NIR Photometry of GCs with MAD

G. Bono (INAF-OAR), A. Calamida (→ DRM) + Romans +

M. Monelli, P.B. Stetson, M. Nonino, M. Dall'Ora, L. Freyhammer

P. Amico, S. D'Odorico, E. Marchetti

→ Reduction strategy
 → Optical-NIR in ω Cen
 → NIR in NGC3201
 → Circumstantial evidence
 → Conclusions

Reduction Strategy

PSF Photometry on Individual Images

Simultaneous reduction of NIR and optical images

DAOPHOT \rightarrow ALLSTAR \rightarrow DAOMASTER \rightarrow ALLFRAME

Specific Targets (WDs) → ROMAFOT → visual check one-by-one

Optical-NIR photometry → Cluster age

Absolute calibration using our own local standards collected with ISAAC@VLT and SOFI@NTT

Comparison between theory and observations

Absolute age estimates of GCs affected by:

OPTICAL

- →Distance
- →Reddening
- →Degeneracy between reddening and metallicity
 →Photometric zero-points

NIR

→Distance→Photometric zero-points

MAD J,K Images of NGC3201

Four pointings (O1,O2,O3,O4): J-band: seeing from 0.5" to 0.8" Ks-band: seeing from 0.8" to 1.6" (O3) 3J+5Ks per pointing = 32 min

→FoV 2'x2', 5 guide stars V~11.7-12.9
 →FWHM on images ≤0.1-0.15" [Ks, J]

[Marchetti et al. 2007, The Messenger, 129, 8]

MAD J, K Images of NGC3201

NGC3201 MAD 4 chips

Annalisa Fecit!

Stellar structures for M~0.4 become completely convective but Convection, due to the increase in density, is adiabatic !!!!!!

RO. SI. CA. ROmafot Simulator & Cluster Analyzer

King profile → real density distribution Synthetic CMD including from the Pre-MS to WDs Field stars → Pisa Galactic model Analytical PSF CCD features

> To be done Sky background Blooming of saturated stars Trash [galaxies] CCD defects

Synthetic CMD based on evolutionary tracks

Recovered CMD from Synthetic Images

Synthetic K-band Image (MAD) for 47 Tuc

Off center field FOV=1X1 arcmin² FWHM=0.1 arcsec t_exp=5 sec 1500 stars

Synthetic K-band Image (MAD) for 47 Tuc

Central field 630,000 stars

Conclusions

→MAD is very successful experiment and we really hope that ESO will offer it for the next two years.

→Excellent gymnasium for testing and improving stellar simulations for E-ELT

→JWST vs. E-ELT at 2µ FOV~2X2 sp. res.=0.03"/px like MAD!!!

→RO.SI.CA. working in progress

Καιρός Ψύχη Πραγματος !!!

SCHOOL OF ASTROPHYSICS JUNE 8-14 2008 FRANCESCO LUCCHIN TAROUINIA

First cycle 2008 Tarquinia, Italy www.mporzio.astro.it/tasca tasca@mporzio.astro.it

ADVANCED STELLAR, EVOLUTIONARY

PHASES Chain G. Bond

TECHNOLOGIES FOR THE NEXT.

TECESCOPES Chair: R. Ragazzoni

Detentific Organizing Committee G. Bernin (University)) G. BOND (MARGAR)) A. CARUS (MARGAR)) A. CARUS (MARGAR)) A. CEDITI (SISA TIME)) C. CHOS (MARGAR)) L. MOSCHICH (University) Local Organizing Committee A. CALMEDA (MARGAR)) M. CASTELLAN (MARGAR)) G. GIDBN (MARGAR)) P.G. PRADA MORDH (University) Organized by ISTITUTO NAZIONALE DI ASTRONOMICA) ASTRONOMICAL OBSERVATORY OF ROME) ASTRONOMICAL OBSERVATORY OF PADOVA) SOCIETA ASTRONOMICA ITALIANA Sponsored by COMUNE DI TARDUNIA

F658N-F625

Lecturers

LG. ALTHAUS – Evolutionary Properties of Single and Binary White Dwarfs) G. BONO – Cluster White Dwarfs) A. GUNDEMANN – High angular resolution and Interferometry) T. HERBST – Infrared instrumentation) D. KOESTER – White Dwarf Spectra – Observation and Analysis) B. MARANO – Ground-based instrumentations in the next decade) S. MOEHLER – Hot stars in Globular Clusters) P.G. PRADA MORONI – White Dwarfs and fundamental physics) R. RAGAZZONI – Wide Field Cameras) F. RIGAUT – Wide Field Adaptive Optics With Artificial Stars – H. RITTER – Formation and Evolution of Cataclysmic Variables) P.R. WOOD – Evolutionary and Pulsation Properties of AGB stars

A. Calamida, M. Monelli,

P. Amico, S. D'Odorico, E. Marchetti

- R. Buonanno, C. E. Corsi, S. Degl'Innocenti,
- I. Ferraro, L. Freyhammer, G. Iannicola,
- P. Prada Moroni, L. Pulone