

DRM meeting 20 May 2008

AO PSF simulations for the E-ELT

M. Le Louarn

European Southern Observatory

E-ELT AO modes

- Many AO modes will be used on the E-ELT
 - SCAO (commissioning)
 - > GLAO (telescope mode) \rightarrow order of magnitude PSFs available
 - > LTAO (instrument) \rightarrow order of magnitude PSFs available
 - MCAO (instrument)
 - LTAO (instrument)
 - MOAO (instrument)
- Each mode has its own limitations (FOV vs performance trade-off)
- Performance needs to be estimated for each mode
- From the astronomer's point of view, performance = final PSF

SCAO

Narrow field modes

LTAO

Wide field modes

End to end AO models

- Usually, analytical AO models (a la PAOLA) used for rough system dimensioning
 - Currently, these models are being developed for all the previously mentioned modes
 - Works currently well for SCAO, GLAO (NGS)
 - LGS work is tricky but good progress (PAOLA, ONERA for MCAO)
- For now, we use and end-to-end AO model because it allows all modes to be simulated.
 - > Very accurate, many things can be simulated
- BUT very heavy numerically
 - Simulate each AO frame (500Hz 1kHz frame-rate)
 - "Long" exposures are short (2-4s of real time)
 - Takes a long time to run (~1 day for those 2 seconds)
 - > Optimization of system is tedious (because slow & complex)
- Allows study of spatial & wavelength variability
 - > But some statistical noise still present

Atmospheric model for current ETC PSFs

Seeing: 0.8" @ 0.5 um, L0=25m

Height [m]	Fraction of Cn2	Wind speed
0	0.335	12.1
600	0.223	8.6
1200	0.112	18.6
2500	0.090	12.4
5000	0.080	8.0
9000	0.052	33.7
11500	0.045	23.2
12800	0.034	22.2
14500	0.019	8.0
18500	0.011	10.0

Note: Ground layer structure not very well known (even in Paranal !) → changes likely (GLAO performance most affected)

Simulating a PSF

Closed loop / temporal evolution

- Temporal behavior:
- Shift phase screens
- Propagate screens
- New WFS measurement
- IM # measurements \rightarrow c
- New DM commands: $c_n = c_{n-1} + g c$ (g:gain)
- New DM shape
- Atm. phase DM shape = Residual phase
- Long exposure PSF = Sum(Short exposure corrected PSF)

Wavefront sensor

- Cut phase screen into sub-apertures
- FFT -> SH PSF = SH speckles are taken into account

- Add noise (photon, RON, sky, dark...)
- Threshold
- Compute centroids
- Output measurement vector

Deformable mirror

- Place actuators in phase-screen-pixel space. Any geometry is possible:
- Square pattern (Piezo DM)
- Hexagonal (Piezo DM)
- Circular (Bimorph, Adapt. Sec.)
- Select influence function:
 - Several types are available, depends on DM

- When an actuator is pushed, the DM shape is given by the IF
- Sum of IFs gives total DM shape
- DM shape is a "special" phase screen (with ~ atmosphere)

Anisoplanatism @ 1.25 um

10" 20" 30" 40" 50" 0"

0 km

0.9 km

2.1 km

3 km

6 km

1 layers moving in height

AO PSF properties

- Simulation "long exposure" is astronomical short exposure
 - > 2-4s of real time simulated (a few thousand AO iter.)
 - ➤ Residual speckles still present → can bias astronomical simulation Speckles are diffraction limited "spots".
- How to simulate really long exposure PSFs ?
 - Analytical fit (cf. J. Liske). Pro: conceptually simple. PSFs become just coefficients of fitting function

Con: where to stop the fit ?

Radial average
Pro: simple

Con: lose possible asymmetries

- Use analytical AO simulation (a la PAOLA), to
 - ⇒ Do the full simulation (if mode supported) OR
 - ⇒ Fit the end-to-end simulation data (will be done for Muse)
 - ⇒ Can scale these results to end-to-end (more accurate) results Slide 18

Simplifying assumptions

- Telescope not (yet) fully modeled
 - > M4 conjugated to ground (should be +~400m) \rightarrow GLAO affected
 - > No segmentation (being studied separately) \rightarrow Diff lim modes
 - > No spiders (being studied separately) \rightarrow Diff lim modes
 - > No windshake, [...]
- Not all AO effects taken into account
 - LGS spot elongation assumed to be perfectly corrected
 - > High flux on all stars (NGS / LGS)
 - ≻ […]
- In general, error budgets are not yet included (will reduce performance, significantly at least in the visible).
- LTAO studies by consortium
 - ETC PSF are "order of magnitude" simulations
- MCAO, MOAO studies by consortium
 - > Simulations will be refined and adapted to instrument
- (SCAO) GLAO study by ESO
 - > Parameters will change, due to improved telescope & atmospheric models

Conclusions

- Simulation methods more precisely described in Le Louarn et al. 2005. (see PSF web site)
- AO simulations are all work in progress
 - > More effects are being added (until we are on the sky....)
 - Environmental conditions will be refined
 - Performance usually goes down as simul precision goes up
- PSFs giving order of magnitude performance are available for GLAO / LTAO.
- Updated PSFs will be calculated by consortia & ESO
 - > These PSFs will eventually replace the first order PSF estimates.
 - > For LTAO, MCAO, MOAO, EPICS → Consortia
 - > SCAO, GLAO → ESO
- Important to understand how science cases are affected by changes in AO performance (be it because simulations evolve, or environment changes)
 - > How much science do you lose, if Strehl is reduced by X ?