Revisiting the Impact of Atmospheric Effects on VIMOS Multi-Object Spectroscopic Observations

Rubén Sánchez-Janssen, Steffen Mieske, Fernando Selman & the VIMOS IOT

VIMOS IOT Meeting June 11, 2012

Fiducial Model

- 9 slits located in different positions of the VIMOS FoV, with relative separations of 7 arcmin.
- 10 arcsec slit-length and 1 arcsec slit-width.
- Gaussian seeing w/ FWHM = 1 arcsec
- 24% flux losses due to finite seeing and slit width.
- MR grism, $5500 < \lambda$ (Å) < 9700.
- Two slits orientations at meridian crossing: PA = 0 (N-S), PA = 90 (E-W).
- Flat input spectrum.
- Figures of Merit:
 - Spectral distortion: $\Delta = (f_{max} f_{min})/f_{max}$
 - Relative flux loss: $(\int f_{\lambda})/(\int f_{\lambda,76\%})$

VIMOS slitlosses example: $\delta = -40 \text{ deg}, -3 < HA < -2$

Rubén Sánchez-Janssen Atmospheric Effects on VIMOS Operations

General trends as a function of δ , HA and FoV orientation

- PA = 0 (N-S) provides the most stable results $(\Delta < 0.1, f_{loss} < 0.1)$ within -2 < HA < 2 but not necessarily the *optimal* ones!
- Comparably good results can be obtained for $-45 \lesssim \delta \lesssim -5 \deg$ fields up to $HA = \pm 4$.