

EAGLE: an MOAO fed dIFU working in the NIR on the E-ELT

Simon Morris (CfAI, Durham University) For the EAGLE Consortium Jean Gabriel Cuby PI

Outline

- The European Extremely Large Telescope
- The EAGLE Science Case (including why observe in the Near Infra-Red)
- The Challenge of Multi-Object Adaptive Optics
- · CANARY on the William Herschel 4.2m Telescope
- The Target Acquisition System
- The deployable Integral Field Units and the Spectrographs
- Mechanical Support and Packaging
- Management
- Summary

The European Extremely Large Telescope

Galaxies Étoiles Physique et Instrumentatio

E-ELT baseline design November 2006

M1 42m segmented M2 6m monolithic, active M4, M5 adaptive

The EAGLE Science Case (including why observe in the Near Infra-Red)

E-ELT 'Prominent' Science Cases

- Planets and Stars:
 - Extrasolar Planets (S3)
 - Circumstellar disks (S9)
 - IMF in Stellar Clusters (S5)
- Stars and Galaxies:
 - Resolved Stellar Populations (G4)
 - Black Holes/AGN (G9)
- · Galaxies and Cosmology
 - First light-the highest redshift galaxies (C4)
 - Studies of Absorption lines: Dynamical measurement of universal expansion,
 - IGM studies (C2, C7)
 - Physics of high redshift galaxies (C10)

Red Cases have common instrument requirements well served by EAGLE

EAGLE Science Topics

Science areas that drive the EAGLE requirements:

- The evolution of distant galaxies
- Detection and characterisation of "first-light" galaxies
- The physics of galaxy evolution from stellar archaeology
- Star-formation, stellar clusters and the initial mass function
- · Co-ordinated growth of black holes and galaxies

Full science case now under development...

The EAGLE Science Case (including why observe in the Near Infra-Red)

Z=8.5 (5 arcmin ~ 9 Mpc comoving)

Predicted High-z Lyman- α **Emitters** (red) Lacey et al.

7=3.3

Z=5.7

White bar 30 Mpc comoving

The EAGLE Science Case (including why observe in the Near Infra-Red)

MS1358 z=4.9 Arc

VLT-SINFONI, z~2 Forster-Schreiber et al. (2006)

VLT-SINFONI, z~2 7=0.512 Forster-Schreiber et al. (2006) CFRS030085 Q1623-BX663 7=0.610 CFRS031353 7=0.634 SSA22-MD41 CFRS039003 z=0.619 CFRS220504(*) 02346-BX482 z=0.538 CFRS221119(*) z=0.514 Q1623-BX528 HDFS4020 z=0.514 HDFS4180 Q2343-BX389 7=0.465 T-FLAMES, z ham iversity

CFRS030046

How deep with 8-m class instruments?

- Flores et al. sample: I < 22.5•
- KMOS sensitivities ($5\sigma/8$ hrs): •
 -] = 22
 - H = 21
 - K = 20.5

Forster-Schreiber et al. (2006) Q1623-BX663 SSA22-MD41 02346-BX482 Q1623-BX528 Q2343-BX389 T-FLAMES, z aam iversity

CFRS030046

7=0.512

7=0.610 CFRS031353

7=0.634

z=0.619

z=0.538 CFRS221119(*)

z=0.514

z=0.514 HDFS4180

7=0.465

HDFS4020

CFRS220504(*)

CFRS039003

CFRS030085

VLT-SINFONI, z~2

How deep with 8-m class instruments?

- Flores et al. sample: I < 22.5•
- KMOS sensitivities ($5\sigma/8$ hrs): • - J = 22
 - H = 21
 - K = 205
- E-ELT sensitivities (5 σ /8 hrs):
 - | = 26.5
 - H = 26
 - K = 25.5

VLT-SINFONI, z~2 Forster-Schreiber et al. (2006)

CFRS030046

7=0.512

CFRS030085

Science objectives with the E-ELT:

- Star-formation histories
- Extinction
- Metallicities
- Clusters
- Dynamics

• Need large, unbiased samples

...over large volumes to avoid cosmic variance.

The EAGLE Science Case (including why observe in the Near Infra-Red)

A2218 Z=2, 5, 10 & 20 critical lines shown

Boxes show possible EAGLE IFU Mapping of high z Critical lines

The EAGLE Science Case (including why observe in the Near Infra-Red)

- High spatial resolution (~ 75 milli-arcsec)
 - Adaptive Optics needed
- Extended sources (~ 2 x 2 arcsec)
 - For galaxies, clustered stellar objects etc
 - Integral Field Units needed
- Source count for statistics etc
 - Multi-object instrument (20+)
- Efficiency
 - Wide-field (5 arcmin) to ensure all IFUs are used for each observation
- R~4,000 main spectral resolution (OH + 1 band in 2000 pix), but also R~10,000 being considered for stellar physics

The Challenge of Multi-Object Adaptive Optics

- Thanks to N. Hubin
- Each AO system has specific performance niches on E-ELT – for example
 - MCAO provides 'averaged' improvements to image quality over 2 arcmin diameter field of view
 - LTAO provides better IQ but FOV max is 45 arcsec
- MOAO applies optimised correction to small areas within a large Field of View (5 arcmin) by
 - Tomography of the whole field using combination of Laser and Natural Guide Stars
 - Individual Deformable mirrors for each science object gives optimal image quality improvement

Multi-Object Adaptive Optics

Galaxies Étoiles Physique et Instrumentation

THE FRENCH AEROSPACE LAB

Toulouse Research Center

Proof of concept: CANARY on the WHT

The Target Acquisition System

The Target Acquisition System

Micro Autonomous Robot System

Mechanical Support and Packaging

Mechanical Support and Packaging

TMT WFOS (for scale comparison with EAGLE)

Management, Funding and Politics

- French/UK instrument 50%/50% split
- · French PI, Jean-Gabriel Cuby (Marseille)
- · UK coPI, Simon Morris (Durham)
- Current French Institutions:
 - LAM (Marseille)
 - ONERA
 - Observatoire de Paris (GEPI and LESIA)
- Current UK Institutions
 - UK ATC
 - Durham (CfAI)

Summary

 EAGLE combined with the E-ELT will yield huge sensitivity and efficiency gains over existing facilities:

- Unprecedented primary aperture

- Large multiplex
- Excellent AO correction

The End

