that the AO system will not correct any of the wavefront error introduced by segment mis-
alignment. In fact, AO will always provide partial correction, even if the AO system is not specifically designed to do
so (Gavel, 1997). This is especially true in the case of high-order AO. For low-order AO where there are not many sub-
apertures per segment, it would be advantageous to choose the geometry of the AO wavefront sensor so that there are
subapertures which cross segment edges in a regular way (Bello, 2000). In general, it is necessary to carry out numerical
simulations in order to accurately determine the performance of a given AO system in the presence of segment misalign-
ments. However, in the absence of simulations, expressions (1) and (2) may be taken as pessimistic estimators of the
effect of piston and tip-tilt on the Strehl ratio.

A now classical method for phasing segmented mirrors is that implemented in the Keck telescope. Individual segment
tilt and piston are adjusted in closed loop using position actuators, the error signal being provided by capacitive sensors
measuring inter-segment steps. Periodic calibration of these sensors is required, and a number of convenient techniques
have been developed by Chanan et al. (2000), and will be further discussed in Sect. 3. The loss of operational time
implied by periodic calibration is moderate; at the Keck, the reported duration of a calibration run is less than an hour
and the periodicity is counted in weeks. Accuracy is deemed sufficient for seeing-limited performance. In view of the
technological progress made since the design of the Keck telescopes, substantial improvements in sensor characteristics
should allow a further reduction of the operational load implied by this methodology, and Chanan indicated that the
technique could readily be extrapolated to a large number of segments (Chanan, 2000).

In the case of Extremely Large Telescopes, for which near-diffraction limited performance is mandatory, it remains to
be established whether this technique can meet the requirements. In addition, in view of the large number of segments —
up to several thousands — reliability considerations may imply that the frequency of calibration or cross-checks has to be
increased. It is in this context that this article is presented.

Quite a number of alternative calibration techniques have been proposed over the last few years. Our long-term
purpose is to assess the potential performance of each method, devise and perform laboratory and on-sky experiments for
the most promising ones, and eventually establish a phasing methodology for an adaptive, Extremely Large Telescope
such as the 100-m OWL. This article covers a brief overview of existing or proposed on-sky calibration methods, and
provides preliminary simulation results.

2. OVERVIEW OF TECHNIQUES

There are several considerations to be taken into account when comparing segment alignment techniques. The precision
of the technique should of course be better than the alignment specification, while the range should cover the expected
errors due to thermal and gravitational deformations, sensor drift etc. It would also be desirable for the technique to have
sufficient range to align segments after they have been installed. The measurement should be fast so as not to take up
useful observing time. Even if it can be carried out in parallel with observation, the time taken should be short compared
with typical active optics timescales (minutes). The technique should not require interaction with the telescope (e.g.
stepping the segments). Finally, the comparison should evidently include cost and operational complexity.

Several approaches to segment alignment can be found in the literature. In order to correctly position a segment, it is
necessary to determine the three dimensional position of three non-colinear points on the segment surface. The approaches
to determining segment position can be grouped as follows (Glecker, 1991): (i) absolute position (ii) relative piston and
absolute tip-tilt and (iii) relative piston and relative tip-tilt.

The absolute position of the segment in three dimensions can be obtained using techniques such as absolute distance
interferometry. The practical implementation would be complex and the accuracy in measuring (for example) the distance
from the segments to a point on the secondary mirror would be several microns at best.



The absolute tip-tilt of the segments can be found using a Shack-Hartmann wavefront sensor with a single subaperture
per segment. If an AO system is operating, the segment tip-tilt could be determined by low-pass filtering applied to
subapertures falling within segments. It would be necessary to know the orientation of the subaperture array with respect
to the segmentation pattern at all times. In principle, the absolute tip-tilt can also be determined by other techniques which
would not require part of the light to be diverted to a wavefront sensor e.g. using a laser scanner and small reflectors or
holographic optical elements on the segments. However, it would appear more practical to employ wavefront sensor
information from the AO system or from a dedicated sensor which can be deployed in the field of view. Relative piston
can be sensed either optically or using capacitive or inductive edge sensors. The Keck telescope employs capacitive edge
sensors (Minor, 1990), while inductive edge sensors have been proposed for the CELT telescope (Nelson, 1999). In either
case, optical calibration of these sensors will be required on a regular basis.

Finally, relative piston and relative tip-tilt measurement can be carried out using two edge sensors on the segment
edges. This is the strategy employed at the Keck telescope. It is not sensitive to modes which do not give rise to edge
discontinuities e.g global tilt, piston or Sfocus mode$, in which the segments move in piston and tilt to give rise to a
primary mirror defocus. These modes can be determined by low-order wavefront sensing. Again, the edge sensors need
to be calibrated optically from time to time.

The optical techniques which are either employed or proposed to measure relative piston will be outlined in the
remainder of this section (see also Owner-Petersen et al. (1999)).

2.1. Wave-Optics Shack-Hartmann Sensing

This technique was developed to optically phase the Keck telescopes. It is based on a wave-optics generalization of
Shack-Hartmann wavefront sensing. It will be considered in detail in this article (Section 3).

2.2. Curvature Sensing

Curvature sensing is based on measuring the difference in intensity between images obtained equal distances before and
after the telescope focus, and is employed in several adaptive optics systems (Roddier, 1991). It has been proposed
that curvature sensing can be used to detect piston errors (Rodriguez-Ramos,1996). Cuevas (2000) has shown that the
curvature signal does indeed contain information on relative pistons. When the extra-focal distance is large, the relative
piston between two segments gives rise to a *double-delta’ function in the curvature signal along the segment boundary.
The amplitude of the delta functions is proportional to the relative piston. In the approach of Rodriguez-Ramos & Jimenez
(Rodriguez-Ramos, 1996), the extra-focal distance is small and the signal dependence on relative piston is non-linear. An
iterative algorithm is therefore used to extract the piston information. Chanan (Chanan, 2000) has used a curvature-type
sensor to measure piston errors at the Keck telescope. In his experiments, he obtained de-focused images on an infrared
camera operating at a wavelength of 3.3 microns. He determined the piston error on a segment-by-segment basis by
comparing the curvature signal with numerical simulations of the curvature signal corresponding to different piston errors
in a single segment. He reports an accuracy of ~40nm.

2.3. Interferometry

Relative piston errors can be measured using different interferometric techniques, such as Mach-Zehnder (Angel, Ja-
cobsen, 1994) or shearing interferometry (Horton, 1990). In general, white-light interferometry is necessary in order
to identify zero piston error, while narrow-band interferometry is required to increase precision. In the Mach-Zehnder
scheme, light from a star is divided between the two arms of the interferometer; the light is passed through a pinhole
on one arm and then re-combined with the light in the other arm. If used with adaptive optics, the pinhole size can
be diffraction-limited. The technique can measure piston errors for all segments simultaneously. In the radial shear-
ing approach proposed by Horton (1990), the image of one segment is magnified and made to interfere with light from
surrounding segments. In the absence of adaptive correction, the interference fringes will be randomly (and rapidly)
distorted by atmospheric turbulence, and this represents a fundamental limitation of these techniques. Dohlen (1998) pro-
posed making interferometric measurements simultaneously at two wavelengths in order to remove the 27 ambiguities in
the piston measurements. It has also been proposed to mount a Michelson interferometer on a robotic arm which positions
the interferometer in front of the segment edges (Arasa, 2000). This technique has the advantage of being able to operate
in the daytime, and therefore does not use any useful observing time. The interferometer needs to include active fringe
stabilization in order to cancel the effect of mechanical vibrations.

2.4. Pyramid Wavefront Sensing

It has recently been suggested that pyramid sensing could be used for piston sensing. This idea has been examined using
simulations and the results are presented elsewhere in these proceedings (Esposito & Devaney).
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2.5. Phase Diversity

In phase-diverse wavefront sensing, pairs of in-focus and out-of-focus images are recorded. The amount of defocus is
small and precisely known. An iterative technique is used to find the pupil aberrations which best match the measured
data. This is similar to phase retrieval, but the de-focused image provides extra constraints on the solution. It was predicted
that it should be possible to use this technique to determine piston errors (Paxman, 1988). An experiment was carried
out at the Keck telescope, but the results were inconclusive. This may be due to the fact that the seeing was poor and the
stellar reference source, which was supposed to be point-like, was in fact resolved by the telescope (Lofdahl, 1998). They
propose to repeat the experiment in parallel with operation of the Keck adaptive optics system.

3. THE CHANAN NARROW-BAND ALGORITHM APPLIED TO ELTS

This technique is the first we have investigated in detail. It is based on a Shack-Hartmann-type wavefront sensor, where
the lenslet array is preceded by a mask at the position of the exit pupil that defines small subapertures at the center of each
of the intersegment edges. In the case of the Keck telescopes, these subapertures are circular; in this paper we refer to
square subapertures as will be used at the GTC (Devaney, 2000). The size of the subapertures is chosen to be smaller than
the average Fried parameter, rq, of approximately 20cm at a wavelength of 500nm. At the Keck and at the GTC this size
is 12cm with respect to the primary mirror.

3.1. Description of the Algorithm to Extract the Phase

In this section we will concentrate on the algorithm applied to extract phase information from a single intersegment
edge step (or piston step). The original Chanan narrow-band technique (Chanan, 1998) is described and compared to a
modified algorithm. Both techniques exploit the diffraction pattern produced by a small intersegment subaperture and
monochromatic light from a bright stellar source. The resulting simulated diffraction patterns for various piston steps are
shown in Fig. 1, and their projection on the x-axis in Fig. 2. The two algorithms under comparison differ in the way they
make use of these images.

In the Chanan approach, an image taken from a subaperture with unknown piston step is compared to a set of 11
simulated images like those of Fig. 1. The real piston step is somewhere between the piston steps of the two most similar
images. The degree of similarity is determined by calculation of a correlation coefficient; a finer resolution than the
piston step difference between two templates (\/11 at the wavefront (WF)) is achieved by quadratic interpolation of the
correlation coefficients. For improved accuracy the primary mirror segments are stepped though 11 piston values spanning
A/11 (WF) using the segment actuators.

We propose a new approach which is based on extracting a single characteristic value from each simulated image
related to the piston step, and then calculating a calibration curve. One possible characteristic value, which will be applied
here, is the ratio between the two main peaks in the diffraction pattern (see Fig. 2). We will refer to this technique as the
peak ratio technique (See also (Bello, 2000)). Defining the peak ratio as PR = Max(right peak) /Maz(left peak) we
obtain the calibration curve shown in Fig. 3. In this figure the calibration points obtained from the simulation are plotted
together with a fitted polynomial of third degree to (the logarithm of) these points; it represents the data with sufficient
accuracy. The coefficients of this polynomial are used as calibration data. For a given subaperture image, the peak ratio is
calculated and processed with the calibration data in order to obtain the required piston step.
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The resulting precision under perfect conditions of the Chanan technique (without stepping the segments) and of the
peak ratio technique are plotted in Fig. 4. The precision of the peak ratio technique is only limited by the validity of the
polynomial fit to the calibration data and by calculation roundoff errors, whereas the original Chanan technique shows
an intrinsic error of up to 18nm. The performance under non-perfect conditions is discussed in the following sections.
Possible sources for the intrinsic error of the original Chanan technique are the following: (i) To calculate the correlation
coefficients, all images first have to be re-registered, so that the centroids coincide exactly with the array center, and not
just to within the nearest pixel. (ii) The correlation coefficients do not exactly show a quadratic dependence. In (Chanan,
1998) a deviation of up to 0.7% between the coefficient and its quadratic approximation is stated. (iii) The process of
calculating the correlation coefficient itself could be an error source. Since we used our own analysis code, it is possible
that the code used at Keck is further optimized and shows less intrinsic errors.

It is possible to extract the maximum values of the peaks even in bad seeing conditions or with relatively high photon
noise. In Fig. 5 the resulting PSF for various seeing conditions and a fixed piston step of A/4 are plotted (straight line).
As the seeing gets worse, the binary structure gets less distinct. But even in the case of barely having a binary structure
it is still possible to extract the maximum heights of the two peaks involved. Fitting the sum of two gaussians to the PSF
will yield the results shown in Fig. 5 (dotted lines). With this method it is possible to obtain a result for Fried parameters
as small as 7o ~ 6cm at 650nm. As is shown in Fig. 6, the calibration curves obtained for different seeing conditions
differ slightly, leading to measurement errors as discussed in Sect. 3.2. This Gaussian fit method is also suitable for the
case of having photon noise as discussed in Sect. 3.3. An important advantage of the Gaussian fit method is the fact that it
provides not only the values of the two peak heights, but also an estimation of their uncertainties. Knowing the precision
of each piston step measurement allows us to perform a weighting when calculating the segment piston values from all
measured subaperture piston step values, as described in Sect. 3.4.

Both the Chanan and the peak ratio technique result in a useful range which depends on the wavelength used. The
maximum unambiguous piston step is i% at the wavefront. The maximum deviation from the mean value of the segment
pistons is then i% at the mirror. In the case of A = 650nm this means that the segments have to be already aligned to
better than 162nm. It is therefore convenient to take another measurement at a different wavelength in order to avoid the
ambiguities. If A\; = 650nm and A\, = 850nm then the range is about 10 times greater.
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3.2. Performance as Function of Seeing

As described in Sect. 3.1 and shown in Fig. 5 the shape of the diffraction pattern changes with the seeing conditions.
The way this affects the measurement precision depends on the method chosen to extract phase information. At the Keck
telescopes, only 11 images at perfect seeing conditions are simulated and compared to the real image under investigation.
Surprisingly, the original Chanan technique works better when seeing gets worse, as can be seen in Fig. 7. In the peak
ratio technique worse seeing conditions will produce a greater peak ratio error due to a systematic error in the gaussian
fit. The resulting measurement errors for various seeing conditions are shown in Fig. 8. The precision is greatly affected
by the seeing condition. However, since the error of the gaussian fit is systematic, one can correct for it. Calculated
calibration curves for various seeing conditions are shown in Fig. 6. The real seeing condition can be estimated from the
width of the fitted peaks and one can apply the corresponding calibration curve. The resulting piston step measurement
error is then almost reduced to its value at perfect conditions, as can be seen in Fig. 9.

3.3. Performance as Function of Magnitude

In this section we will calculate the stellar magnitude required to phase the mirror using the narrow-band technique with
the peak-ratio algorithm. The limiting stellar magnitude will depend on the number of photons required to measure the
piston errors with the specified accuracy. The magnitude of a star is related to the number of photons arriving at the
detector as follows:

n = ntAe10704MAN ?3)

where € is the system efficiency, t is the exposure time, A is the collecting area, 7 is the number of photons per ecm? per
nm from a zero magnitude star, A\ is the bandwidth, and M is the magnitude of the star.

Figure 10 shows the error in the piston measurement for different photon levels. The given error is the standard
deviation of 360 random simulations at different piston steps — it turned out that in the case of photon noise the gaussian
fit error does not depend on the piston step value. In order to keep the standard deviation due to photon noise in the piston
step measurement below 5nm, approximately 10000 photons per subaperture are required. Although 5nm seems to be
small, one should bear in mind that this is a standard deviation and single measurements may be affected by higher errors.
From simulations of whole mirrors we found that 10000 photons per subaperture will give stable results at all times.

Table 1 shows the limiting stellar magnitude and the corresponding required accessible field to find such a star with
a probability of 90% for different photon levels at the North and South Galactic Poles. Here we assumed the following
values: €=0.8, which is the product of the transmission from the top of the atmosphere to the detector, and the detector
quantum efficiency, t=60 seconds, which is typical of active optics timescales, A=144 cm?, corresponding to square
subapertures with a side length of 12cm, AA=10 nm, and 7(650nm)=8730 cm—2nm~1. The required field of view (FOV)
can be obtained from the probability P of finding at least one star within a given radius, r, on the sky. Since the distribution
of stars on the sky follows Poisson statistics, P is given by:

P=1— 6—1‘21/7r/36002 (4)
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where v is the density of stars brighter than magnitude M per deg? in the considered region. This star density can be
obtained from models of the galaxy or from measurements using for example the Guide Star Catalog, which has been
employed here. From the results shown in Tabl. 1, it can be seen that a minimum accessible field of view of 10 arcminutes
diameter is required to ensure accurate piston measurements at all times. This is comparable to the FOV of OWL.

3.4. Performance as Function of Telescope Size/Number of Segments

So far we have restricted our discussion on the determination of a single intersegment piston step. For the whole mirror
made up of Nyegments hexagonal segments with one subaperture on each side there will be Ngypapertures < 3Ngegments-
The exact value of Nyypapertures depends on mirror design aspects such as the outer shape and the central obscuration,
since segments on the outer or inner borders have less than 6 neighbors. Each segment piston is determined by (up to)
6 piston step measurements and affects the segment piston measurements of all of its neighbors and hence of the whole
mirror. This can be expressed mathematically as a system of linear equations of the form

Piston1; — Piston2; = PS;, )

1= ]., “eey Nsubapertures;

where Pistonl; and Piston2; are the Piston values of the two segments corresponding to subaperture 4 and PS; is the
measured piston step. Since the absolute average phase of the mirror is not of interest, it makes sense to keep it constant,
adding a further constraint;

Nsegments

> Piston = 0. (6)

=1

Egs. (5) and (6) constitute a simple linear system of Nyypapertures + 1 €quations with Ngegments Unknowns (PS;). At
the Keck telescopes the technique of singular value decomposition (SVD) is used to solve this system (Chanan, 1998).
We used this method on simulations of mirrors having up to 1000 segments and found it powerful and robust even on the
scale of ELTs. Figures 11 and 12 show the results of some example simulations of mirrors of different sizes.

Table 1. Limiting stellar magnitude and the corresponding required accessible field (FOV) to find such a star with a
probability of 90% for the peak ratio method at different photon levels at the North and South Galactic Poles. The given
precision is the standard deviation of a piston step measurement at otherwise perfect conditions.

N, Precision | Magnitude | FOVygp [arcmin] | FOVsgp [arcmin]
10000 5nm 11.8 10.1 8.0
2000 10 nm 13.7 5.4 4.7
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Figure 11. Segmented mirror of the Keck/GTC type (36
segments) before (left) and after (right) one phasing it-
eration. In this simulation perfect conditions were as-
sumed. The original piston values are uniformly dis-
tributed with a range of 6530nm and a rms of 1990nm.
Two measurements at different wavelengths have been
performed (A = 650nm, 850nm). The resulting rms piston
error is 0.27nm, the rms piston step measurement error is
0.31nm.
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Figure 12. Segmented ELT mirror (846 segments) be-
fore (left) and after (right) one phasing iteration. In this
simulation perfect conditions were assumed. The origi-
nal piston values are uniformly distributed with a range
of 4000nm and a rms of 1125nm. Two measurements at
different wavelengths have been performed (A = 650nm,
850nm). The resulting rms piston error is 2.0nm, the
rms piston step measurement error is 0.4nm. The smooth
residual is an example of the propagation of errors for

which the sensitivity of the technique is low.

In the SVD method, one essentially provides a matrix, A, defined by the left hand side of Egs. (5) and (6), and a
vector defined by the right hand side, and SVD returns a vector of piston values. In the process, a pseudo-inverse of
A (0f Nsypapertures TOWS and Ngegments cOlumMnNs) is constructed that defines the linear system. Since we deal with an
over-determined system, having more equations than unknowns, and furthermore our measured values are not perfect,
SVD provides a best fit (in the sense of least-squares) to the set of data.

The measured data can be weighted to ensure that the piston step measurements with high precision will have more
influence than those with less precision. This is done by simply dividing all equations i by the absolute error of the
piston step measurement o (PS;). Furthermore, piston step measurements for which the gaussian fit procedure appearantly
did not find a valid solution can be excluded by making the corresponding line of the SVD matrix equal to zero. The
same procedure should be applied if in a two-wavelength measurement a certain piston step measurement yields an
ambiguous solution. Alternatively, the more probable solution can be chosen, and the corresponding error set to a high
value to reflect the ambiguity. Applying these corrections to the straight forward implementation of SVD will give better
results and furthermore will substantially enhance the robustness of the method. If weighting is not applied then a single
erroneous or high-error piston step measurement can not only lead to a wrong piston estimation for the two corresponding
segments, but can also affect a large number of their neighbors. In the worst case, it will not be possible to phase any
of the segments. In the case of ELTs with hundreds or thousands of segments there is a high probability that there will
be some faulty piston step measurements. Applying these weightings will provide stable results even in the presence of
seeing and photon noise.

There are further possibilities to enhance the performance of the SVD procedure that should be used when applying
on ELTs. First, a large number of subapertures leads to accumulating roundoff errors. The overall precision of the phasing
procedure could be enhanced by iterative improvements of the solution to the linear equations. Second, a large number
of subapertures means a large matrix A in the SVD calculations. One can save computation time and memory space by
using the fact that we deal with a sparse linear system — A is mainly made up of zeroes that should not be processed and
occupy memory. The computation times we find with the current, unoptimized code, indicate a computation time of the
order of seconds when implemented on ELTs, if faster CPUs and parallel processing are employed. For further discussion
of SVD as well as the code, see (Press, 1992).

3.5. Practical Aspects

It is clear that for this technique, the number of subapertures increases with the number of segments. If we consider a
regular grid of hexagonal lenslets mapped onto an image of the segmented mirror, then in order to measure the piston step
at each segment edge we need to map at least 2N+1 lenslets onto N segments. There is an extra lenslet centered on each
segment, which can be used to measure tip-tilt. In the case of the OWL telescope, there are 64 segments on its longest
axis and the corresponding number of subapertures is 129. If the hexagonal edge length of the lenslets is 0.3mm then the



length of the lenslet array would be 67mm, and the corresponding pupil demagnification would be approximately 1700.
The lenslets used for phasing would be masked, leaving a 70 micron subaperture at the center. The lenslet array has to be
precisely aligned to the image of the primary mirror for the Chanan technique to work. The alignment should at least be
better than the size of the gaps between the segments. An alignment accuracy of mm referenced to the primary mirror
would imply aligning the lenslet array to better than 0.6 microns. These specifications can be met with currently available
technology. The alignment accuracy can be relaxed by including ’cross-hairs’ in the lenslet masking, with the cross-hairs
aligned to the segment edges. These cross-hairs can also relax the requirements on distortion in the pupil imaging; pupil
distortion may be difficult to reduce when a large pupil demagnification is required. The drawback is a reduction in the
light-gathering area of the subaperture. This can be compensated to some extent by elongating the subaperture in the
direction perpendicular to the segment edges. This idea is implemented in the GTC where rectangular apertures are used
for the phasing.

Another point to consider is the detector size. In order to avoid overlap, the field of view of the images given by the
rectangular subapertures must be at least 50, where ¢ is the rms motion due to seeing.

0% = 0.348(\/d)/3(A/r0)®/® )

where X\ is the wavelength, rq is the Fried parameter and d is the subaperture size. We will have N+1 images on the
detector. Supposing a wavelength of 650nm, the size of the rectangular subapertures as 12cm, the number of images on
the detector in one dimension as 65, and supposing a scale of 0.2”/pixel, then a detector of 1024x1024 pixels will be
enough if the seeing is not bigger than 0.9” (ro=14.5cm). In this case every image is within a square window of side 3.2”
(16 pixels). If the seeing is worse then a 2048x2048 pixels detector will be necessary. Again, this technology is currently
available.

4. CONCLUSIONSAND PLANS

The phasing techniques addressed in this article have been tentatively reviewed for their potential accuracy. We so far
investigated in detail the Chanan narrow-band technique. We showed that a modified version of it can work with suffi-
cient precision and is feasible on telescopes as large as 100m. A comparison of the original Chanan technique and the
alternatively developed peak ratio technique showed substantial performance improvements of the latter.

Much work still lies ahead before completing an extensive assessment, which will have to take into account a complete
and representative set of error sources. So far we have assumed that phasing is dealt with the same way as it is done
in the Keck telescopes i.e., closed-loop phasing with position sensors, the techniques described in this article being
used for calibration of the sensors. An alternative could be on-sky, closed loop phasing i.e. a scheme that would make
phasing an integral part of wavefront control as it is done in active telescopes, thereby providing higher reliability and full
transparency. Whether such approach is feasible at all is yet unknown; the key issues to be addressed will not only deal
with accuracy, but also with the limiting magnitude of the reference source(s) and the implied sky coverage, the affordable
integration time in relation to the stability of segments phase errors, and the interface with adaptive optics. In particular,
any technique that would require prior adaptive correction of atmospheric turbulence will necessarily reduce the field
available for suitable phasing references. On the other hand, piston and tilt detection prior to adaptive correction will
most likely require short exposure or rely on sub-aperture measurements (the size of the sub-apertures being comparable
to atmospheric coherence length), thereby implying brighter sources and limited sky coverage.
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