A MEDIUM-RESOLUTION NEAR-INFRARED SPECTRAL LIBRARY OF LATE-TYPE STARS. I.

VALENTIN D. IVANOV
European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany; vivanov@eso.org

MARCIA J. RIEKE, CHARLES W. ENGELBRACHT, ALMUDENA ALONSO-HERRERO,1 AND GEORGE H. RIEKE
Steward Observatory, University of Arizona, Tucson, AZ 85721; mrieke@as.arizona.edu, chad@as.arizona.edu, grieke@as.arizona.edu, aalonso@as.arizona.edu

AND

KEVIN L. LUHMAN
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; kluhman@cfa.harvard.edu

Received 2003 March 13; accepted 2003 December 2

ABSTRACT

We present an empirical infrared spectral library of medium-resolution ($R \approx 2000–3000$) H (1.6 μm) and K (2.2 μm) band spectra of 218 red stars, spanning a range of [Fe/H] from -2.2 to $+0.3$. The sample includes Galactic disk stars, bulge stars from Baade’s window, and red giants from Galactic globular clusters. We report the values of 19 indices covering 12 spectral features measured from the spectra in the library. Finally, we derive calibrations to estimate the effective temperature, and diagnostic relationships to determine the luminosity classes of individual stars from near-infrared spectra.

This paper is part of a larger effort aimed at building a near-IR spectral library to be incorporated in population synthesis models, as well as at testing synthetic stellar spectra.

Subject headings: atlases — infrared: stars — stars: abundances — stars: chromospheres — stars: fundamental parameters — stars: late-type

On-line material: machine-readable tables

1. INTRODUCTION

Over the last two decades, evolutionary synthesis modeling has become a common tool to study unresolved stellar populations of galaxies in the optical and UV passbands (Bruzual & Charlot 1993; Worthey 1994; Vazdekis 1999; Leitherer et al. 1999). The heavy obscuration in starburst galaxies—often with $A_V \geq 5$ mag (Engelbracht 1997)—requires an expansion of these models into the near-infrared (IR) domain, because the extinction there is reduced tenfold in comparison with the optical region: $A_K/A_V = 0.112$ (Rieke & Lebofsky 1985). Therefore, it is not surprising that many studies of embedded stellar populations in galaxies have been conducted in the near-IR (Rieke et al. 1980, 1993).

IR evolutionary synthesis models based on synthetic spectra (Origlia, Moorwood, & Oliva 1993; Kurucz 1994) generally have difficulties reproducing broadband colors because of the complicated opacity calculations in the near-IR. Empirical libraries based predominantly on bright and nearby Milky Way stars (Kleinmann & Hall 1986; Lançon & Rocca-Volmerange 1992; Wallace & Hinkle 1996, 1997; Meyer et al. 1998; Wallace et al. 2000) are limited to near solar metallicity. At the same time, realistic galaxy modeling requires metallicities ranging from $[Fe/H] = -1.76$ for the most metal-poor galaxy known, I Zw 18 (Aloisi et al. 2003), to supersolar values, measured for at least for some giant elliptical galaxies (Casuso et al. 1996).

The properties of the most prominent near-IR spectral libraries available in the literature are summarized in Table 1. For a review of the earlier work see Merrill & Ridgway (1979). This summary shows that despite the sizable quantity of available stellar spectra, up until now there was no uniform near-IR data set with high signal-to-noise ratio and resolution, covering the entire range of spectral classes, luminosity, and metallicity necessary to carry out evolutionary population synthesis in the near-IR. The deficit of some types of stars such as metal-poor super giants is understandable in the context of the Milky Way star formation history, but the lack of many other types is rec- titable. We concentrate on metal features that have equivalent widths in a typical starburst galaxy larger than 1 Å—as they can be measured reliably in spectra with signal-to-noise ratios of $\sim 30–50$ (Engelbracht 1997).

A second application of our library, albeit no less important, is the analysis of individual stars hidden behind $A_V \geq 10$ mag of visual extinction. A typical case for such a population is represented by the Arches cluster members.

Here we describe the observations and the sample of an empirical near-IR stellar library that is designed to meet the requirements of population synthesis. The main advantage in comparison with previous work is the expanded metallicity coverage. We also present a few diagnostics methods to derive parameters of individual stars. The evolutionary population model will be published in a subsequent paper. The next section describes the observations and the data reduction technique. Section 3 summarizes the sample selection. Spectral indices are defined in § 4, and some diagnostic applications for parameters of individual stars are considered in § 5. In § 6, we give the summary.

2. OBSERVATIONS AND DATA REDUCTION

The near-IR spectra were taken from 1995 to 1999 mainly at the Steward Observatory 2.3 m Bok telescope on Kitt Peak. Some stars were observed at the original 4.5 m MMT and at the Steward Observatory 1.55 m Kuiper telescope. We used FSpec

1 Present address: Departamento de Astrofísica Molecular e Infrarroja, IEM, Consejo Superior de Investigaciones Científicas, Serrano 113b, 28006 Madrid, Spain.
(Williams et al. 1993), a cryogenic long-slit near-IR spectrometer utilizing a NICMOS3 256 × 256 array (Kozlowski et al. 1993). The majority of the stars were observed with a 600 line mm\(^{-1}\) grating, corresponding to a spectral resolution \(R \approx 2000–3000\). This is the highest useful spectral resolution for studies of stellar populations in external galaxies where the intrinsic velocity dispersion smooths out the integrated spectra. The rest were observed with a 300 line mm\(^{-1}\) grating and \(R \approx 1000–1500\). The slit widths were 2\(^{\prime}\) at the 2.3 m telescope, 1\(^{\prime}\)2 at the MMT, and 376 at the 1.55 m telescope. The plate scales were 1.2, 0.6, and 1.8 arcsec pixel\(^{-1}\), respectively. The limited physical size of the near-IR array required the acquisition of spectra at 10–12 grating positions, corresponding to different central wavelengths (\(\lambda_c\)) to cover the entire \(H\) and \(K\) atmospheric windows with sufficient overlap. Usually, one of the following two combinations of \(\lambda_c\) was used: 1.54, 1.62, 1.70, 2.06, 2.13, 2.19, 2.245, 2.31, 2.37, 2.42 \(\mu\)m, or 1.50, 1.57, 1.64, 1.71, 2.05, 2.10, 2.15, 2.20, 2.25, 2.30, 2.35, 2.40 \(\mu\)m. The log of observations is given in Table 2.

The observing strategy for a single setting included nodding the telescope to obtain spectra at four (at the MMT) or six (at the 2.3 m and 1.55 m telescopes) different positions along the slit, and integrating at each position for 3–20 s, depending on the apparent brightness of the object and the sky background. This was necessary in order to (i) carry out the sky emission subtraction and account for the sky background variations by

TABLE 1

<table>
<thead>
<tr>
<th>Spectral Library Reference</th>
<th>(\lambda) ((\mu)m)</th>
<th>Spectral Type and Luminosity Class Range</th>
<th>Number of Stars</th>
<th>Spectral Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson & Méndez 1970</td>
<td>1.2–2.5</td>
<td>A–M, I–V</td>
<td>32</td>
<td>550</td>
</tr>
<tr>
<td>Kleimann & Hall 1986</td>
<td>2.0–2.5</td>
<td>F–M, I–V</td>
<td>26</td>
<td>2500–3100</td>
</tr>
<tr>
<td>Lancer & Rocca–Volmerange 1992</td>
<td>1.4–2.5</td>
<td>O–M, I–V</td>
<td>56</td>
<td>550</td>
</tr>
<tr>
<td>Origlia et al. 1993</td>
<td>1.5–1.7</td>
<td>G–M, I–V</td>
<td>40</td>
<td>1500</td>
</tr>
<tr>
<td>Ali et al. 1995</td>
<td>2.0–2.4</td>
<td>F–M, V</td>
<td>33</td>
<td>1380</td>
</tr>
<tr>
<td>Wallace & Hinkle 1996</td>
<td>2.02–2.41</td>
<td>G–M, I–V</td>
<td>12</td>
<td>45000</td>
</tr>
<tr>
<td>Dalier et al. 1996</td>
<td>1.57–1.64</td>
<td>O–M, I–V</td>
<td>37</td>
<td>1500–2000</td>
</tr>
<tr>
<td>Hanson et al. 1996</td>
<td>2.0–2.4</td>
<td>O–B, I–V</td>
<td>180</td>
<td>800–3000</td>
</tr>
<tr>
<td>Ramirez et al. 1997</td>
<td>2.19–2.34</td>
<td>K–M, III</td>
<td>43</td>
<td>1380, 4830</td>
</tr>
<tr>
<td>Wallace & Hinkle 1997</td>
<td>2.0–2.4</td>
<td>O–M, I–V</td>
<td>115</td>
<td>3000</td>
</tr>
<tr>
<td>Meyer et al. 1998</td>
<td>1.5–1.7</td>
<td>O–M, I–V</td>
<td>85</td>
<td>3000</td>
</tr>
<tr>
<td>Joyce 1998</td>
<td>1.0–2.5</td>
<td>K–M, III</td>
<td>29</td>
<td>500–1500</td>
</tr>
<tr>
<td>Wallace et al. 2000</td>
<td>1.05–1.34</td>
<td>O–M, I–V</td>
<td>88</td>
<td>3000</td>
</tr>
<tr>
<td>Lancer & Wood 2000</td>
<td>0.5–2.5</td>
<td>K–M, I–III</td>
<td>77</td>
<td>1100</td>
</tr>
<tr>
<td>Hicks et al. 2000</td>
<td>1.08–1.35</td>
<td>O–M, I–V</td>
<td>105</td>
<td>650</td>
</tr>
<tr>
<td>This work</td>
<td>1.48–2.45</td>
<td>G–M, I–V</td>
<td>218</td>
<td>2000–3000</td>
</tr>
</tbody>
</table>

Note.—This work is included for comparison.

TABLE 2

<table>
<thead>
<tr>
<th>Date</th>
<th>Site</th>
<th>Star</th>
<th>Standard</th>
<th>Spectral Type (3)</th>
<th>Grating (6)</th>
<th>Range (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>951209...</td>
<td>61</td>
<td>S074439</td>
<td>S074506</td>
<td>A3 V</td>
<td>600</td>
<td>HK</td>
</tr>
<tr>
<td>951209...</td>
<td>61</td>
<td>S060890</td>
<td>HR 3348</td>
<td>A0 V</td>
<td>600</td>
<td>HK</td>
</tr>
<tr>
<td>951209...</td>
<td>61</td>
<td>S027179</td>
<td>HR 3592</td>
<td>A2 V</td>
<td>600</td>
<td>HK</td>
</tr>
<tr>
<td>951210...</td>
<td>61</td>
<td>VY Leo</td>
<td>HR 4244</td>
<td>A3 V</td>
<td>600</td>
<td>H</td>
</tr>
<tr>
<td>951210...</td>
<td>61</td>
<td>S074175</td>
<td>HR 0277</td>
<td>A2 V</td>
<td>600</td>
<td>HK</td>
</tr>
<tr>
<td>951210...</td>
<td>61</td>
<td>S109474</td>
<td>HR 0081</td>
<td>A0 V</td>
<td>600</td>
<td>HK</td>
</tr>
<tr>
<td>951210...</td>
<td>61</td>
<td>S109471</td>
<td>HR 0081</td>
<td>A0 V</td>
<td>600</td>
<td>HK</td>
</tr>
<tr>
<td>951209...</td>
<td>61</td>
<td>S074883</td>
<td>HR 0669</td>
<td>A1 V</td>
<td>600</td>
<td>2.30–2.40</td>
</tr>
<tr>
<td>951209...</td>
<td>61</td>
<td>S080333</td>
<td>HR 3481</td>
<td>A1 V</td>
<td>600</td>
<td>HK</td>
</tr>
<tr>
<td>951210...</td>
<td>61</td>
<td>S090821</td>
<td>HR 3481</td>
<td>A1 V</td>
<td>600</td>
<td>HK</td>
</tr>
</tbody>
</table>

Notes.—Table 2 is available in its entirety in the electronic edition of the *Astrophysical Journal Supplement*. A portion is shown here for guidance regarding its form and content. (Col. [1]) Date of the observation, in yymmd format, e.g., 990203 is the night of 1999 February 3–4. (Col. [2]) Sites: 61, 90, MM—Steward Observatory 1.55 m, 2.3 m, and the original MMT telescopes, respectively. (Col. [3]) Object: S = SAO, H = HD, N = NGC, B = BD. (Col. [4]) Standard star for the atmospheric correction. (Col. [5]) Spectral type for the standard star. (Col. [6]) Gratings: 600 lines mm\(^{-1}\) corresponds to spectral resolution \(R \approx 3000\), and 300 lines mm\(^{-1}\) corresponds to \(R \approx 1500\). (Col. [7]) Spectral range covered: \(H\) and \(K\) indicate that the entire atmospheric window was observed. Numbers give the central wavelength of the observed grating settings in \(\mu\)m. Two numbers separated by a dash means that all grating settings in between them were observed. A number in parentheses after \(H\) and/or \(K\) with a minus indicates a missing setting.
having a sky taken just before and after the science exposures; and (ii) improve the pixel sampling, flat-fielding, and bad pixel correction by having the object placed on multiple positions on the array.

Next, we repeated the same procedure for a standard star at similar air mass (air mass difference <0.1–0.15) to correct for the atmospheric absorption. Then we changed the grating setting, obtained a sequence of 4–6 spectra of the standard, moved the telescope back to the object, and repeated the same procedure at the new grating setting. Occasionally, if two or three target stars were available nearby on the sky, we increased the observing efficiency by using the same telluric standard for all of them.

The spectra were reduced using IRAF2 tasks written specifically for FSpec. An average of the sky backgrounds taken immediately before and after each object was subtracted to remove simultaneously the sky emission lines, and the dark current and bias level. Dark-subtracted illuminated dome flats taken at the same central wavelengths as the science exposures were applied to correct for pixel-to-pixel variations. The known bad pixels were masked out. Object images were shifted (using centroid fitting across the continuum) and median combined to produce a single two-dimensional spectrum. The large number of object images allowed us to reject any remaining bad pixels and cosmic rays. One-dimensional spectra were extracted by fitting a polynomial of order 3–5 to the continuum in the two-dimensional image with the IRAF task “apall.” The spatial width of the extraction apertures was usually 3–5 pixels, depending on the scale and the seeing.

In most cases the object spectra were divided by spectra of solar analog stars observed at the same air mass and then multiplied by the solar spectrum (Livingston & Wallace 1991) to remove the effects of the photospheric absorption (Maiolino, Rieke, & Rieke 1996). The standard stars were not always exactly G2 dwarfs (usually ranging from F8 V to G3 V), and the true shape of the continuum had to be restored by multiplying the spectra by the ratio of blackbodies with the standard star and solar effective temperatures. In the cases we chose nearby A stars for telluric standards as an alternative of the solar analogs, we multiplied by another A star spectrum, already corrected for the photospheric absorption with a G2 V star. If an A type standard was used to correct only a K-band spectrum, we removed the B line feature by interactively fitting and subtracting a Gaussian with the task “splot.” We carried out the wavelength calibration using OH airglow lines (Oliva & Origlia 1992) complemented if necessary with Ne–Kr lamp spectra.

The spectrum at each individual setting was divided by second- or third-order polynomial continuum fits and combined with the rest of the settings to construct a single HK spectrum. Finally, we multiplied the spectrum by a blackbody with stellar effective temperature corresponding to the spectral type (Schmidt-Kaler 1982; Straizys 1992). Unfortunately, the normalization procedure removes the broad vapor absorption features in the coolest stars, but this loss is unavoidable because the spectral extent of a single setting is only 0.075–0.095 μm and does not provide sufficient coverage for a reliable estimate of the continuum shape. Furthermore, in many cases the true continuum shape was distorted by the imperfect spectral type match of the telluric standards, as discussed above. The deviation between the constructed continuum shape and the real one is most severe for late M stars, where the molecular absorption is the strongest. A possible way to alleviate this problem completely is to impose on our spectra empirical continuum shapes taken from lower resolution spectra (Lancô & Rocca-Volmerange 1992; Lancô & Wood 2000). We intend to explore this avenue in the future.

The error analysis of spectra that consist of “pieces” taken at different times, and often on different nights, is particularly complicated because of the large variations of the signal-to-noise ratio (S/N) across the individual spectra. The uncertainties are dominated by systematic errors due to (i) sky emission and transparency variations with wavelength and (ii) temporal changes in the observing conditions. An example is shown in Figure 1, where the difference between the “final” spectra of two different K3 III stars with near solar metallicity is shown. The difference Δ has been divided by the average of the two spectra. The inset shows the distribution of these differences. Their average difference $\langle \Delta \rangle$ = -0.006 ± 0.031 suggests that each spectrum has an average $S/N \sim 50$. At the same time, the photon statistics suggests $S/N \sim 150$. The inconsistency is largely due to the variation of the sky background and transmission. Therefore, a single signal-to-noise ratio does not represent well the quality of the data. Furthermore, the measurements of individual features of interest include additional systematic uncertainties, such as the continuum placement during the continuum normalization, and differences between the stars used for the telluric correction and the Sun.

The best technique to estimate the actual signal-to-noise ratio is to measure the noise locally over a “clean” continuum region near the spectral feature of interest. We recommend this method for applications concerning parameters of individual stars—HR 7576 and HR 8924—with similar abundances, normalized by the average of the two spectra as a function of wavelength (in arbitrary flux units). The inset shows the histogram of the differences. The means and the standard deviation of the distribution are also shown.

\[\langle \Delta \rangle = -0.006\pm0.031 \]

\[\chi = 0.031 \]

\[\lambda = 0.03 \]

\[\mu = 0.03 \]

\[\alpha = 0.03 \]

\[\beta = 0.03 \]

\[\gamma = 0.03 \]

\[\delta = 0.03 \]

\[\epsilon = 0.03 \]

\[\zeta = 0.03 \]

\[\eta = 0.03 \]

\[\theta = 0.03 \]

\[\iota = 0.03 \]

\[\kappa = 0.03 \]

\[\lambda = 0.03 \]

\[\mu = 0.03 \]

\[\nu = 0.03 \]

\[\xi = 0.03 \]

\[\omicron = 0.03 \]

\[\pi = 0.03 \]

\[\rho = 0.03 \]

\[\sigma = 0.03 \]

\[\tau = 0.03 \]

\[\upsilon = 0.03 \]

\[\phi = 0.03 \]

\[\chi = 0.03 \]

\[\psi = 0.03 \]

\[\omega = 0.03 \]

\[\alpha = 0.03 \]

\[\beta = 0.03 \]

\[\gamma = 0.03 \]

\[\delta = 0.03 \]

\[\epsilon = 0.03 \]

\[\zeta = 0.03 \]

\[\eta = 0.03 \]

\[\theta = 0.03 \]

\[\iota = 0.03 \]

\[\kappa = 0.03 \]

\[\lambda = 0.03 \]

\[\mu = 0.03 \]

\[\nu = 0.03 \]

\[\xi = 0.03 \]

\[\omicron = 0.03 \]

\[\pi = 0.03 \]

\[\rho = 0.03 \]

\[\sigma = 0.03 \]

\[\tau = 0.03 \]

\[\upsilon = 0.03 \]

\[\phi = 0.03 \]

\[\chi = 0.03 \]

\[\psi = 0.03 \]

\[\omega = 0.03 \]

\[\alpha = 0.03 \]

\[\beta = 0.03 \]
stars. Our study shows that for statistical work the uncertainties of indices can be approximated as \(\sigma_{\text{Index}} = \frac{0.2 \times \text{Index}}{\sqrt{C_{\text{Index}}}} \), with a lower limit of \(\sigma_{\text{Index}} = \frac{0.02 \text{ mag}}{\sqrt{C_{\text{Index}}}} \).

Representative subsets of our spectra are shown in Figures 2, 3, 4, and 5.

3. SAMPLE SELECTION AND STELLAR PARAMETERS

We have assembled an IR spectral library of 218 stars. The majority of them have photospheric parameters available from the literature. The main criterion to include various types of stars was to populate the \textit{effective temperature–surface gravity–abundance} space necessary to model the stellar populations of starburst galaxies. Special attention was paid to observing red supergiants, which dominate the near-IR flux of these galaxies.

The largest fraction of stars in our library was selected from the Lick group sample (Worthey et al. 1994), assuring that they have high-quality optical spectra and known spectral type, surface gravity, and metallicity. However, the Lick library was...
FIG. 6.—Content of the library: distribution of the library stars on the surface gravity log g vs. effective temperature T_{eff} plane. Star symbols are supergiants, circles are giants, and solid dots are subgiants and dwarfs. The “anomalous” subgiant at log $g = 1.5$ is extremely metal-poor, with [Fe/H] = −2.67.

TABLE 3
ADOPTED PHOTOSPERIC PARAMETERS OF THE STARS

<table>
<thead>
<tr>
<th>Stellar ID</th>
<th>HD</th>
<th>SAO</th>
<th>BD</th>
<th>Other</th>
<th>SPECTRAL CLASS</th>
<th>PHOTOSPERIC PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(T_{eff}, log g, [Fe/H])</td>
</tr>
<tr>
<td>Supergiants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR99</td>
<td>104452</td>
<td>82106</td>
<td>222430</td>
<td>1 Com</td>
<td>G0 II(32)</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>7063.0...</td>
<td>173764</td>
<td>142618</td>
<td>-4 4582</td>
<td>β Set</td>
<td>G4 Ia(32)</td>
</tr>
<tr>
<td></td>
<td>7314.0...</td>
<td>180809</td>
<td>68065</td>
<td>37 3398</td>
<td>θ Lyr</td>
<td>K0 II(32)</td>
</tr>
<tr>
<td></td>
<td>6713.0...</td>
<td>164349</td>
<td>103285</td>
<td>16 3335</td>
<td>93 Her</td>
<td>K0.5 II(32)</td>
</tr>
<tr>
<td></td>
<td>8465.0...</td>
<td>210745</td>
<td>34137</td>
<td>57 2475</td>
<td>ζ Cep</td>
<td>K1.5 Ib(32)</td>
</tr>
<tr>
<td></td>
<td>7735.0...</td>
<td>192577</td>
<td>32042</td>
<td>52 2547</td>
<td>φ1 Cyg</td>
<td>K2 Ib(34)</td>
</tr>
<tr>
<td></td>
<td>6498.0...</td>
<td>192041</td>
<td>69578</td>
<td>38 3939</td>
<td>PPM 84402</td>
<td>K2 II(33)</td>
</tr>
<tr>
<td></td>
<td>232078</td>
<td>105082</td>
<td>16 3924</td>
<td>V339 Sge</td>
<td>K3 II(35)</td>
<td>4000(7)</td>
</tr>
</tbody>
</table>

to “homogenize” the data as much as possible—at least in terms of abundance estimate methods—we used spectroscopic determinations when possible. Only did we use metallicities based on narrowband photometry when these were the only estimates available in the literature. Broadband photometry based metallicities were adopted for six dwarf stars with no other measurements.

We made some assumptions when no photospheric parameters could be found in the literature: (i) solar metallicity was adopted for supergiants in the Galactic disk, and (ii) [Fe/H] = −0.21 was adopted for all bulge stars, following (Ramírez et al. 2000b). We neglect the 0.3 dex of metallicity dispersion in the bulge, until individual estimates become available. We included in the table some color information—the reddening corrected $(V-K)_0$—for stars with unknown spectral class.

The metallicities as a function of the luminosity class for stars in our library are shown in Figure 7. The giants show the largest [Fe/H] spread by far. The supergiants suffer from a pure astrophysical constraint: the massive metal-poor stars from Population II (and possibly III) in our Galaxy exploded as supernovae a long time ago. The Magellanic Clouds offer a possibility to complement the library with some supergiants with 1/5 to 1/20 of the solar metallicity (Luck et al. 1998; Hill 1999). Obtaining such spectra is foreseen in the next papers of this series.

4. INDEX DEFINITIONS

Some spectral features in the near-IR have been observed and measured, and suitable spectral indices have already been defined by Kleinmann & Hall (1986), Origlia et al. (1993), Doyon, Joseph, & Wright (1994), and Ali et al. (1995). We adopted their definitions for compatibility, with two modifications. First, for the Na i and Ca i indices of Ali et al. (1995) we used only the two nearest continuum bands. Second, for the CO index of Doyon et al. (1994) we carried a polynomial, rather than a power-law, fit to the continuum. Experiments show that both these changes produce no significant effects, within the errors.

Our spectra do not always span the wavelength range of the original photometric CO index of Frogel et al. (1978), and we were forced to measure only narrow spectral indices, including the one defined by Ivanov et al. (2000). The latter is somewhat intermediate between the narrow and broad CO

![Figure 7](image_url)

Fig. 7.—Metallicity of library stars [Fe/H] vs. the effective temperature T_{eff} (left panels), and metallicity histograms (right) for supergiants, giants, and dwarfs (from top to bottom). The stars with parameters adopted from the literature are shown with solid dots, and the stars with assumed parameters are circles. Solid-line histograms include all stars with adopted or assumed metallicity, and dotted-line histograms omit the assumed values.

TABLE 4

DEFINITIONS OF SPECTRAL BANDS

<table>
<thead>
<tr>
<th>No.</th>
<th>SPICES</th>
<th>λ_c (Å)</th>
<th>$\Delta\lambda$ (Å)</th>
<th>λ_c (Å)</th>
<th>$\Delta\lambda$ (Å)</th>
<th>λ_c (Å)</th>
<th>$\Delta\lambda$ (Å)</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mg i (1.50 μm)</td>
<td>15040</td>
<td>40</td>
<td>15005</td>
<td>30</td>
<td>15075</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Fe i (1.58 μm)</td>
<td>15830</td>
<td>40</td>
<td>15800</td>
<td>20</td>
<td>15857.5</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Si i (1.59 μm)</td>
<td>15890</td>
<td>40</td>
<td>15850</td>
<td>40</td>
<td>15930</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CO (1.62 μm)</td>
<td>16197.5</td>
<td>45</td>
<td>16160</td>
<td>30</td>
<td>16270</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Mg i (1.71 μm)</td>
<td>17115</td>
<td>30</td>
<td>17092.5</td>
<td>15</td>
<td>17145</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Mg i (2.11 μm)</td>
<td>21075</td>
<td>70</td>
<td>21020</td>
<td>40</td>
<td>21130</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Na i (2.21 μm)</td>
<td>22075</td>
<td>70</td>
<td>22170</td>
<td>60</td>
<td>22350</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Brγ (2.16 μm)</td>
<td>21662.5</td>
<td>47</td>
<td>20929</td>
<td>44</td>
<td>22899</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Na i (2.21 μm)</td>
<td>22077</td>
<td>48</td>
<td>22092</td>
<td>44</td>
<td>22899</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Ca i (2.26 μm)</td>
<td>22635</td>
<td>110</td>
<td>22510</td>
<td>40</td>
<td>22720</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>Ca i (2.26 μm)</td>
<td>22636.5</td>
<td>51</td>
<td>20929</td>
<td>44</td>
<td>22899</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Mg i (2.28 μm)</td>
<td>22806</td>
<td>52</td>
<td>22750</td>
<td>60</td>
<td>22857</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Mg i (2.28 μm)</td>
<td>22820</td>
<td>60</td>
<td>22720</td>
<td>40</td>
<td>22886</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>CO (2.29 μm)</td>
<td>22950.5</td>
<td>53</td>
<td>22899</td>
<td>52</td>
<td>22899</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>12CO (2, 0) (2.29 μm)</td>
<td>22957</td>
<td>52</td>
<td>22899</td>
<td>52</td>
<td>22899</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>CO (2.29 μm)</td>
<td>22980</td>
<td>100</td>
<td>22850</td>
<td>100</td>
<td>22850</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>12CO (3, 1) (3.22 μm)</td>
<td>23245</td>
<td>54</td>
<td>22899</td>
<td>52</td>
<td>22899</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>13CO (2, 0) (3.35 μm)</td>
<td>23463.5</td>
<td>55</td>
<td>22899</td>
<td>52</td>
<td>22899</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>CO (3.35 μm)</td>
<td>23550</td>
<td>900</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5</td>
</tr>
</tbody>
</table>

*a Central wavelength λ_c and bandwidth $\Delta\lambda$, in Å.

Fig. 8.—Definitions of the spectral indices. The vertically shaded area represents the line band, and the horizontally shaded areas are the continuum bands. Note that the last index is measured after the continuum normalization over the entire K spectra and has no proper continuum band. The numbers in parentheses in each panel correspond to the index numbering in Table 4.

Table 5
Spectral Indices of Features of Interest

Star ID	Mg (1)	Fe (2)	Si (3)	CO (4)	Mg (5)	Mg (6)	Br\(_{73}\) (7)	Na (8)	Na (9)	Ca (10)	Ca (11)	Mg (12)	Mg (13)	CO (14)	CO (15)	CO (16)	CO (17)	CO (18)	CO (19)		
SAO 082106	0.04	0.01	0.04	0.00	0.04	0.00	0.08	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.01	
HR 7063	0.06	0.04	0.07	0.03	0.02	0.01	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
HR 7314	0.08	0.03	0.03	0.06	0.03	0.02	0.01	0.03	0.03	0.04	0.05	0.00	0.01	0.06	0.01	0.14	0.11	0.20	0.20	0.07	
HR 6713	0.07	0.10	0.05	0.03	0.03	0.02	0.04	0.00	0.04	0.01	0.02	0.02	0.02	0.02	0.02	0.22	0.23	0.14	0.19	0.01	0.06
SAO 069825	0.07	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.05	0.06	0.12	0.00	0.04
HR 8465	0.10	0.04	0.10	0.11	0.03	0.01	0.03	0.03	0.06	0.01	0.04	0.02	0.01	0.36	0.38	0.25	0.31	0.07	0.09		
HR 7735	0.04																				
SAO 069578	0.11	0.03	0.04	0.07	0.04	0.04	0.01	0.03	0.04	0.04	0.03	0.05	0.01	0.01	0.01	0.06	0.10	0.12	0.24	0.06	0.08
HR 6498	0.10	0.02	0.08	0.11	0.03	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.34	0.26	0.20	0.02	0.08		
SAO 105082	0.02	0.01	0.07	0.04	0.04	0.06	0.01	0.04	0.04	0.00	0.07	0.00	0.01	0.00	0.00	0.01	0.03	0.01	0.09	0.02	0.09

Notes.—Table 5 is available in its entirety in the electronic edition of the Astrophysical Journal Supplement. A portion is shown here for guidance regarding its form and content. Indices are given in magnitudes. The numbers in the heading correspond to the numbers of index definitions given in Table 4. Stars are sorted in order of luminosity and spectral class, same as in Table 3.
indices, which makes it less sensitive to variations of the photospheric transmission. It provides better signal-to-noise ratio than the narrower spectroscopic indices. Finally, we defined new indices for atomic lines that had not been measured before, or where the previous definitions could be affected by the loss of the true continuum shape as discussed above, for instance, the indices defined by Kleinmann & Hall (1986), where the continuum bands are very far apart. All definitions are summarized in Table 4, and the bandpasses are shown in Figure 8. The measured indices for the library stars are given in Table 5. The gaps in the table are due to incomplete spectral coverage.

All indices are in magnitudes:

\[\text{Index} = -2.5 \times \log_{10}(I_{\text{line}} / I_{\text{continuum}}), \]

where \(I_{\text{line}} \) is the flux in the line band, normalized by the bandwidth, and \(I_{\text{continuum}} \) is linear interpolation of the continuum flux at the line wavelength. An exception are the CO bands for which \(I_{\text{continuum}} \) is the bandwidth normalized flux in the continuum pass band.

5. DIAGNOSTICS OF INDIVIDUAL STARS

5.1. Stellar Effective Temperature Indicators

Many near-IR spectral features are good indicators of the stellar effective temperature (\(T_{\text{eff}} \)) by themselves, e.g., the CO bands, and the Na i, Ca i indices (Kleinmann & Hall 1986). Figure 9 shows the behavior of all measured features as function of \(T_{\text{eff}} \). To minimize metallicity effects we only plot stars with \(-0.10 \leq [\text{Fe/H}] \leq +0.10 \). The CO bands, Br\(\gamma \), Na, and Ca show stronger temperature dependence than, for instance, Mg, Fe, and Si. This behavior has been demonstrated before (Kleinmann & Hall 1986; Ali et al. 1995; Förster-Schreiber 2000).

Some line ratios, for instance, \(\text{EW(CO 1.62)/EW(Si i 1.59)} \) (Origlia et al. 1993; Dallier, Boisson, & Joly 1996; Förster-Schreiber 2000), are better temperature indicators than individual lines because the division cancels out any additional luminosity, metallicity, or reddening effects. Based on the indices
of 109 stars from our sample (Fig. 10), we find the following relation for giants and supergiants with $T_{\text{eff}} \leq 5000$ K:

$$(\text{CO} 1.62 - \text{Si} 1.59) = (2.79 \pm 0.19) - (0.77 \pm 0.05) \times \log T_{\text{eff}}.$$ (2)

Here we used the index definitions of Origlia et al. (1993). The root mean square (rms) of the relation is 0.03 mag, which corresponds to ~ 300 K for the inverse equation, close to the typical observational errors of 0.02 mag. From indices of 23 dwarfs and subgiants, again with $T_{\text{eff}} \leq 5000$ K:

$$(\text{CO} 1.62 - \text{Si} 1.59) = (0.65 \pm 0.20) - (0.19 \pm 0.05) \times \log T_{\text{eff}},$$ (3)

where the rms is 0.02 mag, corresponding to ~ 800 K. The slopes of the relations are significantly different, and the loci of the two groups overlap only for hot stars where both spectral features are weak and the relative errors increase.

We derived similar relations using the 1.50 μm Mg i feature. For 107 giants and supergiants:

$$(\text{CO} 1.62 - \text{Mg} i 1.50) = (2.34 \pm 0.21) - (0.65 \pm 0.06) \times \log T_{\text{eff}}.$$ (4)

The CO index is defined by Origlia et al. (1993), and the Mg i index is defined in this work. The rms is 0.03 mag or ~ 350 K. For 23 dwarfs and subgiants:

$$(\text{CO} 1.62 - \text{Mg} i 1.50) = (1.13 \pm 0.59) - (0.34 \pm 0.16) \times \log T_{\text{eff}},$$ (5)

with rms of 0.06 mag or ~ 1500 K. The relations for dwarfs and subgiants are worse than for giants and supergiants because of both weaker spectral lines and systematically fainter targets. Note that even though we have not restricted the abundances, the majority of stars used to derive the equations above have near-solar metallicities ($-0.2 \leq [\text{Fe/H}] \leq +0.2$) and abundance ratios.

Fig. 11.—Two-dimensional spectral classification. Comparison of the strengths of Na and Ca features, with the 2.29 μm CO bandhead absorption, following Kleinmann & Hall (1986). All index definitions are from there, and the indices are in magnitudes. Star symbols indicate supergiants, open circles are giants, and solid dots represent dwarfs and subgiants. The typical $\pm 1 \sigma$ observational uncertainties are shown in the bottom right corner. The top panel includes all stars, the bottom panel shows only stars with $[\text{Fe/H}] \geq -0.5$ and $T_{\text{eff}} \leq 4500$ K.

Fig. 12.—Two-dimensional spectral classification with H-band features (top left) and K-band features (bottom left), and their combination (right). All indices are in magnitudes. The stellar effective temperature T_{eff} is used on the left plot, and only pure observables are used on the right. Star symbols indicate supergiants, open circles are giants, and solid dots represent dwarfs and subgiants. The typical $\pm 1 \sigma$ measurement error is shown in the bottom right corner. The CO bands are defined by Origlia et al. (1993), the Ca and Na indices are from Ali et al. (1995), and the Mg definitions are from this work.
5.2. Two-dimensional Spectral Classification—Luminosity Class Indicators

The two-dimensional spectral classification requires an indicator for the intrinsic luminosity of the stars. Kleinmann & Hall (1986) demonstrated that Na, Ca, and Brγ can be used to discriminate between stars of different luminosity classes (see their Fig. 7). We verified their result, excluding the Brγ index (Fig. 11) to minimize the uncertainties related to the removal of the intrinsic Brγ absorption in the telluric standards (§ 3). The (super)giant versus dwarf separation is relatively small, compared with the typical observational uncertainties. The situation improves if we constrain the sample only to metal-rich stars with [Fe/H] \(\geq -0.5 \) (bottom panel), minimizing the relative errors. Clearly, this diagnostic relationship imposes a high demand on the data quality.

Ramírez et al. (1997) proposed to use the log \(\frac{\text{EW(CO 2.29) - EW(Ca i 2.1)} + \text{EW(Ca i 2.26)}}{\text{EW(Na i 2.21)}} \) ratio plotted against \(T_{\text{eff}} \) to separate giants from dwarfs (see their Fig. 11). Our data confirm this result (Fig. 12, bottom left), even for higher \(T_{\text{eff}} \)-values than Ramírez et al. (1997) because of the improved S/N and spectral resolution. We obtain similar separations with Mg features (Fig. 12, top left). This method uses a physical quantity—\(T_{\text{eff}} \)—that requires some calibration to be derived from observables such as \((V-K) \) or some spectral feature. To avoid this additional step, we combined the two ratios—log \(\frac{\text{EW(CO 2.29) - EW(Na i 2.21)} + \text{EW(Ca i 2.26)}}{\text{EW(Mg i 1.50) + EW(Mg i 1.71)}} \)—and found that we can still achieve separation for most of the stars.

The signal-to-noise ratio needed to use the diagnostics discussed here depends on the temperature of the stars. It is safe to assume that S/N \(\approx 30 \) is necessary for K5–M stars, and it increases up to 50 for early K stars. The lines become too weak to implement these techniques for stars with effective temperatures hotter than 4500–4800 K. An additional limitation comes from the metal abundance—it is more difficult to separate stars of different luminosity class with low metallicity than with high metallicity, because in the former the lines are weaker, and the relative uncertainties are higher. However, our library does not offer sufficient abundance range to quantify this effect.

6. SUMMARY

We have assembled a library of moderately high-resolution (\(\approx 2000–3000 \)) \(H (1.6 \mu m) \) and \(K (2.2 \mu m) \) spectra of 218 red stars, mostly supergiants and giants. The majority of these stars have well-known photometric parameters from high-resolution optical spectroscopy. These stars dominate the near-IR emission in both starburst and elliptical galaxies. Our library covers a range of effective temperatures, and metal abundances from [Fe/H] \(\approx -2.2 \) to +0.3. This library will offer a unique opportunity to study directly the most obscured stellar populations in starburst galaxies, as well as in the center of the Milky Way.

Although the main motivation behind the creation of this library is the study of unresolved extragalactic stellar populations, the obtained spectra can be used to derive parameters of individual stars. We calibrated some line ratios as indicators of the stellar effective temperature. Finally, we demonstrated how some diagnostic relationships can distinguish (super-)giants from dwarf stars.

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. The authors were supported by NSF grant AST 95-29190. We are grateful to the anonymous referee for the suggestions that helped to improve the paper.

REFERENCES

Barbier, M. 1962, J. des Obs., 45, 57
1968, Publ. Obs. Haute-Provence, 9, 38
Hicks, E. K., Malkan, M. A., Teplitz, H. I., Sugai, H., & Guichard, J. 2000, BAAS, 32, 4408