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ABSTRACT

 

As part of an “Integrated Modeling Toolbox” described in

 

 Wilhelm, Koehler et al. 2002 

 

(these proceedings)

 

11

 

the optical modeling tool 

 

BeamWarrior

 

 has been developed. Its main purpose is the creation of optical models
for integration into a dynamic control system simulation. Offering a versatile set of geometrical and wave
optical propagation algorithms it can also be used for sophisticated static optical analysis. The article
summarizes the functional features of the tool and describes its algorithms —both, from a theoretical and
practical point of view.
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1. INTRODUCTION

 

In a joint effort, ESO, Astrium GmbH and the Institute for Lightweight Structures, Technical University of
Munich are developing a software package for “integrated modeling” of single- and multi-aperture optical tele-
scopes. Integrated modeling aims at time-dependent system analysis combining different technical disciplines
(optics, mechanical structure, control system with sensors and actuators). Different environmental and inter-
nal disturbances can be taken into account. Main applications of integrated modeling are feasibility assessment
and performance prediction. The architecture of the software package with its tools 

 

SMI

 

 and 

 

BeamWarrior

 

 is
described in

 

 Wilhelm, Koehler et al. 2002 

 

(these proceedings).

 

11 

 

This article focuses on the core of the optical
modeling tool 

 

BeamWarrior

 

: the “Kernel” with its beam propagation algorithms. Section 2 summarizes the
functionality of the Kernel. A detailed description of the algorithms for modeling light propagation is given in
Section 3. Finally, Section 4 discusses advantages and drawbacks of the individual beam propagation algo-
rithms regarding their application in practice.

 

2. THE 

 

BeamWarrior

 

 KERNEL

 

BeamWarrior

 

 is used to generate models of the optical signal flow for integration into a dynamic control sys-
tem simulation based on Matlab / Simulink

 

®

 

. Its development has been initiated in February 1997 driven by the
non-availability of a powerful, open-architecture optical modeling code which can be customized to create
optical models for integration into a dynamic simulation environment. Present and future development is
jointly done by ESO and Astrium GmbH.

 

¶ Email: rwilhelm@eso.org, World Wide Web: http://www.eso.org/projects/vlti



 

The 

 

BeamWarrior

 

 Kernel 

 

forms the core of the tool. It is a library of ANSI C functions for optical modeling
which can either be accessed by a user-written customized C application or via the 

 

BeamWarrior

 

 Optical

Modeling Tool

 

. The latter is generic-purpose application reading the sequence of computational steps to be per-
formed and the results to be produced from an ASCII “control file”. The Optical Modeling Tool has been
designed for flexible generation of linear optical models (i.e., sensitivity matrices).
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 Besides its main purpose,
namely the creation of dynamic optical models, 

 

BeamWarrior

 

 can also be employed for a large variety of
static optical analysis tasks. Examples can be found in the references.

 

7, 8, 9, 10

 

The main functional features of the 

 

BeamWarrior

 

 Kernel are:

 

❏

 

Optical system definition:

— Mathematical surface shapes: (cylindrical) conicoid (flat, spherical, parabolic, elliptic, hyperbolic)

— Optical surface types: dielectric (reflecting or refracting), obscuration masks, beam splitters

— Usage of global coordinate system (= global coordinate system of a Finite Element structure model)

— User defined material catalogue for refractive indices

 

❏

 

Light propagation on different sequential paths through the optical system

 

❏

 

Two types of incident beams: homogeneous plane wave, Gaussian TEM

 

00

 

❏

 

Perturbation of surfaces and incident wavefronts in all degrees of freedom

 

❏

 

Beam propagation:

— Fast and accurate ray tracing for geometrical optical analysis (see Section 3.1)

— Three alternative methods for calculating wave optical propagations (see Section 3.2)

— All algorithms consider radiometry and polarization

 

❏

 

Interferometric superposition of optical fields

 

❏

 

Analysis functions:

— Spot diagram

— 2-D maps of optical path (difference), electric field amplitude and phase, intensity

— Polarization map (2-D map showing the local state of polarization)

— Zernike decomposition of wavefronts

— Aperture stop and pupil finder

— 3-D view of optical system and beam trains

 

3. BEAM PROPAGATION ALGORITHMS

 

The assumption of a lossless, isotropic and homogeneous medium (refractive index n) is common to all
propagation algorithms. For a given medium wavelength , the task is to compute solutions of the
scalar 

 

Helmholtz wave equation

 

(1)

in form of scalar complex amplitudes  (q = x, y, z) representing the three Cartesian components of the
electric vector field. The medium propagation constant k is defined as k = 2

 

π ⁄ λ

 

.

λ λ0 n⁄=

∆ k2+( )E q r( ) 0=

E q r( )



 

3.1 Geometrical optical propagation algorithm

 

Geometrical optics (GO) considers the limiting case 

 

λ →

 

 0. The electric vector field locally

 

¶

 

 behaves as a
homogeneous plane transverse electromagnetic (TEM) wave. Substituting the “trial” solution  = ·

 into the Helmholtz equation and regarding the case 

 

λ →

 

 0 one obtains the

 

 eikonal equation

 

. The scalar function (“eikonal”)  is a measure of the optical path. The surfaces =
constant define GO wavefronts. Light rays are defined as orthogonal trajectories to these wavefronts. In the
assumed case of a homogeneous medium a light ray has the form of a straight line. With the unit vector 

 

i

 

 denot-
ing the direction of the light ray, the eikonal can be written as . The corresponding GO wave sig-
nal is

 (q = x, y, z). (2)

The electric and magnetic field vectors  and  are mutually perpendicular and parallel to the wavefront.
Both are perpendicular to the wave vector .  and  share the same phase. The ratio of their magni-
tudes is the wave impedance  with the vacuum wave impedance .

A GO beam is modeled by a grid of light rays each having assigned a 2

 

 ×

 

 1 Jones vector . The vector  holds
a pair of complex amplitudes  with respect to the two local orthogonal polarization directions 

 

p

 

1

 

 and

 

p

 

2

 

. The three unit vectors 

 

p

 

1

 

, 

 

p

 

2

 

 and 

 

i

 

 form a right-handed orthogonal triad with 

 

p

 

1

 

 

 

×

 

 

 

p

 

2

 

 = 

 

i

 

 (see Figure 1). The
amplitude ratio and phase difference of the two components  and  determines the local state of polar-
ization. A fast vector-based ray tracing algorithm

 

 (Redding & Breckenridge 1991

 

6

 

) 

 

propagates the ray grid
through the optical system consisting of flat, conicoid or cylindrical conicoid surfaces. Each ray is regarded as
a sample of a locally plane TEM wave. Therefore, the effect on its Jones vector for reflection or refraction at an
optical surface can be described by Fresnel equations. For computing the calibrated power flux through the
system, a computationally efficient algorithm has been developed. By using a triangular grid interconnecting
the rays (see Figure 1) the approach allows to compute the electric field distribution on a grid of pixels on an
optical surface at the expense of a single-forward ray tracing run. For performing the same task, software
codes based on stochastic ray tracing require several ray tracing loops from the light source to the target sur-
face. The change in cross-sectional area of a light tube is taken into account for scaling the local squared field
amplitude in accordance with the “intensity law of geometrical optics”  = constant with the triangle area A
and the local intensity . A detailed description of the radiometric polarization ray tracing
algorithm can be found in the references.

 

9, 7

 

¶ The term “locally” means “in a region of the spatial extension of some wavelengths.

 

Fig. 1: Triangular ray tubes are used for radiometric scaling of the GO electric field.
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3.2 Wave optical propagation algorithms

The limits of validity of the GO model arise from the derivation of the eikonal equation. Practical cases where
the GO model is not adequate are the computation of a field distribution close to focus or modeling the propa-
gation of a spatially confined beam over long distances. In these cases, diffraction (i.e. wave optical) effects
play an important role. To model such effects, BeamWarrior provides a set of different wave optical propaga-
tion algorithms which are discussed in the following Subsections 3.2.1, 3.2.2 and 3.2.3. Common to all
approaches is their assumption of scalar diffraction theory: the coupling of the various vector components of
the electric and magnetic field through boundary conditions is neglected. The solution of the Helmholtz equa-
tion (Eq. (1)) is computed independently for the three Cartesian components of  resulting in a complete
description of the vectorial field. Scalar diffraction theory is an adequate model if (1) apertures are large com-
pared to the wavelength, and (2) a field is not observed too close (≈ λ) to an aperture.

3.2.1 Direct method

Both, the “direct method” and the “angular spectrum method” (discussed in Subsection 3.2.2) compute the
electric field on a “target surface” Σt (locations rt) assuming the knowledge of the electric field on an “object
surface” Σo (locations ro). The Helmholtz equation together with the Kirchhoff boundary condition for the
field on both sides of the aperture on Σo and the Sommerfeld radiation condition define a boundary value
problem.2 Applying the Helmholtz–Kirchhoff integral theorem (derived from Green’s theorem) with the choice
of Sommerfeld’s Green’s function, one gets the Rayleigh–Sommerfeld diffraction integral which forms the
base equation of the direct method:

 (q = x, y, z). (3)

For implementation on the computer, the integral in Eq. (3) is replaced by a sum. The field on the target surface
is computed as a coherent superposition of spherical wave contributions originating at ray positions ro on Σo.
The approach presumes that the grid of ray triangles is known on the object surface Σo. Each ray on Σo —with
its Jones vector— is interpreted as a Huygens secondary source. The spherical wave contributions to a pixel at
location rt are weighted with an “obliquity factor”  where  is the unit vector
pointing from ro to rt, and no is the local unit surface normal at the ray location ro. The surface element dS
(which becomes ∆So in the sum) associated to the ray at ro is derived from the local ray triangle grid structure
around ro. Figure 2 illustrates the principle of the approach.

Fig. 2: Principle of the direct method for wave optical propagation
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Direct method in paraxial approximation:

The “paraxial approximation” assumes that the field  can be written as product of a “primary” plane
wave propagation factor exp(–jkz) and a wave amplitude  whose remaining z-dependence is slow
compared to one wavelength and to the transverse variations (along x- and y-direction) due to the finite width
of the beam. By dropping the second partial derivative in z, the Helmholtz equation (Eq. (1)) reduces to the
paraxial wave equation

(q = x, y, z). (4)

Considering the paraxial approximation, the “direct method” solution Eq. (3) becomes

(q = x, y, z)(5)

with the operator  denoting a two-dimensional Fourier transform {xo, yo}  {fx, fy} defined as follows:

. (6)

The spatial frequencies {fx, fy} are defined as fx = xt ⁄ (λzt) and fy = yt ⁄ (λzt). Eq. (5) assumes that the initial field
 is given on a plane Σo parallel to the (x, y)-plane and located at z = 0. The diffracted field
 is computed on a plane Σt parallel to Σo at a distance z = zt (“plane-to-plane propagation”). It is

proportional to the Fourier transform of the product of the initial field on Σo and a “quadratic phase factor”
exp[ ⁄ (2zt)].

For computing the Fourier transform, BeamWarrior makes use of the FFTW library¶ —a freely available
ANSI C library for computing the Fast Fourier Transform (FFT) in one or more dimensions with arbitrary grid
size.

3.2.2 Angular spectrum method

A solution to the boundary value problem mentioned in Subsection 3.2.1 is also obtained by superposing all
homogeneous and evanescent plane waves traveling in directions k whose complex amplitudes are given by
the spatial frequency spectrum (“angular spectrum”) of the initial field defined in a plane Σo:

(7)

with the transfer function of the homogeneous medium H(fx, fy, zt) being defined as

(8)

¶ The FFTW (Fastest Fourier Transform in the West) library can be downloaded at the URL http://www.fftw.org
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with δ = +1 for  or δ = –j for  (evanescent wave case). As in the paraxial approx-
imation case of the direct approach, Eq. (7) describes a “plane-to-plane propagation” between two parallel
planes Σo and Σt separated by a distance zt.

Angular spectrum method in paraxial approximation:

In the paraxial case, the transfer function in Eq. (7) reduces to

. (9)

3.2.3 Gaussian beam decomposition method

The “Gaussian beam decomposition method” has been invented by A. W. Greynolds3,4, based on ideas of
J. A. Arnaud1. In contrast to the two “classical” approaches described above, this powerful alternative tech-
nique allows to compute a pure wave optical propagation in an “end-to-end” way —without the need for inter-
mediate geometrical optical propagations. The basic idea of the algorithm is to decompose a field distribution
at an aperture into a set of spatially confined “fundamental beams” (see Figure 3).

For calculating the field pattern on any surface of the optical system, the fundamental beams are propagated
—including self-diffraction effects— to the surface where they are superposed. The fundamental beam type
used in BeamWarrior is an astigmatic Gaussian TEM00 beam which represents a solution of the paraxial
Helmholtz equation (Eq. (4)). Its propagation can be modeled by ray tracing of five rays. The “base ray” defines
the main direction of propagation, i.e. the optical axis of the Gaussian beam to which a Jones vector is
attached. Four “parabasal” rays (two “waist rays” and two “divergence rays”) grouped around the base ray
define the self-diffraction of the beam. Figure 4 illustrates the ray-representation of a Gaussian beam whose
propagation starts at its beam waist.

The propagation of an arbitrary optical field is simulated by decomposing the field into a coherent superposi-
tion of equidistantly spaced rotationally symmetric Gaussian beams (waist radii w01 = w02 = w0 in Figure 4)
starting their propagation at their beam waists. For each fundamental beam the four parabasal rays are set up
in two orthogonal “astigmatic planes” each holding a waist ray and a divergence ray. The initial divergence
angles θ1 = θ2 = atan(λ ⁄ (4·w0)) are determined by the waist radius w0. The divergence angle must be small
enough, i.e. the initial waist w0 wide enough, to ensure the validity of the paraxial approximation. The waist
should be at least 100 wavelengths wide (e.g. λ = 2 µm → w0 ≥ 0.2 mm). Assuming a minimum number of 10

Fig. 3: Principle of decomposing an optical field into a set of Gaussian “fundamental beams”
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fundamental beams along one dimension the spatial extension of the field region to be decomposed has to
exceed a minimum value of ∼1000·λ. However, there exists an alternative way of decomposing a field distribu-
tion which is also applicable for spatial extensions below the above mentioned limit: instead of performing the
decomposition in the spatial domain it is carried out in the angular spatial frequency domain. A narrow field
region is synthesized by a discrete number of fundamental Gaussian beams propagating in different directions,
the waist of each beam being wider than the field region to decompose (“directional decomposition”). We
intend to add this decomposition technique in a future release of BeamWarrior. It is of practical importance
when simulating diffraction at narrow pinholes or optical fiber heads.

Each fundamental beam is propagated by tracing its base ray and the four accompanying parabasal rays using
the ray tracing algorithm described in Subsection 3.1. Reflection or refraction at optical surfaces is modeled by
reflecting or refracting the beam-constituting rays. As a consequence of the ray-based description of the Gauss-
ian beam it has to be made sure that the region of an optical surface sampled by a single beam is locally para-
bolic or flat. Within the paraxial approximation each beam has a small self-divergence. The angular deviation of
its wavefront from a plane is always quite small. Hence, the distinction between the normal to the wavefront
and the base ray direction is not significant. The longitudinal component of the electric field vector is negligi-
ble. The local Poynting vector direction is equal to the base ray direction. Since the wavefront of each funda-
mental beam can be considered as plane, the interaction with a reflecting / refracting optical surface can be
modeled by applying Fresnel equations, i.e. the Jones formalism used in the polarization ray tracing
(Subsection 3.1) can be used.

The electric field pattern on an arbitrary surface can be computed from the positions and directions of the
base and parabasal rays of the complete set of fundamental beams.10 If the total beam is clipped by an interme-
diate aperture placed in the beam train a re-decomposition at the aperture may be necessary. In such a case,
the sampling rate of the recreated fundamental beams is adjusted to the spatial structures of the obstruction.

4. COMPARISON OF THE PROPAGATION ALGORITHMS

Following the theoretical description in the previous Section 3, this Section focuses on a more practically ori-
ented summary of pros and cons of the various methods for wave optical propagation.

The direct method (Subsection 3.2.1) has the disadvantage of relatively long computing times. For a grid of
N × Ν rays (i.e. Huygens sources) and a N × Ν target pixel matrix, the complexity of the algorithm scales as
∼N4. Since the continuous field distribution on Σo is sampled at a discrete spatial frequency the calculated dif-

Fig. 4: Representation of an astigmatic Gaussian beam by a base ray and four accompanying parabasal rays. For

illustration, the divergence angles are exaggerated.
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fraction pattern on Σt repeats itself in space. Aliasing effects arise in case of too low sampling rates on Σo. The
method has the advantage to be very accurate except for very small propagation distances. It is applicable to
problems with complex and / or skew geometries without requiring a specific coordinate system or the usage
of “reference surfaces” to sample the beam. The pixel grid on the target surface Σt can be flexibly chosen allow-
ing a high spatial resolution in the computed field. Due to its high accuracy, a typical application is cross-check-
ing a result obtained by another algorithm.

Employing an FFT, the direct method in paraxial approximation (Subsection 3.2.1) provides a significant
increase in computational efficiency. For a pixel grid size of N × Ν the algorithm has a complexity of ∼N2·log2N.
As a consequence of the FFT the pixel sizes on object and target surface Σo and Σt are linked to each other, i.e.
they cannot be chosen independently. For a square grid the relation linking the object pixel size ∆xo to the
image pixel size ∆xt is: . To improve the spatial resolution on Σt columns and lines of zeros
are added to the pixel matrix on Σo (“zero padding”). Two requirements must be met by the pixel size ∆xo: To
avoid aliasing errors in the target field distribution ∆xo has to be small enough to ensure that no significant frac-
tion of the diffracted energy is located at spatial frequencies beyond the maximum value fx = 1 ⁄ (2∆xo) cap-
tured by the FFT. Second, ∆xo must be small enough to capture phase variations of the field on Σo

corresponding to one wavelength. For meaningful results there should be at least a few samples per phase
change of 2π. A value of 5 samples has proven to be sensible in practice. Therefore it is desirable that the
phasefronts of the propagating wave are well aligned to the planes Σo and Σt. Being more efficient and less flex-
ible than the direct method, this approach is well suited to model the propagation of an almost collimated
beam over a large distance.

With and without paraxial approximation the angular spectrum method (Subsection 3.2.2) has the compu-
tational cost of two FFTs, hence a complexity of ∼2N2·log2N for a square N × Ν grid. The object and target pixel
sizes are equal,  which is useful for near-field problems and is a drawback in the far-field case
(where one is typically interested in having a large ∆xt and a much smaller ∆xo). Requirements in terms of zero
padding and prevention of aliasing are similar to those for the direct method in paraxial approximation. The
paraxial approximations of the angular spectrum method (Eq. (7) with Eq. (9)) and the direct method (Eq. (5))
are mathematically equivalent. Both are exact solutions of the paraxial Helmholtz equation (Eq. (4)). However,
they differ with respect to their numerical behavior. The oscillating quadratic phase factor in the direct paraxial
solution Eq. (5) is proportional to the Fresnel number NF = A ⁄ λzt leading to a decrease in accuracy for large
values of NF, i.e. in the near-field. In contrast, the transfer function Eq. (9) in the angular spectrum paraxial
solution Eq. (7) becomes more oscillatory for small NF values, hence this solution is less accurate in the far-
field. A criterion to decide which method is preferable according to computational efficiency and accuracy has
been derived by Mendlovic et al. 1997

5: A critical distance is given by zc =  with the initial beam
area A (unit m2) and the object’s finest detail δ (unit m). For distances  the angular spectrum approach
should be used whereas for distances  the direct paraxial method is more adequate.

The Gaussian beam decomposition technique (Subsection 3.2.3) has many advantages over the “classic”
approaches discussed above. Based on tracing rays (“beam tracing”) it is the only wave optical algorithm capa-
ble of accurately modeling an “end-to-end” propagation through an optical system. Using the direct or angular
spectrum methods, such an “end-to-end” propagation is only possible by combining the wave-optical propaga-
tions with intermediate geometrical optical propagations within a “hybrid propagation model”.7 The hybrid
model allows to reconstruct a ray triangle grid (compare Subsection 3.1) on the basis of an electric field pat-
tern resulting from a diffraction propagation. However, this “mixed” approach does not provide sufficient accu-
racy for imaging applications with a narrow field-of-view, such as the pupil re-imaging process in the VLTI (field
of view 200 arcsec ≈ 1.e–03 rad).

∆xo ∆xt⋅ λzt N⁄=

∆xo ∆xt=

2A1 2⁄ δ⋅( ) λ⁄
z zc<

z zc>



Because it does not rely on discrete sampling of the initial field rather than synthesis of the field by continuous
fundamental beams, the Gaussian beam decomposition technique does not suffer from aliasing problems. Sim-
ilar as in the direct method, the target pixel size can be chosen freely. Due to the finite spatial extent of a Gaus-
sian beam the number of pixels on the target surface receiving a significant field contribution is generally lower
than the total number of pixels where the field is to be computed. A quick pre-selection of the “illuminated”
pixel region for each fundamental beam provides a high computational efficiency, especially in near-field com-
putations. The efficiency inversely scales with the “amount of diffraction” present in the field, i.e. the required
time for computing the field pattern at a (intermediate / exit) pupil plane is much shorter than the time required
for computing the field pattern at an image plane.

Since for each fundamental beam the integrated optical path is known, temporal coherence effects due to a
finite bandwidth ∆λ << λ of the radiation can easily be taken into account during field computation. By incoher-
ently combining several spectral bands, a broadband (polychromatic) partial coherent intensity pattern can be
computed.

The accuracy of the decomposition technique heavily depends on the sampling quality in the object surface, i.e.
the number of fundamental beams, their waist size(s) and the distances between the individual beam centers.
Questions and tradeoffs related to the decomposition are discussed in reference3.

5. SUMMARY AND FUTURE WORK

Aiming at the generation of optical models to be integrated into dynamic simulations of controlled opto-
mechanical systems, the modeling tool BeamWarrior has been developed. It is part of an “Integrated Model-
ing Toolbox” described in Wilhelm, Koehler et al. 2002 (these proceedings).11 Light propagation is modeled by
a set of different algorithms. The geometrical optical domain is covered by a radiometric polarization ray trac-
ing algorithm. Wave optical (diffraction) propagation is handled by three alternative approaches, each being
suitable for specific cases: (1) the direct method based on the Rayleigh–Sommerfeld integral, (2) the angular
spectrum method using a decomposition of the optical field into a set of homogeneous and evanescent plane
waves, and (3) the powerful Gaussian beam decomposition technique which allows to simulate an “end-to-end”
wave optical propagation. All algorithms consider polarization effects and are radiometrically calibrated.

Following a theoretical description of the propagation algorithms, the article discusses pros and cons of the
different methods with regard to their application in practice. A main future objective is the extension of the
Gaussian beam decomposition algorithm towards a “directional decomposition scheme” which is required to
model diffraction at fine structures as mentioned in Subsection 3.2.3.

REFERENCES

1. J. A. Arnaud, “Nonorthogonal Optical Waveguides and Resonators”, Bell System Technical Journal, 
Nov. 1970, p. 2311, 1970

2. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill Publishing Company, New York, 1968

3. A. Greynolds, “Propagation of general astigmatic Gaussian beams along skew ray paths”, Diffractive 

Phenomena in Optical Engineering Applications, Proc. SPIE Vol. 560, pp. 33–50, 1985

4. A. Greynolds, “Vector-formulation of ray-equivalent method for general Gaussian beam propagation”, 
Current Developments in Optical Engineering and Diffractive Phenomena, Proc. SPIE Vol. 679, 
pp. 129–133, 1986



5. D. Mendlovic, Z. Zalevsky, N. Konforti, “Computation considerations and fast algorithms for calculating the 
diffraction integral”, Journal of Modern Optics, Vol. 44, No. 2, pp. 407–414, 1997

6. D. C. Redding, W. G. Breckenridge, “Optical Modeling for Dynamics and Control Analysis”, Journal of 

Guidance, Control and Dynamics, Vol. 14, No. 5, pp. 1021–1032, 1991

7. R. Wilhelm, U. Johann, “Novel approach to dynamic modeling of active optical instruments”, Design and 

Engineering of Optical Systems II, F. Merkle, Ed., Proc. SPIE Vol. 3737, pp. 45–56, 1999

8. R. Wilhelm, B. Koehler, “Modular toolbox for dynamic simulation of astronomical telescopes and its 
application to the VLTI”, Interferometry in Optical Astronomy, Proc. SPIE, Vol. 4006, Part One, 
pp. 124–135, 2000

9. R. Wilhelm, Novel numerical model for dynamic simulation of optical stellar interferometers, Logos 
Verlag Berlin, 2000, also: Technische Universität Berlin, Dissertation, 2000

10. R. Wilhelm, “Comparing geometrical and wave optical algorithms of a novel propagation code applied to the 
VLTI”, Wave-Optical Systems Engineering, F. Wyrowski, Ed., Proc. SPIE Vol. 4436, pp. 89–100 (2001)

11. R. Wilhelm, B. Koehler, et al. “Integrated modeling for stellar interferometry —motivation, development 
strategy and practical usage”, Integrated Modeling of Telescopes, these proceedings, 2002


