spectroscopy and imaging of protoplanetary disks on the E-ELT

Talk by C.P. Dullemond Max-Planck-Institute for Astronomy, Heidelberg

Billion-Dollar Question:

How were "we" formed 4.5 Billion years ago?

Messengers from the past

Extrasolar Planetary Systems

Study "proto-solar systems"

Major questions

- Structure, formation and evolution of protoplanetary disks?
- How and when is gas lost from disks => timescale for giant planet formation?

- Mechanisms: photoevaporation, winds, ...

- How and when is dust lost from disks?
- How and when are planets formed?
- How do planets affect their birth-disks?
- Chemical composition of material for forming planets (H₂O, biogenic molecules, ...)?

Some highlights of ecent protoplanetary disl observations Rich features in NIR/MIR both in dust and in gas

PAH & [Ne II] in disks: tracers of X-ray/EUV radiation

Detected in at least 20% of sources. Fluxes consistent with recent models of Xray irradiated disks.

Geers et al. 2006 Lahuis et al. 2007 Pascucci et al. 2007

[Ne II] at high spectral resolution

TW Hya

FWHM=21 km/s, broader than other narrow lines =>

Keplerian rotation at 0.1 AU?
Photoevaporative flow?

Herczeg et al. 2007

Water and organics !

Water and organics in AA Tau

<u>205</u>

AS 205 Disk in Oph

H₂O spectral features barely seen at R=600; should have booming line/cont at high R

ELT can image emission and kinematics at few AU spatial resolution

Salyk et al. 2008

METIS?

Implications

- Water gas is found well inside the 'snow' line (estimated at ~3 AU)
- Water is expected to disappear in ~10⁵ yr ⇒ replenishment needed
- Inward radial migration or upward mixing of icy planetesimals, followed by evaporation?
- Might be able to characterize the snow line with ELT by direct spatially resolving
 This is extremely important for planet formation theories!

Line profiles, P/V diagrams:

Kinematics of the disk (and wind?)

Resolving the lines

Keck HCN 3 μm and CO 4.7 μm

Hot HCN and CO blue-shifted by 25 km/s => -Base of MHD wind?

High R: Dynamics from line profiles

Blake & Boogert 2004

CO v=1-0 band at 4.7 µm in protoplanetary disks

CRIRES

- Slit spectrum
- At each wavelength fit Gauss to spatial emission
- Plot centroid of Gauss as a function of wavelength
- Acquires spatial resolution well in excess of PSF!
- But only for 0th Moment
- For ELT: Huge resolution!

Pontoppidan et al. 2008

Large inner holes...

holes

CoKu Tau 4

D'Alessio et al. 2005, Forrest et al. 2004

holes

Brown et al. 2008

Brown et al. 2008

Can photoevaporation explain cavities?

Hollenbach et al. 1994 Gorti & Hollenbach 2007

Can photoevaporation explain cavities?

- 60 AU radius gap seen in large grains, but NOT in PAHs

Geers et al. 2007

Prospects for id-IR imager/spectrometer for E-ELT Clumpiness and asymmetries in protoplanetary disks

AB Aurigae

=144 AU

Waves

Waves

Johansen et al. 2007

Waves

Rice, Lodato et al. 2004

Planetary gaps and deviations from Kepler

Planet gap opening

Credit: Frederic Masset

Is the gap really empty?

Minimum Mass Solar Nebula

Is the gap really empty?

Minimum Mass Solar Nebula

Is the gap really empty?

The answer is: often not! Only for very massive planets

Detecting gap by probing Keplerdeviations

3 Om H_2O hot band lines, 1 M_{\odot} star

Model made with RAD-Lite by Klaus M. Pontoppidan and Cornelis P. Dullemond

Includes gas lines *and* dust continuum

10 A U

3 Om H_2O hot band lines, 1 M_{\odot} star

Model made with RAD-Lite by Klaus M. Pontoppidan and Cornelis P. Dullemond

Includes gas lines *and* dust continuum

10 A U

3 Om H_2O hot band lines, 1 M_{\odot} star

Model made with RAD-Lite by Klaus M. Pontoppidan and Cornelis P. Dullemond

Includes gas lines *and* dust continuum

3 Om H_2O hot band lines, 1 M_{\odot} star

Model made with RAD-Lite by Klaus M. Pontoppidan and Cornelis P. Dullemond

Includes gas lines *and* dust continuum

10 A U

 $3 \text{ Om H}_2\text{O hot}$ band lines, 1 M_o star

Model made with RAD-Lite by Klaus M. Pontoppidan and Cornelis P. Dullemond

Includes gas lines *and* dust continuum

10 A U

10 AU

Resolution: E-ELT 42 meter

3 Om H₂O hot band lines

Probing mixing and turbulence

number

Prandtl number (or better: "Schmidt number") is:

$$Sc = rac{v_{viscosity}}{D_{turb-mixing}}$$

One of the most crucial, but completely unknown parameters in the theory of planet formation!

Links mixing and coagulation to the (measureable) accretion rate in the disk.

number

Pavlyuchenkov & Dullemond, 2007

Conclusions

- Near- and Mid-Infrared are bonanzas of diagnostics of protoplanetary disks:
 - Dust composition in earth-forming region
 - Rich set of atomic / rovib gas lines. [NeII], Water, Organics!
 - Kinematics of earth-forming region. Can we see planet formation in progress!?
- ELT with METIS provides:
 - Much higher sensitivity than VLT-I, plus true imaging capability (as opposed to VLT-MIDI / MATISSE)
 - Same resolving power as ALMA, but much higher sensitivity
 - Higher spatial resolving power than NGST