
HARMONI: An AO assisted, narrow field, integral-field spectrograph for the E-ELT

Matthias Tecza (IS)

for the HARMONI team, including Niranjan Thatte (PI), Fraser Clarke, Roland Bacon, Santiago Arribas, Evencio Mediavilla, Gary Rae, Roger Davies

What is HARMONI?

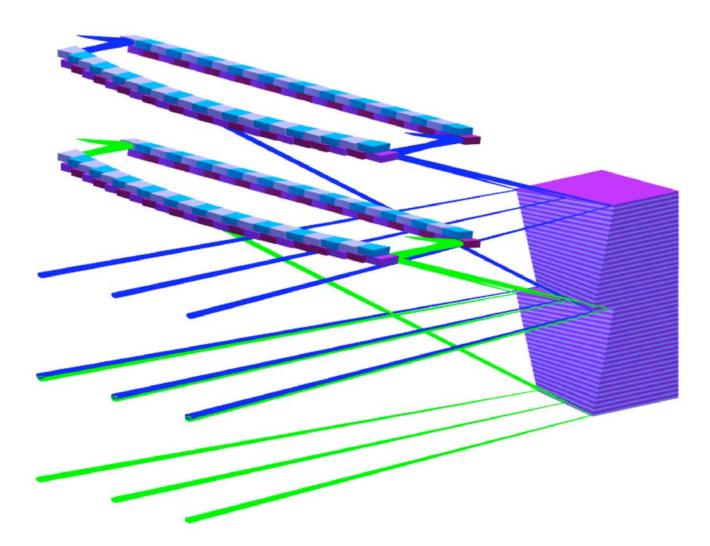
High Single Angular Field Resolution Wide Monolithic Band **Optical** and Spectrograph Near infrared Integral field spectrograph

What is HARMONI/SFWBS?

- Instrument concept not studied (but envisaged) in context of OWL or FP6 even though it's proven to deliver high quality science
- Early spectroscopic follow up faint sources discovered in deep imaging surveys (e.g. JWST), which is only possible with an ELT
- Narrow field-of-view matched to early AO capabilities
 near-diffraction limited over a small field
- Single object mode rather than survey mode (à la MUSE)
- Oxford pre-study of an instrument concept (Apr Sep '07) with £70k award from STFC
- ESO call for proposal for SFWBS Phase A study

Initial Instrument Requirements

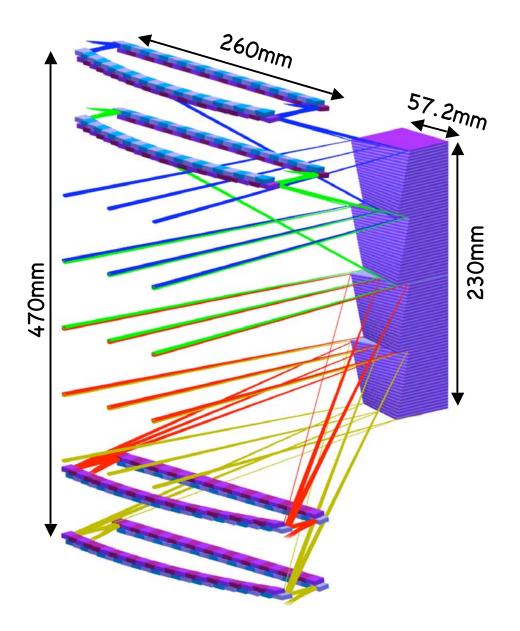
- Wavelength range
 - Near-infrared 1-2.5µm
 - Wide wave band favours slicer over lenslets à la Tiger
- Spectral resolving power
 - R \approx 4000 for OH avoidance
 - one band (J, H, K) at a time
- Spaxel size and field-of-view
 - 5mas to 50mas spaxel size
 - $\approx 1''-5''$ field-of-view
 - \approx 16,000 spectra (or 8 HAWAII 2k² detectors)
 - 88 x 176 2:1 rectangular field


Optional Instrument Requirements

- Wavelength range
 - Optical & Near-infrared 0.8-2.4µm (0.6-2.5µm)
 - Wide wave band favours slicer over lenslets à la Tiger
- Spectral resolving power
 - $R \approx 4000$, 20,000 for abundances, kinamatics: cf. science case
 - one band (J, H, K) at a time
- Spaxel size and field-of-view
 - 5mas to 50mas spaxel size
 - $\approx 1''-5''$ field-of-view
 - \approx 16,000 spectra (or 8 HAWAII 2k² detectors)
 - 88 x 176 2:1 rectangular field
- Focus on slicer design
 - Initially based on SWIFT de-magnifying image slicer design

Single slicer

- ≈4,000 spaxels
- 44 slices, 88 pixel long
- 1.3mm slice width
- 10:1 de-magnification
- Exit slit length ≈260mm
- Flat slice and pupil mirrors
- Mirrors for de-magnification (cf lenses in SWIFT)


Two slicers: 8000 spectra

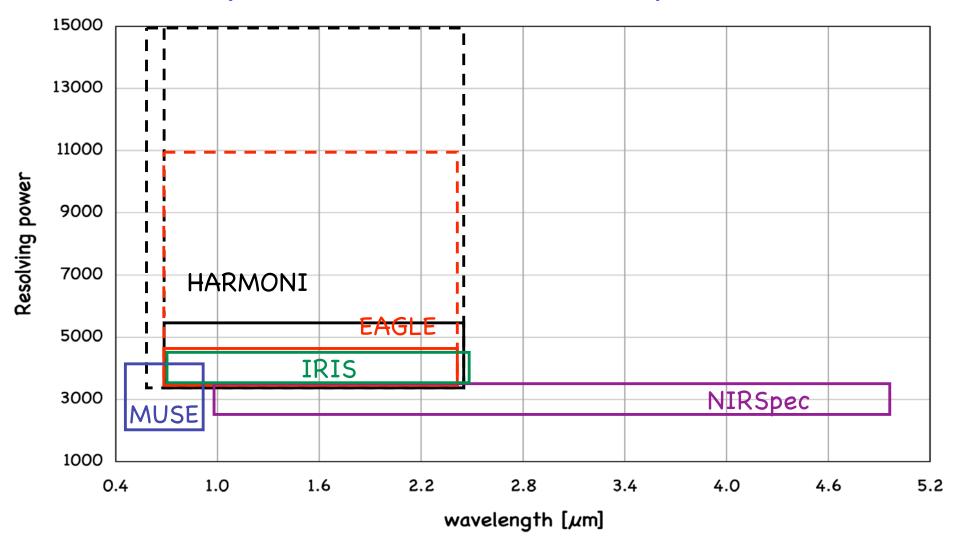
Full slicer

• Four exit slits

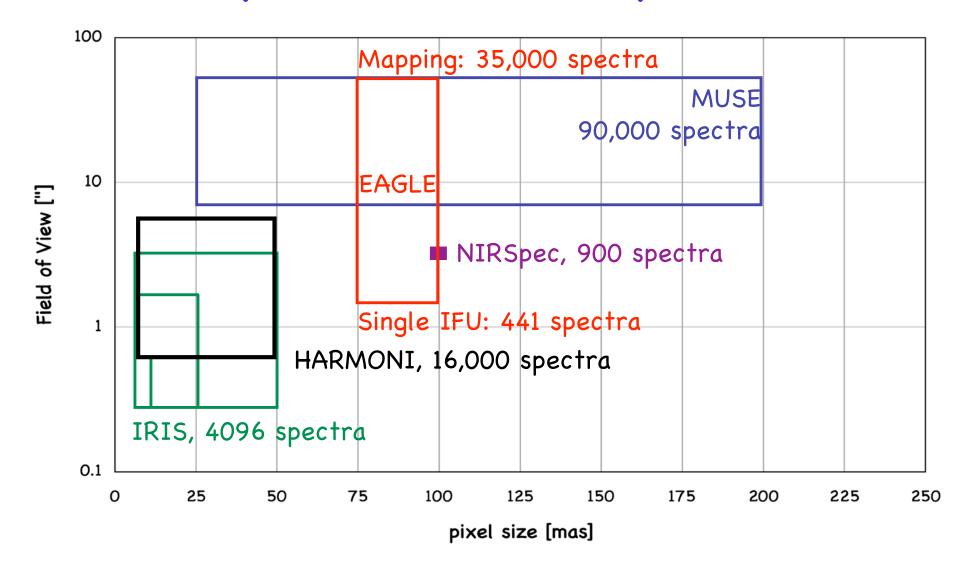
- 4:1 aspect ratio on slicer due to 2:1 anamorphic pre-optics
- 2:1 aspect ratio on sky
 - 176 x 88 pixels
- Maximum spaxel scale of 50mas
 - 8.8" x 4.4" FoV
- Smaller spaxel scales (eg. 5mas) through scale changing pre-optics

Conceptual spectrograph design

- f/6 Collimator
 - 1500mm focal length
 - 120mm x 240mm beam
 - 3 mirror design, 2 fold mirrors
 - 700mm mirror segments
- Grating (VPH)
 - 200mm x 250mm
- f/1.8 Camera (from KMOS)
 - 420mm focal length
 - ±5° field
 - 6 lens design
 - Ø 150-300mm lenses
 - 2 HAWAII2 detectors
- 3.5m x 2.5m x 1.0m

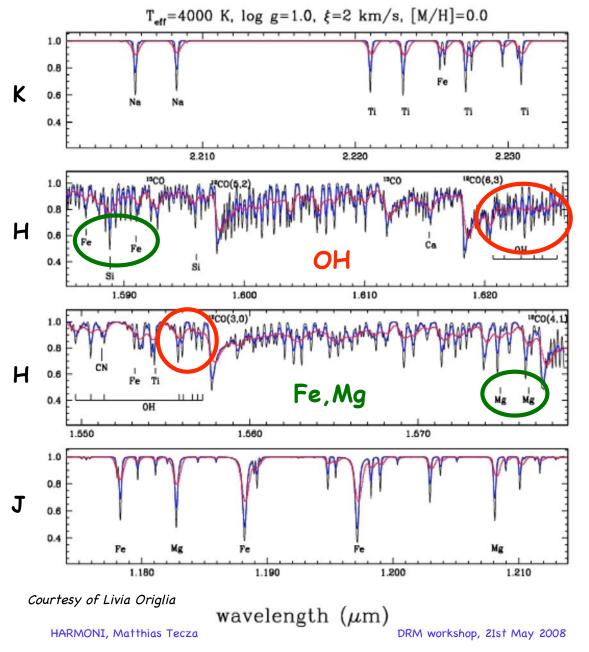

HARMONI slicer design advantages

- No field splitting in pre-optics
 - No re-imaging like MUSE
 - High throughput
- Flat slicer and pupil mirrors
 - Aberrations are equal for all slices
- All mirror design
 - Fully achromatic for wide waveband coverage
- Very efficient use of detector real estate
 - ≈95% spectrum packing factor


HARMONI in context

- No study of such an instrument for E-ELT carried out so far, although IRIS is part of TMT first-light suite
- Currently no other visible wavelength spectroscopic capability planned for E-ELT (except for CODEX)

Spectral Discovery Space


Spatial Discovery Space

What can HARMONI do?

- Prominent science areas
 - Planetary science
 - Circumstellar disks
 - Star forming regions
 - Stellar populations, IMF & Galactic archaeology
 - Black Holes and Galaxy Cores
 - GRBs
 - High redshift galaxies (1<z<10)

Stars, Star clusters & Galaxies with HARMONI in the NIR

Chemistry (S/N≈30, [Fe/H]>-1.0)

- R≤10,000
 - » OH blends, Fe,Mg in J

- R>10,000

» OH progressively de-blended,
» J not needed for Fe,Mg in stars & star clusters
» J needed for Fe,Mg in galaxies due to velocity broadening

Kinematics

- R≈10,000
 - » σ=13 km/s » M≈10⁶M_o
- M∝σ²

» R≥20,000 » SSCs, massive GGCs

» R≥50,000 » faint GGCs

Stars, Star clusters & Galaxies with HARMONI in the VIS

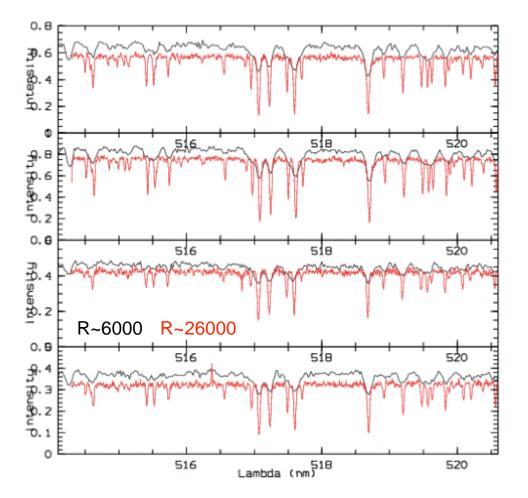
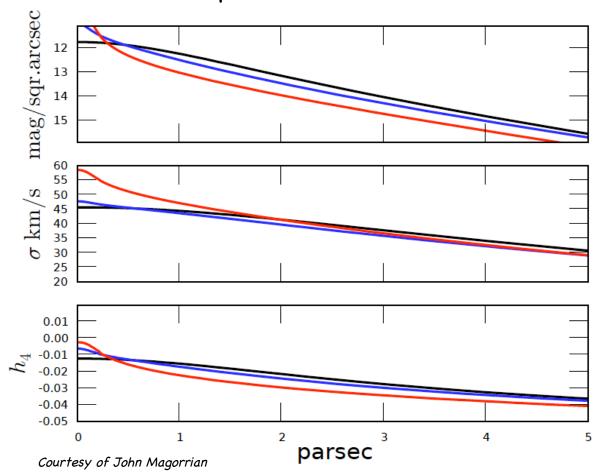


Figure 15: GIRAFFE Low (L4, black lines) and High (H9, red lines) resolution spectra of 4 giants belonging to the Globular Cluster NGC *Pasquini et al. 2002 ESO Messenger, 110, 1*

R≈5,000 (≥0.8µm)

» Detailed abundances of B-A
 super-giants in spiral galaxies
 outside the Local Group
 » Chemo-dynamical analyses

R≈20,000 (≥0.48µm)


 » Lithium in old main-sequence stars in the most nearby galaxies
 » Detailed abundances in old red giants at the edge of the Local-Group

» Detailed abundances of B-A super-giants in spiral galaxies outside the Local Group

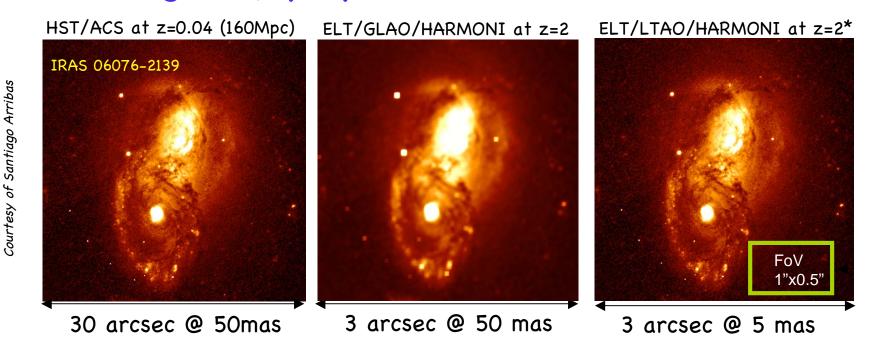
Courtesy of Eline Tolstoy

Black holes & nuclear clusters

Simple cluster model (King DF like GC) but with optional BH

M . [10 ⁶ M _o]	M∗ [10 ⁶ M₀]	R _h [pc]	σ _{av} [km/s]
0	8.2	3	36
0.17	7.1	3	35
0.3	5.8	3	37

R≈5,000 (≥0.8µm)


» metal abundances
 » stellar dynamics in galactic nuclei and nuclear clusters

R≈10,000 (≥0.8µm)

- » Low mass black holes
- (< 10⁶ M_o) & nuclear clusters

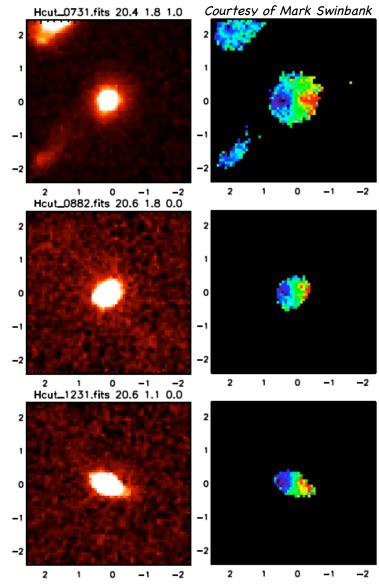
HARMONI, Matthias Tecza

The power of HARMONI: spatially resolved galaxy properties and kinematics

R≈4,000

» 75 km/s (FWHM), σ = 33 km/s » 15 km/s (FWHM), σ = 6.5 km/s $R_{\rm bl} \approx 100 \ {\rm pc} \Rightarrow M = 2.10^8 \ {\rm M_{\odot}}$

R≈20,000


 $R_{hl} \approx 2 \text{ kpc} \Rightarrow M = 4.10^9 M_o$ $R_{hl} \approx 2 \text{ kpc} \Rightarrow M = 1.5.10^8 M_o$ $R_{hl} \approx 100 \text{ pc} \Rightarrow M = 8.10^{6} M_{o}$

Typical size of HII region \approx 100pc Typical masses of extranuclear knots 10⁶–10⁷ M_o

* z=2 (40pc/spaxel) worst case scenario. Any other z more favourable scale

High z galaxies at 100pc scales

- Metallicities
- \cdot Outflows and winds
- · AGN/SF dominated regions
- Shocks
- Ionisation
- ISM enrichment
- Dynamical masses
- Fake velocity fields from HST/UDF H band images: i=60°, v=60km/s, r_p=3kpc

