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Abstract

In this paper, we describe the different methods to simulate Multi-Conjugate Adaptive Optics (MCAO) systems.
First, analytical (error-budget type) and semi-analytical (Fourier) methods are described. We then describe the
different modules required to make end-to-end (Monte-Carlo) simulations of these systems. Finally, we present
some of the computational challenges associated with the simulation of MCAO on Extremely Large Telescopes
(ELTs).

Résumé

Simulation d’optique adaptative multi-conjuguée sur les (très) grands télescopes Dans cet article, nous
décrivons les différentes méthodes pour simuler des systèmes d’optique adaptative (multi-conjuguée, MCAO). Tout
d’abord, nous présentons les méthodes analytiques (budgets d’erreur) et semi-analytiques (Fourier). Nous décrivons
ensuite les différents modules nécessaires au développement d’une simulation complète (Monte-Carlo) d’un tel
système. Enfin, nous aborderons les problèmes lié à la simulation de la MCAO sur les télescopes extrèmement
grands (ELTs).
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1. Introduction

Before building an Adaptive Optics (AO) system, it is important to model it, in order to dimension its compo-
nents to correspond to the requirements of the astronomers, and to understand its performance and limitations.
Once the system is built, simulations can provide insight into the observed performance, and can help to discover
and analyze bottlenecks in performance.

In this paper, different levels of simulation are presented, going from the simplest, order of magnitude estimates
provided by simple analytical formulae, to the semi-analytical algorithms providing PSF estimation to finish by
the full numerical simulations, which allow to model very subtle effects by staying close to the physics of the
atmosphere and instrument.

Finally, a section is devoted to the difficulties in making AO simulations for Extremely Large Telescopes (ELTs).
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2. Analytical modeling

2.1. Error budget

Error budget based tools provide crude estimates to start the dimensioning of an (MC)AO system. They allow,
through simple analytical formulae, to estimate the contribution of various error sources. The variance of different
errors (i) are added independently, and a Strehl ratio (S) estimate is obtained through the Maréchal criterion,
valid for Strehl ratios down to ∼10%:

S = e
−

∑
i

σ2

i (1)

The main error sources for conventional AO (for a conventional SH sensor) are detailed here. For a more
exhaustive error budget analysis, see for example [Parenti & Sasiela(1994)]:
– Aliasing and fitting errors, which are due to the finite spatial sampling of the Wavefront Sensor (WFS) mea-

surement and deformable mirror (DM) correction. σ2 ∝ ( ds

r0
)(5/3), where ds is the sub-aperture and actuator

spacing, r0 the Fried parameter (e.g. [Fried(1977)]).
– Photon noise error, due to the finite amount of photons used to compute the WFS measurement, σ2 ∝ 1

Nph
α2,

where α = ds

r0
if ds > r0, 1 otherwise [Rousset(1994)].

– Read-out noise, which arises from the electronic noise of the WFS detector, σ2 ∝
σ2

e

N2

ph

α4, where σe is the r.m.s

read-out noise of the detector ([Rousset(1994)]).
– The temporal error is due to the limited sampling frequency τ of the AO system, compared to the correlation

time τ0 of the atmosphere: σ2 ∝ ( τ
τ0

)(5/3). (e.g. [Fried(1994)]).
– An anisoplanatism error arises if an off-axis guide star (located at an angle θ) is used to correct an on-axis

science object. σ2 ∝ ( θ
θ0

)(5/3), where θ0 is the isoplanatic angle of the atmosphere. ([Fried(1982)]).
– In addition, if a laser guide star (LGS) is used, the cone effect ([Foy & Labeyrie(1985)]) reduces the performance,

σ2 ∝ ( d
d0

)(5/3), where d0 is an atmospheric parameter describing the intensity of the cone effect ([Tyler(1994)]).
Some of these formulae can be applied for pyramid and curvature sensors, whereas others are directly related

to a slope sensor.
In multi-conjugate AO (MCAO), the anisoplanatism error can be decomposed in two contributions, one due to

the finite number M of DMs and the other due to the finite number of guide stars. The DMs are unable to fully
correct the atmospheric turbulence (composed of many thousands of layers), which this produces residual anisopla-
natism (also called generalized fitting error, [Rigaut et al.(2000)]): θM = 2.905( 2π

λ
)

R

dhC2
n(h)FM (h, H1, H2, ...HM )−3/5,

where Hi are the conjugation heights of the DMs, and FM are weighting functions. See [Tokovinin et al.(2000)]
for more details.

The second error specific to MCAO is the measurement error, which arises because a finite number of guide
stars does not allow to perfectly measure the atmospheric turbulence volume over the field of view which is to
be corrected: < σ2(θ′) >= ek(θ′)( Θ

γk
)(5/3), with γk = ( r0

δk
), where δk is the effective thickness of turbulence for a

given GS configuration, γk the radius of GS position for which the variance reaches 1 rad2, Θ the distance between
reference star and science object, θ′ = θ

Θ
and ek(θ′) represents the error variation in the corrected field of view

(FOV, ek(θ′) = 1) at the FOV center. For more details see [Tokovinin & Vernet(2001)].
These error budgets allow to get an idea of what FOV and limiting magnitudes will be available with a given

(MC)AO system, depending on the atmospheric conditions and system parameters. However, the PSF remains
unaccessible. The following, semi-analytical methods allow to also get an estimate of it.

2.2. Fourier methods

The Fourier (or frequency domain) models are similar to PSF reconstruction algorithms ([Véran et al.(1997)]),
in that they model the residual power spectral density (PSD, Sφc(k, θ)) of the corrected AO phase:

Sφc(k, θ) = Sfitting(k) + Saliasing(k) + Sservo−lag(k) + Snoise(k) + Sanisop(k, θ) (2)

Each error source has it’s own residual power spectrum. Once these errors have been computed (see [Rigaut et al.(1998)]
and [Jolissaint & Veran(2002)], the structure function of the corrected phase can be written:
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Dφ(ρ) = 2

Z Z

dkSφc[1 − cos(2πikρ)] (3)

From there, the modulation transfer function is given by:

MTF (
ρ

λ
) = T (

ρ

λ
) · e−

1

2
Dφ(ρ) (4)

where T ( ρ
λ
) is the Modulation Transfer Function of the telescope without atmospheric aberrations.

This approach has been recently extended to work also for Ground Layer adaptive optics (GLAO), [Stoesz et al.(2004)].
More recently, another Fourier based approach has been developed, which allows the modeling of MCAO, and

also takes into account the correlations between the different error sources. This approach is described in detail in
[Ellerbroek(2005)]. A freely available software package which implements this method, Cibola, exists (see section
5).

Note that these methods assume an infinite telescope aperture for the estimation of some of the error sources.
This amounts to neglecting the beam overlap effects and also has some impact on the aliasing estimation, for
example. Also the use of LGSs is not presently supported.

One particular application of these Fourier methods is to compute the statistics of the AO residuals and to
generate residual phase screens, following this statistics (similar to the method to generate atmospheric phase
screens, see section 3.1). One can then inject these screens into coronograph simulations for example, without
having to run a full AO simulation. This approach is presented for example in [Conan et al.(2004)]. Another way
to use these simulations is to obtain an analytical PSF. It has the advantage of being a true (infinitely) long
exposure PSF, without any residual speckles. This can be useful for example in the analysis of extreme (very high
number of degrees of freedom, aimed at finding extra-solar planets) AO systems. Indeed, the speckle noise can
then be added independently of the AO simulation, to take into account a finite integration time (which can be
significantly longer that that of a numerical AO simulation) .

3. Numerical modeling

Numerical (also called Monte-carlo or end-to-end) simulations of AO allow to model very subtle errors and to
model very precisely what happens in an AO system. Almost any effect can be taken into account, because one
models the propagation of the electric field (phase and intensity) through the atmosphere and then through the
AO system. The drawback is that the time to simulate 1 second of integration time can take hours or even days,
depending on the system and telescope size.

3.1. Atmosphere, propagation

To model atmospheric turbulence, one usually makes the approximation that the turbulence is concentrated
in a few (from 1 or 2 to about 10) infinitely thin layers. In reality, several thousands of individual layers are
present in the atmosphere, but this approximation is precise enough, provided there are more simulated layers
than atmospheric correctors. These “phase screens” can be generated using several different methods, of which
the most simple is described here. For a more comprehensive discussion on this subject, one can read for example
[Harding et al.(1999)]. The “standard “method is based on [McGlamery(1976)], where a screen of random numbers
is taken and filtered according to the Kolmogorov (or von-Karman) spectrum and then inverse Fourier transformed.

The pros of this method are:
– It is fast, since only one Fourier transform is needed.
– It is simple to implement
– It produces “circular”phase screens, which means that one edge of the screen is connect with the edge opposite

to it. This allows to not need to worry about reaching the end of a phase screen, when temporal evolution is
applied (see 3.6).
The cons are:

– Because of the periodicity property of the Fast Fourier Transform, the power spectrum of the turbulence is
Kolmogorov (or von-Karman) only on small spatial scales. At the level of the whole screen, the wrapping
reduces the amplitude of low order modes (like tip-tilt).

– To overcome the lack of low spatial frequencies, the phase screens need to be made significantly larger that
what might needed for the simulation itself (roughly set by the pupil size in pixels).
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Note that some of these cons can be solved by using more advanced phase screen generation algorithms (as
proposed in [Harding et al.(1999)]).

The choice of the number of pixels on the phase screen across the telescope’s diameter is crucial. Indeed, this
sampling determines the maximum field of view of the simulated wavefront sensor(s) and Point Spread Function(s).
This field of view (θs) is given by:

θs = λ
Dpix

D
(5)

where Dpix is the diameter of the telescope in phase screen pixels and D is the telescope diameter ([m]). λ is the
wavelength at which the image is computed.

As an example, for a Shack-Hartmann WFS working at a wavelength of 0.7 µm, with a sensing field of view of
2.3”, and a sub-aperture size of 1 m, the minimum required number of pixels across the sub-aperture is 16. So for
an 8 m telescope, at least 128 pixels across the pupil should be used.

Once the phase screens have been generated, one has to propagate these screens from their associated altitudes
to the telescope aperture (or more precisely to the conjugation height of the WFSs). In the geometric optics
approximation, a screen i is shifted by Si (i.e. the number of pixels corresponding to Si meters) and zoomed by
a factor γi (if they are observed with Laser Guide Stars) according to the following:

Si = θhi (6)

γi =
HLGS

HLGS − hi
(7)

where θ is the angular position of the guide star through which the observation is done.
Finally, all the phase screens associated to each wavefront sensor are added. Note that this procedure is changed

when considering layer oriented wavefront sensing (see 3.3).
A more rigorous way of simulating propagation through the atmosphere is to use Fresnel propagation. Using

Fresnel propagation allows to take scintillation effects into account. These are usually small at astronomical sites
(for more details, see [Vérinaud & Carbillet(2003)]). However, some differential scintillation effects can be non
negligible on extended objects like the sun ([Robert et al.(2005)]).

3.2. Wavefront sensor(s) - Star oriented WFSs

Once the wavefront has been propagated to the wavefront sensor, the phase (and possibly the intensity) can be
analyzed.

3.2.1. Shack-Hartmann WFS
The incoming complex amplitude screen is cut into small squares representing the Shack-Hartmann lenslets. It

is advisable to have an integer number of simulation pixels per sub-aperture, in order to avoid extra interpolation
steps.

The amplitude is then embedded in a larger support, and an FFT is made on this array, allowing to obtain the
PSF of one lenslet. Several points are worth mentioning:
– The size of the support should be at least two times larger than the complex amplitude array, in order to ensure

that the spot in the SH are Nyquist sampled in simulation pixels.
– The field of view in the resulting lenslet PSF is solely determined by equation 5.
– Usually, the FFT centers the peak of the PSF on a single pixels. This is not the optimal configuration for a

SH, where one would like to have the spot centered on the intersection of 4 pixels. To achieve this, a tilt can be
applied to the complex amplitude before the FFT.

– In the calibration phase (when building the interaction matrix), when only small perturbations are observed by
the SH-WFS, the SH spot is (nearly) diffraction limited, which might not be the case when the WFS observes the
atmosphere (even in closed loop, if the wavelength of wavefront sensing is in the visible). In order to distribute
the light of the lenslet PSF onto several pixels (to avoid non-linearities in the calibration phase), one should
simulate the use of a calibration fiber. This can be done by multiplying the input complex amplitude (before
the FFT) by a Gaussian of adequate width (corresponding roughly to the FWHM of the SH-spots during the
closed loop operation).
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Now, the simulation pixels must be converted into CCD pixels. The easiest way of doing this is to have the
lenslet PSF image be an integer number times larger than the expected CCD image. This allows to build the CCD
image by averaging an integer number of simulation pixels.
To summarize, the constraints on the size (in simulation pixels) of the subaperture are:

dpix >= θs
d

λ
(8)

dsupport = Ndpix (9)

dsupport = N ′NCCD (10)

where N is an integer greater or equal to 2, N ′ is an integer greater or equal to 1. dsupport is the support size (in
pixels) in which the array of complex amplitudes is embedded.
An additional constrain can be set on dsupport to accelerate the computation of the Fourier transform (e.g. it
must be a power of 2). Since dsupport has several constrains, usually one takes the largest pixel number of all the
constraints.

After the image in CCD pixels has been computed, noise has to be added. This can be photon noise (Poisson
statistics) and/or read-out noise (Gaussian statistics). One can also simulate other instrumental effects (like non
uniform flat field). After the noise has been added, one can apply a thresholding algorithm before computing the
centroids, as is done in real life WFSs.

The final stage is the computation of the measurement, using either a simple center of gravity, or weighted
center of gravity ([Nicolle et al.(2004)]). This is done on the sensor image as one would do it on real images.

The advantage of such a simulation method for the WFS is that almost any kind of effect (scintillation,
non-uniform flat field etc...) can be simulated. Since it is close to “reality”, new methods (like spatial filter-
ing ([Poyneer & Macintosh(2004)]) can be easily implemented, by filtering the complex amplitude before injection
in the WFS module. The drawback is that the method is computationally more demanding (use of the FFT),
than just computing the slope as phase differences between sub-aperture edges.

3.2.2. Pyramid WFS
The pyramid wave-front sensor [Ragazzoni(1996)] is based on a generalization of the Foucault test for optical

surfaces. The main difference with respect to the original Foucault test is the replacement of the knife edge by a
pyramidal refractive optical element similar in its function to two knife-edges in two perpendicular directions. A
dynamic modulation of the beam can also be applied by means, for example, of a tip-tilt mirror placed in a pupil
plane. Beam modulation permits to linearize the response of the sensor and to increase the dynamical range for
the low order modes.

Two approaches for modeling the pyramid wave-front sensor have been developed so far. End-to-end simulations
using diffraction optics permits to simulate accurately the diffraction effects that are quite important in the
Pyramid sensor. The diffractive model requires two Fourier transforms to compute the intensity distribution in
the pupil plane as described in Fig.1. Once the intensity distribution is obtained the signal is computed for each
sub-aperture with the formula given in Eq.11.

Sx(x, y) = [(I1(x, y) + I2(x, y)) − (I3(x, y) + I4(x, y))] /I0,

Sy(x, y) = [(I1(x, y) + I4(x, y)) − (I2(x, y) + I3(x, y))] /I0, (11)

where Ii(x, y) is the intensity in the sub-aperture located at (x, y) in the quadrant i, integrated during a modulation
cycle; I0 is the average intensity per sub-aperture of the incoming beam.

The effect of the pyramidal prism on the focal plane electromagnetic field can be modeled in two ways, whether
interference between the four pupils is taken into account or not. A complete description of the methods for
end-to-end simulations of the Pyramid sensor can be found in [Carbillet et al.(2005)] and the parallelized version
of the algorithms has been described in [Le Louarn et al.(2004)]. This approach permitted to highlight several
interesting new properties such as the possible application of pyramid wave-front sensing to interferometry as a
differential piston sensor [Verinaud & Esposito(2002)]. The simulation code developed in [Carbillet et al.(2005)]
has been used during the concept study of the Large Binocular Telescope single conjugate adaptive optics system
[Carbillet et al.(2003)]. The gain in terms of sensitivity to photon noise provided by the pyramid sensor has also
been confirmed by these simulations. End-to-End modeling also permitted to show that even in the bright end
regime the pyramid sensor gives better results than the classical Shack-Hartmann sensor. This effect has been
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Figure 1. Main steps for the pyramid sensor simulations

explained using an analytical model developed in [Verinaud(2004)]. Analytical modeling is in fact the second ap-
proach that has been developed. In [Verinaud(2004)] it has been shown that the Pyramid sensor, in the diffraction
limited regime, is very different from a slope sensor and inherits actually properties from direct phase sensors.
The main result of this model is that the noise propagation spectrum of the Pyramid sensor in the Fourier domain
favors the correction of the low spatial frequencies with respect to a Shack-Hartmann. This is a very interesting
property for the detection of exo-planets at small separations, especially with ELTs (the highest spatial frequencies
show up as components far from the PSF core, and therefore to detect exoplanets close to the PSF core, a very
good correction of the low orders is necessary). The analytical model of [Verinaud(2004)] has been used to predict
the performance in halo rejection for an extreme adaptive optics system in the visible on a 100-m Extremely Large
Telescope [Vérinaud et al.(2005)]. In this study, it has been shown that an order of magnitude in integration time
can be gained for the detection of Earth-like planets in the habitable zone around a solar-type star at more than
20 pc distance.

3.3. Layer oriented WFS

The pyramid sensor performs the measurements in a pupil plane. This property has been used to define the
concept of Layer oriented (LO) wave-front sensing ([Ragazzoni et al.(2002)]). The LO concept is illustrated in
Fig.2. LO methods allow to reduce the effect of read-out noise in the WFS, since the light of several stars can
be optically co-added onto the same detector. Moreover, more stars can be used for WFS, since one doesn’t need
to add (noisy) detectors for each additional star. The method for end-to-end simulation of the Layer-Oriented
scheme is very simple. First, the intensity distribution in the pupil plane is computed for the wave-front error
seen by each individual guide star following the usual method described in Fig.1. We can see in Fig.2an example
of simulated intensity distributions when a perturbation occurs in the plane conjugated to the high altitude
deformable mirror. This perturbation is seen at different location in the pupil by each pyramid, simply because
the footprints on the high altitude plane are shifted one to each other. Then, in order to obtain the intensity
distribution on the ground conjugated detector, these individual 4-pupil images are added up, taking into account
the real brightness of the stars. For the high altitude conjugated detector, before adding up the 4-pupil images,
these are shifted to take into account the footprints displacement when not in a pupil plane. Finally the signals
are computed using Eq.11. We can clearly see how the perturbation is seen in focus by the high altitude detector
and out of focus for the ground conjugated detector. The method described here has been used to simulate the
Layer-Oriented sensor [Vérinaud et al.(2003)] of the ESO Multi-conjugate Adaptive optics Demonstrator (MAD)
[Marchetti et al.(2004)].
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Figure 2. The Layer-Oriented wave-front sensing concept based on refractive Pyramids and method for simulation.

3.4. Deformable mirrors

The deformable mirror can be described as an additional phase screen. If the order in which the phase screens
does not matter (geometric propagation), then the DM can be placed directly in the atmosphere. In case Fres-
nel propagation is done, one can also propagate the shape of the DM shape to it’s conjugation altitude. See
[Flicker(2001)] for more details on the order of conjugation of DMs in MCAO.

The shape of the DM is usually modeled with influence functions (IFs), which represent the way the DM deforms
under the movement of a single actuator. Several functional representations of the IFs have been proposed:
– Linear splines, of the type f(x, y) = (1− x

x0
)(1− y

y0
). The advantage of this type of function is that perfect piston

(when all actuators of the DM are pushed simultaneously) and perfect tilt can be produced. These functions are
however “sharp”, i.e. have high spatial frequency components. These can produce unwanted artifacts (spikes)
on the simulated AO PSF.

– More realistic influence functions based on the fit of existing DM influence function. For example, F. Rigaut
proposes to use: f(x, y) = (1−( x

x0
)3.805+3.74log( x

x0
)( x

x0
)2.451) ·(1−( y

y0
)3.805+3.74log( y

y0
)( y

y0
)2.451) (F. Rigaut,
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private communication). The advantage of these is that they represent fairly accurately the shape of a piezo-
stack deformable mirror IF. However, pushing all actuators produces a rippled surface (contrary to real DMs),
which could produce artifacts.

– B. Ellerbroek (private communication) uses splines, H(x, y) = h(x)h(y):

h(x) = h(|x|) for x < 0

= 1 + (4c − 2.5)x2 + (−3c + 1.5)x3 for 0 ≤ x ≤ 1

= (2c − 0.5)(2 − x)2 + (−c + 0.5)(2 − x)3 for 1 ≤ x ≤ 2

= 0 for 2 ≤ x

where c is the interactuator coupling coefficient. These produce a perfect piston when pushed simultaneously.
Also, a perfect global tip-tilt can be produced (some IF models cannot do this, and produce an “wavy” tilt,
contrary to a true DM).

In general, all IFs of the same DM are assumed to be identical.
It should be noted that for the simulation of large DMs, the computation time of the shape of a DM can become
large.

3.5. Interaction matrix generation

The interaction matrix allows to describe the response of the WFS(s) to a known shape of the DM. There are
two ways to compute this matrix, which can be generalized to MCAO through the use of a proper propagation
routine (either geometrical or Fresnel). To generate such a matrix, one pushes a mode on the DM, and records a
vector of measurements on the WFS(s). These modes can either be the IFs (in which case the interaction matrix
is “zonal”) or they can be global modes on the DM (Zernikes, Karhunen-Loeve polynomials, etc., “modal” IM).

In the case of MCAO, the procedure is repeated for each star / WFS and each DM. Propagation should be done
as it will be done in the closed loop phase. Each measurement vector is then stored in a matrix of size Nact×Nmeas

where Nact is the total number of actuators (i.e. the sum of all active actuators on each DM concatenated in
a single vector) and Nmeas the total number of measurements (i.e. the sum of the measurements of all WFSs,
concatenated into a single vector).

Once this interaction matrix is filled, it can be inverted through SVD filtering, or a more complex reconstruction
method can be used (see J.M. Conan et al., in this volume).

It should be noted that the generation of the IM can be numerically intensive, and it is possible to compute
synthetic IMs, by computing analytically the measurement obtained from some DM shape. This is done, for
example, by pre-computing the derivative of the IFs, in case a slope sensor is used.

3.6. Temporal evolution, control

Once the control matrix has been obtained, almost all elements are available to close the AO loop. The sequence
is as follows:
– Initialization

· Generate WFS, DM geometries
· generate atmospheric phase screens
· Load or generate the control matrix

– Propagation
· Propagate phase screens to the WFS conjugation plane, taking into account the location and height of each

guide star.
– AO model

· Compute the measurement vector for each WFS
· Multiply by control matrix to generate command vector
· Generate DM shape according the command vector

– Performance estimation
· Compute the instantaneous (short exposure) PSF in all evaluation directions, for all wavelengths.
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· Compute short exposure Strehl ratio, to see how system evolves
· Add short exposure PSF to the previously obtained PSFs, to get the long exposure PSF.
· Compute long exposure Strehl ratio, to see how system evolves.

– Temporal evolution
· Apply DM shape (with appropriate temporal delay)
· Shift phase screens according to wind speeds. The shift should be done by a non-integer number of pixels to

avoid jumps of turbulence between two iterations.
· Return to propagation phase for next iteration
The temporal delay in this approach is simulated by not applying the DM shape in the same iteration as the

commands were computed. Instead, this shape is stored in a stack and applied at a later iteration (say 1 or 2
iterations later to simulate a 1 or 2 frames delay). Between iterations, the phase screens are shifted, to create a
lag. If a delay of a non-integer multiple of the integration time is to be simulated, a finer simulation clock beat is
required. In that case, not all the operations above are applied during one iteration.

This method allows to very finely simulate the dynamical evolution of the AO loop, and to study for example
how stable it is. This is more difficult to perform in an analytic approach, since only a very crude model of the
loop is usually used.

4. Simulation challenges for ELTs

Many challenges are met when simulating AO on 30-100m ELTs. Most of these are related to the computational
complexity of algorithms involved in the simulation.

Several bottlenecks can be identified in the simulation of MCAO systems.

4.1. Matrix operations

The generation of the command matrix is an O(n6) process, where n is the number of controlled actuators.
Applying the command matrix to a measurement vector is an O(n4) process. These scaling laws show that going
from a 10 m-call telescope AO simulation to a 100 m is a huge jump in the computational requirements. To solve
this, several approaches have been suggested.

For the matrix operations, a combination of several approaches seems to be necessary:
– Parallel computing allows to process massive amounts of data quickly. The matrix operations (matrix multipli-

cations, SVD, etc...) parallelize efficiently, and therefore the gain in using several computers simultaneously is
large.

– Sparse matrix methods allow to reduce the computational complexity by optimizing the way the control matrix
is computed. The reasoning, is that the effect of an actuator is local, and the associated response is also local
(at least in the Shack-Hartmann WFS). Therefore, the interaction matrix is sparse, i.e. most of its elements are
zero. If LGSs are used, the tilt removal causes a de-sparcification of the matrix, if special care is not taken (see
[Ellerbroek(2002)])

– With sparse systems, it is advantageous to not compute the inverse matrix, but to solve, iteratively, the direct
equation Ac = s, where A is the interaction matrix and c and s are the command and measurement vectors,
respectively. This approach has been demonstrated in [Gilles et al.(2002)].

– FFT reconstructor allow to compute, from a set of Shack-Hartmann slopes, the command vector to be ap-
plied [Poyneer et al.(2002)]. Recently, it has been shown that applying modal optimization to this method is
also possible ([Poyneer & Veran(2005)]). Unfortunately, applying this method to MCAO systems has not been
demonstrated.

4.2. Simulation improvements

Several approaches have been used to improve the performance of AO simulations. The re-coding of existing
simulation tools from problem solving environments (like IDL or Matlab) into low level languages (C, C++)
allows to gain significant amounts of computing time. This approach is however very time demanding, due to
the cumbersome programming and debugging involved. Hybrid approaches, where only parts of the routines are
re-written have shown some success.
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Table 1

Pros and cons of the different simulation tools

Method Pros Cons

Analytic Immediate results No PSF

Scaling laws easily seen Difficulty to add new effects / methods

Outer scale effects not always taken into account

Error coupling not taken into account

Semi-analytic Fast AO “inperfections” difficult to add

Provides PSF LGSs not taken into account (yet)

Infinite integration time (good for XAO)

Scaling laws are “visible”

Residual phase screens can be made

Error coupling can be taken into account

Numerical Very accurate Slow

Easy to add new effects and methods Require supercomputers for ELT simulations

Easier comparison of real and simulated data No obvious scaling laws for results

Short exposure data available (speckles)

Residual phase screens can be made

Error coupling taken into account

HW (alignments,...) effects on loop can be analyzed

Another avenue is to parallelize most of the routines, in order to share the computing load between several
CPUs, and to also distribute the large arrays, to reduce the memory requirement per machine (until the advent of
low cost 64 bit PC-type machines, accessing more memory than ∼3 GB was based on fairly expensive hardware).
Some AO tasks are easily parallelize. In addition to matrix operations, the generation of phase screens (either
by distributing different layers on different machines or by computing the required large FFTs in parallel), the
FFTs in the wavefront sensing process, in the Fresnel propagation process and the PSF computations can easily
be parallelized. Particular care must be taken in the overall design of such a large parallel simulation tool, in order
to assure maintainability, but also to provide optimum performance.

5. Conclusions

It has been shown in this article how one can simulate (MC)AO system, using different approaches. The pros
and cons of each method are summarized in the following table:

In the course of the life of an AO system, all the different simulation tools are likely to be used. First, at
the very early stages, the analytical formulae allow to get a rough estimate of what kind of system is possible
(considering the performance requirements and technological limitations), and gives an estimate on how many
sub-apertures, actuators, deformable mirrors are required to fulfill the specifications. Then, the semi-analytical
tools are used to refine these estimates, and make a trade-off analysis. Some PSFs can be generated and provided
to the instrument builders and astronomers to evaluate if a given AO system provides the performance they need.
Also, some residual phase screens can be generated and given to instrument builders (for example, to study the
performance of a coronographs or a spectrograph). Finally, the end-to-end (numerical) software is used to specify
for example the tolerances on the alignments, to verify how new algorithms perform, and to get a final performance
estimate against which the system will be compared during commissioning. When the system has been integrated
in the lab, turbulence phase screens can be placed in the optical setup to produce for the AO system the same
conditions than those used in the simulation. Finally the performance at the telescope can be compared with the
simulation results, once for example the telescope vibration and such “real-life” effects have been characterized.
Because the end-to-end tool is so close to the true hardware, such effects can be added fairly easily.

The comparison with real systems and simulations has been carried out for example for NACO, the VLT’s
Shack-Hartmann AO system, and the results can be found in [Clenet et al.(2004)]. These show that when all the
additional errors encountered at the telescope are taken into account, a close agreement between simulation and

10



Figure 3. Comparison between the performance of MACAO in simulations and on the sky. Strehl ratio (K-band) vs. guide star

magnitude. The top line is the curve obtained in the lab, the dashed line is the simulation, squares and circles are results obtained

at the telescope, diamonds are the specifications, the dot-dashed line is the open loop seeing. Courtesy R. Arsenault and the

MACAO team.

reality can be obtained. For MACAO, another ESO AO system, a sample comparison is shown in Fig.3. We can
see that the agreement between simulation, lab results and on-sky tests is very good. For MCAO, experiments
(both in the lab and on the sky) arebeing made at various institutes, and one of their goals is to validate simulation
tools for this new AO mode (see for example the contribution of E. Marchetti et al. on MAD, in this issue).

Freely available tools can be used to do one’s own AO simulations. Here are a few examples:
– Analytical tools

· PAOLA: ftp://ftp.hia.nrc.ca/pub/staff/lj/softwares/paola
· Cibola: http://cfao.ucolick.org/software/cibola.php

– Numerical tools
· CAOS: http://www.arcetri.astro.it/caos/ ([Carbillet et al.(2005)])
· Yao: http://www.maumae.net/yao/aosimul.html
· Aroyo: http://eraserhead.caltech.edu/arroyo/arroyo.html
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