ESO Workshop:
Coating and Cleaning Large Mirrors

ESO Headquarters
Karl-Schwarzschildstraße 2
8046 Garching
Germany

7 and 8 October 1991

A collection of contributed papers
List of Participants at ESO Workshop:
Cleaning and Coating Large Mirrors, 7 and 8 October 1991

<table>
<thead>
<tr>
<th>Participant</th>
<th>Affiliation/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Abraham</td>
<td>Gemini 8m Telescope, USA</td>
</tr>
<tr>
<td>P. Alvarez</td>
<td>Instituto de Astrofisica de Canarias, E</td>
</tr>
<tr>
<td>B. Atwood</td>
<td>Columbus Project, USA</td>
</tr>
<tr>
<td>K. Birkle</td>
<td>Max-Planck-Institut für Astronomie, D</td>
</tr>
<tr>
<td>D. Cowley</td>
<td>Canada-France-Hawaii Telescope</td>
</tr>
<tr>
<td>C. Del Vecchio</td>
<td>Arcetri Obs., Florence, I</td>
</tr>
<tr>
<td>A. Gilliotte</td>
<td>ESO La Silla</td>
</tr>
<tr>
<td>T. Gregory</td>
<td>Canada-France-Hawaii Telescope</td>
</tr>
<tr>
<td>N. Itoh</td>
<td>Japanese National Large Telescope</td>
</tr>
<tr>
<td>M. Iye</td>
<td>Japanese National Large Telescope</td>
</tr>
<tr>
<td>D. Jackson</td>
<td>Royal Greenwich Observatory, UK</td>
</tr>
<tr>
<td>K. Kissel</td>
<td>AMOS/MOTIF Observatory, USA</td>
</tr>
<tr>
<td>B. Mack</td>
<td>Royal Greenwich Observatory, UK</td>
</tr>
<tr>
<td>M. Maars</td>
<td>Magellan Project, USA</td>
</tr>
<tr>
<td>L. Miglietta</td>
<td>Arcetri Obs., Florence, I</td>
</tr>
<tr>
<td>J. Montesinos</td>
<td>Instituto de Astrofisica de Canarias, E</td>
</tr>
<tr>
<td>M. Nakagiri</td>
<td>Japanese National Large Telescope</td>
</tr>
<tr>
<td>H. Nicklas</td>
<td>Uni-Sternwarte Göttingen, D</td>
</tr>
<tr>
<td>F. Perez</td>
<td>Carnegie Obs., Pasadena USA</td>
</tr>
<tr>
<td>H. Petrie</td>
<td>Palomar Obs., Caltech USA</td>
</tr>
<tr>
<td>K. Raybould</td>
<td>Gemini 8m Telescope, USA</td>
</tr>
<tr>
<td>P. Salinari</td>
<td>Arcetri Obs., Florence, I</td>
</tr>
<tr>
<td>V. Sanchez</td>
<td>Instituto de Astrofisica de Canarias, E</td>
</tr>
<tr>
<td>A. Schier</td>
<td>Carnegie Obs., Pasadena USA</td>
</tr>
<tr>
<td>J. Sovka</td>
<td>Canada-France-Hawaii Telescope</td>
</tr>
<tr>
<td>R. Thicksten</td>
<td>Palomar Obs., Caltech USA</td>
</tr>
<tr>
<td>J. Williams</td>
<td>MMT/University of Arizona USA</td>
</tr>
<tr>
<td>R. Wolf</td>
<td>Max-Planck-Institut für Astronomie, D</td>
</tr>
<tr>
<td>S. Worswick</td>
<td>Royal Greenwich Observatory, UK</td>
</tr>
</tbody>
</table>
Summary and Presentation of Current Practice and Experience in Washing and Coating (Primary) Mirrors at existing Observatories

Contents:

1. Calar Alto
 K. Birkle
2. Kitt Peak
 A. Abraham
3. CFHT
 J. Sovka
4. La Silla
 A. Gilliotte
5. Mt. Palomar
 R. Thicksten
6. Roque de Los Muchachos
 B. Mack
Calar Alto

Presentation by
K. Birkle
Telescopes of the MPI für Astronomie at Calar Alto Observatory: 1.2 m RC, 2.2 m RC/Coudé, 3.5 m Prime/RC/Coudé, 0.8/1.2 m Schmidt. In addition, a 1.5 m RC/Coudé is operated by the Instituto de Astrofisica de Andalucia, Granada.

The MPI für Astronomie has installed two aluminization plants: (1) vacuum chamber of 2.6 m in diameter located at the 2.2 m telescope building (Fig. 1); (2) since 1983 with completion of the 3.5 m telescope a 4 m vacuum tank at the 3.5 m building (Figs. 2 - 4).

Mirror Handling for Re-coating

In a series of illustrations (Figs. 5 - 12) the mirror handling is demonstrated. The whole procedure, in particular aluminizing is carried out with the (primary) mirrors in horizontal position.

For dismounting the mirror cell and lateron attaching it to the telescope again a cart on a hydraulic platform is lifted underneath the cell (Fig. 5). Beside the telescope, after protecting the mirror with a cover, the mirror is removed from its cell with the dome crane (Fig. 6) and lowered through the building to the ground floor.

In the metallization plant, with separate crane properly screened to prevent grease or oil to drop from the crane onto the mirror, the mirror is lifted for washing into a tub made up of glass fibre reinforced plastic and from there after cleaning into the lower part of the vacuum chamber (Figs. 8, 9). At the 3.5 m telescope, instead of a washing tub a three-legged bench of stainless steel is used (Fig. 10). By this, cleaning liquids freely flow to the drain in the floor.

The central support for lifting the mirror, which remains inside the vacuum tank during aluminization, is made up of stainless steel. It is different from the radial definition support of the mirror inside the mirror cell and has to be interchanged with the latter before washing and before re-assembling the mirror in its cell, respectively.
Fig. 1. N-S sectional drawing of the 2.2 m telescope building. Aluminization chamber (2.6 m diameter) on the ground floor. Vertical coudé spectrograph at left (northern side of building).
Fig. 2. N-S sectional drawing of the 3.5 m telescope building. Below the telescope a 35 ton hydraulic platform for mounting cassegrain focus instruments and for disassembly of the mirror cell. The aluminization chamber (4 m diameter) is located on ground floor.
In the vacuum chamber, it is important for mirrors of different thickness to keep their optical surfaces at the same level to an accuracy of about ± 5 cm for reasons of homogeneity of the aluminium film depositing on the mirror surface during evaporation (Fig. 11).

There is only one step in mirror handling which needs special care because of increased risk of mirror damage (only in case of the 2.2 m mirror): Connecting the mirror baffle with the central radial definition support (Fig. 12) shortly before the newly coated mirror in its cell is attached again to the telescope,
Fig. 4. Side view of the 4 m aluminization chamber with the twin oil diffusion pumping station; in the foreground the rotary vane pump, the roots pump is not visible.

as this can only be done after removal of the mirror protecting cover. The same holds for the reverse procedure after dismounting the mirror cell. The construction of another cover to avoid this problem was not possible because
Fig. 5. Disassembly of the 2.2 m mirror cell using a transfer cart on a hydraulic platform.
of the special geometry of the baffle. To avoid this risk at the 3.5 m telescope the construction of the corresponding parts is completely different there. All other steps of mirror handling are considered to be of no special risk when carried out with normal care. For example, crane operations with the mirror are of no risk even in the case of the 14 ton 3.5 m primary, as accelerations are kept small (< 0.1 g) when starting and ending crane motion at slow-speed; due to elastic stretching of the twisted wire cables acceleration forces are also damped.

Normally, re-coating the primary means that the telescope is out of operation for one night. When dismounting the mirror cell begins in the morning of the first day, the telescope is operational again in the evening of the second day.

Fig. 6. Before the mirror is taken out of its cell, the mirror surface is protected by a cover.
About 5 persons are needed for mechanical work. Mirror cleaning, preparation of the vacuum chamber is done by 1 person, at times with 1 - 2 helpers.

Fig. 7. In case of the 3.5 m mirror we use two identical carts, one on the dome floor which bears mirror and cell, the other on the ground floor for transportation of the mirror only.
Fig. 8. A view in the aluminization hall of the 2.2 m telescope building. In the middle the glass fibre reinforced PVC tub for mirror washing. In the foreground the lower part of the vacuum vessel.

Mirror Cleaning

First step washing is done with tap water at slightly increased temperature (35°C) with detergent added. In case that some grease or oil (from lubrication of dome shutter elements) is visible on the mirror, these stains are removed first with acetone before washing starts in order not to distribute further the grease on the surface. The old aluminium film is removed using NaOH (8% solution) within about 15 minutes. If the removal of Al is not uniform or rather slow at some parts of the surface, NaOH solution at increased temperature (up to 40°C) is applied,
and cotton wool soaked with NaOH solution is placed on the mirror surface for about 10 minutes. In most cases, however, these additional steps are not necessary.

We do not use HCl. Even with special ventilation installations HCl gas cannot removed with sufficient efficiency. Use of breathing masks is not ideal. The main concern, however, is contamination and corrosion of electronics and other sensitive devices present in the plant. No problems of bad adhesion of the Al coating could ever be observed by not applying any acid medium.

After complete removal of the old Al film the surface is cleaned further with tap water and detergent. Normally, no mechanical treatment is applied. If it is
Fig. 10. Part of 3.5 m aluminization plant showing cleaning facilities. The ion exchanger producing de-ionized water which we use instead of distilled water is to be seen in the background (box-type device with hose on the wall).

inevitable, wet cotton wool is used wiping in radial direction towards the central hole in a single use mode, that is, for each radial strip on the polished surface new cotton wool is used.

When the surface seems to be clean, further flushing with distilled or de-ionized water in case of the 3.5 m plant is carried out (no disadvantages to distilled water used at the 2.2 m plant can be noticed).

Finally the surface is treated with pure alcohol (ethanol p.a. or isopropanol p.a.). In this final stage of cleaning with distilled water and alcohol a vacuum cleaner is used at the inner rim of the mirror to remove any remaining partic-
Fig. 11. A 1.5 m primary (Chinese 1.5 m telescope with 2 Nasmyth foci for the observatory of the Instituto de Astrofisica de Andalucia, Sierra Nevada, Spain) is brought into the 4 m vacuum chamber ready for aluminizing. It is placed on 6 supports of such a height to compensate for the difference in thickness of the 3.5 m primary of the MPIA (one of the 6 supports for the 3.5 m mirror is to be seen at right [arrow]; the vacuum sufficient rubber disks used to avoid direct contact between mirror and the metallic support are removed). For thin mirrors or tests with thin glass probes other supports of aluminium or stainless steel are used, see e.g. the support leant against the wall in the background in Fig. 10.

les or dirt floating in the liquid at the flattest part of the mirror surface. Moreover, this speeds up the drying process.

Before putting the mirror into the vacuum chamber, the remaining not polished surfaces including the rear side are cleaned with alcohol.
What are criteria for a clean optical surface, that is, clean at least for aluminization purposes? When the polished surface is drying, one can observe Newtonian interference fringes formed by a thin wedge of remaining distilled water and alcohol (Fig. 13), with the fringes slowly moving towards the mirror centre (a few mm/sec) as evaporation of the liquid is going on, leaving behind a dry surface which seems to be perfectly clean (right parts of Fig. 13). However, as long as one can see nonuniformities in the illuminated layer of cleaning liquid (left parts of Fig. 13) the polished surface cannot be considered clean.
Fig. 13. Final stage of cleaning of the optical surface (Chinese 1.5 m primary of the IAA, Sierra Nevada) with Newtonian interference fringes formed by a thin wedge of cleaning liquid (see text). The best visible fringes have a distance of about 5 mm from each other.
Most of these nonuniformities seen in Fig. 13 are not impurities (particles) in the liquid layer but small craters formed by breaking up the thin liquid film due to some kind of (chemical?) inhomogeneities in the polished surface affecting the surface tension of the liquid film in a different way than further away from the craters.

This (non-)visibility of the nonuniformities is a qualitative criterion only but a rather rigorous one, which means that cleaning and flushing has to be repeated until these craters are reduced to a minimum in size and quantity.

Mirror Coating

The vacuum chambers at the 3.5 m and 2.2 m domes are equipped with 96 and 64 tungsten filaments, respectively, arranged in one circle along the chamber wall with radius of 1.8 m (1.15 m) and height = radius above the mirror surface (Figs. 14, 15). There are four electrical circuits, each of them connected with every fourth filament. All 96 (64) filaments can be fired simultaneously (normal mode of aluminization), or separately one after the other of the four circuits with 24 (16) filaments each.

Each of the filaments is normally loaded with a 2 mm Al wire (99.999% purity) 58 mm long (0.5 g). A load of up to three times this normal load can be used. Above this maximum load aluminium droplets are found.

The tungsten filaments are fixed outside the mirror radius. Two rings of horizontal shields with a gap between them are mounted below the filaments to protect the mirror from aluminium droplets.

The glow discharge ring electrode and its surroundings as well as the regions around the tungsten filaments, baffles and shields are cleaned before each evaporation.

Using pure aluminium, the filaments have to be renewed after two to four times of firing. The aluminium foil cover of the glow discharge electrode is renewed after about 10 discharge processes.

After closing the tank pumping, glow discharge, aluminization, and flooding in total takes about 4 hours.

The glow discharge process starts if the pressure is 10^{-3} mbar. The glowing time is 15 minutes at 3 kV, 1.5 A; The pressure is 0.1 mbar controlled by a needle valve.

We begin with the evaporation at a gas pressure of $0.5 - 2 \times 10^{-6}$ mbar supported by the additional pumping of a LN$_2$ cooled Meissner trap.

Firing takes 30 - 40 sec with 6000 A at maximum for the 3.5 m plant, falling down to 3500 A if all aluminium is evaporated.

Before flushing the tank it is important to heat the Meissner trap to ambient temperature. The heating is simply done by blowing out the nitrogen in it with compressed air.

Quality control of the adhesion of the new aluminium film is carried out by pressing a piece of scotch tape onto the aluminium surface and removing it suddenly.
Cleaning Mirrors in situ the Telescopes

The 3.5 m mirror cell is constructed in such a way allowing mirror washing inside the cell. However, experience has shown that the results of washing in most cases are not very satisfactory. Therefore, the primaries and also auxiliary mirrors with their reflecting surfaces looking upwards are periodically recoated about once a year (± about 4 months) without washing in the meantime.
Fig. 15. Inside view of the 2.6 m aluminization chamber. The tungsten filaments are just loaded with aluminium wires. Annular shielding screens below the filaments and the Meissner trap are clearly visible. Part of the glow discharge ring electrode covered with aluminium foil is visible above the head of the operator.
Kitt Peak

Presentation by
A. Abraham
Canada France
Hawaii Telescope

Presentation by
J. Sovka
Canada-France-Hawaii Telescope

"CFHT 3.6-meter Primary Mirror Aluminizing Procedures"

by

Jerry Sovka
David Cowley
Tom Gregory

Overview for
ESO Workshop on Cleaning Carbonarge Mirrors
Oct 7-8, 1991
OUTLINE

1. Preamble

2. Introduction to Observatory
 - Mauna Kea, Hawaii

3. Summary of Procedures
 - Planning / Scheduling
 - Mirror Handling
 - Cleaning, Washing, Stripping
 - Aluminizing Chamber
 - Reassembly + Alignment + Etc.

4. Special Topics

5. Recommendations for 8-meter Projects
4. **Preamble**

If we had our **BEST Choice**:

Aluminize **ONE** at beginning of Telescope life. Install P.H., Aluize & Leave **FOREVER** (say, 30 yr).

But because:

(a) Telescopes are **Expensive**; (as are Astronomers & Engineers, etc.)

so, we need to:

\[
\begin{align*}
\text{MAXIMIZE UPTIME} & = \text{MAXIMUM SCIENCE PER Kilo-Money} \\
\text{MINIMIZE DOWNTIME} & = (k\$, k DM, k£, k¥, k€)
\end{align*}
\]

(b) Aluminizing Process Contains **Risks**

- Primary Mirror: Heavy (14 Mg); Awkward; Fragile; Precious; Irreplaceable (Perhaps:
- Infrequent usage of equip., staff;
- Limited Time Available = STRESS

IF RECOATING IS SO RISKY, WHY DO IT?
Because we must: i.e. No Choice!

1. Aluminized Surface 'Naturally' Deteriorate,
 - oxidized/tarnished by air, volcanoes;
 - becomes "dirty" due to water, dust,
 oil, ice, etc.
 - chemical damage (e.g. mercury spill)
 - other physical damage (e.g. wiping...)

2. Repair & Adjust P.M. Support Systems
 (To maximize Image Quality)

3. Repair Telescope or Dome Structures
 (For Safety or Access)
CFHT Recipe
for
Successful Recasting Primary Mirror

1. Right Staff
2. Good Equipment
3. Proper Procedures
4. Enough Time
<table>
<thead>
<tr>
<th></th>
<th>1990</th>
<th>1991</th>
<th>1991</th>
<th>91II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obsng Sch.</td>
<td>Sem 90I</td>
<td>90II</td>
<td>91I</td>
<td>91II</td>
</tr>
<tr>
<td>TAC Mts.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>1st Reg. for Eng. Time 91</td>
<td>①</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Reg. for Eng. Time 91</td>
<td>-</td>
<td>-</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3rd + Final Request for Eng. Time</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Detailed Planning Scheduling Design/Procure/Test/etc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Actual Shutdown - 10 days</td>
<td>☑</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Time Allocation Committee

July '91 Tel. S/G

Two Year Planning/Scheduling Cycle
for CFHT P.M. Aluminizing
<table>
<thead>
<tr>
<th>Activity</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Night-Time Observing</td>
<td></td>
</tr>
<tr>
<td>Dis-Assemble Telescope</td>
<td></td>
</tr>
<tr>
<td>Move P.M. 5th Fl + Basemt.</td>
<td></td>
</tr>
<tr>
<td>Wash & Strip Mirror</td>
<td></td>
</tr>
<tr>
<td>Final Wash</td>
<td></td>
</tr>
<tr>
<td>Move to Vac. Chamber + Pump</td>
<td></td>
</tr>
<tr>
<td>Aluminize + Check Coat</td>
<td></td>
</tr>
<tr>
<td>Move Mirror to 5th Fl</td>
<td></td>
</tr>
<tr>
<td>Mirror To Cell + P.M. Align</td>
<td></td>
</tr>
<tr>
<td>Cell onto Telescope</td>
<td></td>
</tr>
<tr>
<td>Reassemble Telescope</td>
<td></td>
</tr>
<tr>
<td>Align Optics Axis</td>
<td></td>
</tr>
<tr>
<td>Night Sky Tests</td>
<td></td>
</tr>
<tr>
<td>Final Checks/Cleanse</td>
<td></td>
</tr>
<tr>
<td>Prep + Release for Obsru</td>
<td></td>
</tr>
</tbody>
</table>
4.0 Special Topics

4.1 In-Situ Cleaning
 - water
 - Spray-on plastic film
 - CO₂ Snow

4.2 Risks of Mercury Leaks
 (from Sec'y Mirror Support System)
 - Hg-in-Air Contaminates → Exposure
 - liquid Hg Throughout Telescope
 - Damages Aluminized Surfaces
 - Unexpected Shutdowns + Realuminizing All Optics
4.0 Special Topics

4.1 In-Situ Primary Mirror Cleaning

- We've tried a variety of techniques with a variety of substrates
- (a) Water washing works if temperature of glass / telescope are above 0°C
- also, electronics & mechanics are vulnerable
- good for dust mainly, not debris

(b) Spray-on plastic film then strip
- good for dust; some oil
- leaves hazy residue
- not used now

(c) CO₂ Snow - best for now

4.2 Risks of Mercury

From Secondary Mirror Support System

Small puncture (12mm long) in rubber tube
Not noticed for a number of days
Small droplets of liquid mercury fell ~ 20 meters, onto
primary mirror covers; primary mirror, on tube; Servo
trans.; inside bundle of cables.

These droplets onto hot, dissipated, almost
atomized, especially on primary mirror, highly
chemically active; together with water damaged 70%
of surface, like a heavy frost

Recovery required special clothing, HG aerosol
detectors to reduce personal exposure; vacuum smoker
HG cleaning powder.

11 overnight shutdowns; Re-aluminized P.M., Sep. 19, 1976
5. **Recommendations.**

As most of you know, CFHT has as a main objective, high resolution astronomy, depending upon good "seeing." To achieve this objective, image quality we are lucky to have an excellent site, with the telescope above most ground effects. In addition, we concentrate much effort on thermal environment, mirror seeing, and tuning of our optics (mirror support systems, collimation, etc.). Our telescope design is now 20 years old, so we need to work hard at it. Nonetheless, we are routine now measuring images 0.6 arcsec, occasionally 0.35.

We are still limited by optical aberrations (½ in the original figure, ½ in optical train done & mirror seeing. To reduce these further we have embarked upon a 3-year 1.7 M$ program of improvements to mirror support systems, secondary mirror support and adaptive optics correction. Our goal is to reach ~0.4 arcsec average without adaptive optics and diffraction limited (0.1") under weather with AO.

We have seen Image Quality Budgets for 8-m Telescope design with limits of average 0.2 arcseconds using Active Systems
Having been at this "game" for over 10 years, CFHT assures you that this will not come easily.

Everything affects everything else and they all tend to degrade "seeing".

Mother Nature is a reluctant mistress.

It is essential to concentrate on achieving ultimate control over Primary Mirror Variables:
- Precise figure;
- Proper, accurate, predictable active support systems;
- Accurate, precise mirror temperature control.

All of these, in turn, must be designed, built and operated to accommodate your P.M. Cleaning & Receiving Process.
5.0 RECOMMENDATIONS
For 8-m high image quality of 0.2 FWHM

1. Use your most brilliant, experienced designers.
 (Thorough, broad, deep, flexible . . .)
 Feedback through regular, frequent design review.

2. Design to protect P.M. from surface contamination to minimize recoatings.

3. Clean & Reccoat in-situ, if possible.

5. Avoid Mercury support systems.

6. Do it right. The first time!
3.6 METER PRIMARY MIRROR

ALUMINIZATION
3.6 METER PRIMARY MIRROR ALUMINIZATION

(Procedures followed since May, 1986)

A. Initial Inspection

The primary mirror is removed from the telescope and delivered to the aluminizing room and placed atop the mirror washing stand. Next day the mirror sides are cleaned and the radial support pads wrapped in polythene plastic for protection. The mirror surface is rinsed with tap water to remove loose dirt and then it is washed with a detergent solution of 100 parts water to 1 part Liqui-Nox concentrate. Sponges are used in a dabbing, up-down motion only so as not to scratch the aluminum surface. Oily spots are carefully dabbed-up with xylene soaked Kaydry towels. Also, bubble holes in the surface are cleaned.

The surface of the cleaned aluminum is inspected for pinholes, abrasion and scattering due to environmental corrosion. The surface is examined by viewing a high intensity lamp in reflection from the surface. There was a significant amount, perhaps a few percent, of scattering of the specular reflection into a halo of diffuse light. At this point a decision must be made to keep the old coating or remove it and deposit a new one.

B. Removal of Old Coating

The coating is stripped from the glass surface by flooding it with a solution of hydrochloric acid and cupric sulfate\(^1\). After rinsing the mirror with tap water and drying it with Kaydry towels a solution of sodium hydroxide is used. This has little effect on the more stubborn residual aluminized areas. Finally the mirror surface is flooded with de-ionized water and then sprinkled with reagent calcium carbonate powder and rubbed with cotton pads. The calcium carbonate is sufficient to remove the last residue of aluminum from the optical surface. The mirror is rinsed with de-ionized water and then rubbed dry with Kaydry towels. Care must be taken not to allow the mirror to dry on its own by evaporation as water spots would be a likely result. After the entire mirror surface is gradually dried there still remains a large amount of Kaydry towel lint sticking to the glass surface as a result of the static electricity produced by the rubbing of the clean glass with the paper towels. This lint is removed with static-master anti-static brushes before placing the mirror in the vacuum chamber.

\(^1\)See procedure for stripping aluminum coating.
C. Aluminization

Once the mirror placed within the vacuum chamber, the roughing pump and roots rotary lobe blower evacuated the chamber to a pressure of 5 microns in about 1 hr. After the cold trap LN₂ chevrons are filled, the diffusion pumps is used to lower the pressure to below 5 x 10⁻⁵ torr. A glow discharge is performed to insure cleanliness of the mirror surface². After the glow discharge, the high vacuum diffusion pumps are used to bring vacuum to the 10⁻⁶ range. The meissner coil is filled to aid in the further reduction of pressure. Ultimately a pressure of 3 x 10⁻⁶ torr is reached in about 3 hours from the time of initial pump-down.

The individual tungsten filaments, each laden with aluminum clips are pre-heated together in a series/parallel circuit for 4 minutes to bring them all to approximately 1000°C. When the Inficon crystal thickness monitor indicates 50Å of deposited aluminum, the power to the filaments is increased to the maximum level. Within 30 seconds the Inficon monitor is reading 637Å. This thickness, according to previous tests, corresponds to an actual coating thickness of 900-950Å on the mirror surface. A deposition rate of 27Å per second is indicated upon the Inficon monitor. Interferometric tests were performed upon test plates placed at the central hole and outside the circumference of the mirror. These tests, and others performed earlier at zones simulating the mirror surface showed the coating to be radially symmetric and even in deposited thickness to within 150Å. The probable wavefront error induced by the coating process is estimated to be less than or equal to λ/15 at visible wavelengths. During the filament firing, no drops of molten aluminum fall upon the mirror surface. The resultant coating looked brilliant and very free of scatter over its entire area and showed no signs of bloom or diffusion pump backstreaming. No wipe marks or haze due to incomplete cleaning should be observed upon the mirror surface.

D. Adhesion Test

A scotch tape test is performed on the outer bevel and upon the actual mirror surface one inch inside the outer circumference. No aluminum should be removed by the tape at either site.

²See glow discharge procedure.
During the month of April 1986 tests of the CFHT Summit Aluminizing chamber were carried out to measure the actual thickness and uniformity of Aluminum coatings produced by the 112 filament array of evaporation sources. A set of ten test plates were used to simulate the mirror surface. For the initial test all filaments were loaded with 10 loops with a weight of .065 grams each. (Loops are from Jori Resources and are of 99.99% purity).

The loaded filaments were heated for approximately 5 minutes while monitoring the amperage at Inner Ring #2 = 330 amps. The Inficon crystal thickness/Rate of deposition monitor at the end of the 5 minute preheat period was reading 0-1Å /second. The total accumulated thickness after the preheat was 40Å.

At this time the array voltage was increased and monitored at the Inner Ring #2 = 25 volts. This voltage was maintained for approximately 80 seconds during which time the evaporation rate reached a peak value of 28 Å/sec. After an elapsed time of 80 seconds the evaporation rate dropped to zero and all power to the array of filaments was stopped. A total indicated thickness of 652 Å was obtained. When the test plates were measured with the Angstrom-scope interferometer, the following thicknesses were obtained.

1. Test plates approximating the outer 1 meter annular surface = 884 to 913Å .

2. Test plates approximating the inner 1 meter circular surface = 1148 k to 1207Å .

It was concluded from these results that a superior coating uniformity could be obtained by loading outer ring filaments with 10 loops and inner ring filaments with only 8 loops each. Also, the Inficon crystal monitor readings are about 30% low presumably due to the proximity of the crystal sensor to the chamber wall (~150mm).

During the primary mirror aluminization in May 1986, test plates were positioned around the circumference of the mirror and within the central hole. After evaporation the following thicknesses were obtained upon the test plates as measured with the interferometer:

b. Central Test Plate = 962 Å+.

c. Inficon Measurement = 639Å .
d. Maximum Deposition Rate = 27Å /second.

It is estimated that local mirror surface wavefront distortions caused by the coating process itself are less than $\lambda/15$ at visible wavelengths. Another test is planned for the future as it is felt that the 3.6 meter mirror surface coating is not accurately depicted with only 10 test plates and that perhaps 30 plates are necessary. This is particularly important near the chamber walls.
CFHT Vacuum Chamber

T. Gregory
22 April 1986

Test Plate Height = 24 inches (0.6096m)

Filament Loading: All loaded with 10 loops of 0.065 grams Al.
SUMMIT VACUUM CHAMBER PREPARATORY CHECKLIST

1. Inficon monitor operation.
2. Cold cathode gauge operation.
3. Chamber lift-jack operation.
4. Integrity of roughing manifold rubber connection.
5. Pre-aluminized test plates, 10 required.
6. 10 single edge razor blades required.
7. Test plate stands.
8. Static-master brushes, 6 required.
9. Check air pressure and control panel functions.
10. Glycol coolant, chiller fan and pump operation.
12. 3x160 liter dewars of LN$_2$ required.
13. Viewpoint windows cleaned.
CFHT SUMMIT VACUUM CHAMBER CHECKLIST

Pump-down Operation:

1. Check Inficon Thickness Monitor for proper crystal oscillation.
2. Close tank after inspecting bottom plate "O" rings for smooth and very light lubrication with Dow Corning High Vacuum Grease.
3. Close Air-leak and vent valves.
4. Turn cycle selector switch to manual position (key switch).
5. Connect chamber foreline manifold to roughing pump.
6. Turn chiller condenser fan "ON" in equipment room with chillers.
7. Turn on 2 glycol supply taps and adjust flow with glycol return tap to flow gauge valve of 2 1/4 gpm. (The safety flow switch enables the D.P. heating circuit at flow rates in excess of 2 gpm).
8. Start stokes roughing pump. (10 minute warmup period)
9. Check rough pump flow and oil level sight glasses.
10. The Rootes Blower will start automatically after a few seconds when $p \leq 15$ mm Hg. (see gauge near holding pump)
11. Turn on air supply valve and air dryer. (plug in!)
12. Start the holding pump.
13. Open foreline valves #1 and #2 to evacuate the diffusion pumps. Wait for valve to open, takes 30 seconds.
14. Turn on thermocouple gauges number 1 through 4.
15. The roughing pump will quickly evacuate the DP's to $p \leq 10$ microns at T.C. #2 and T.C. #4.
16. Open holding pump valves to D.P.'s
17. Close foreline valves #1 and #2.
18. Turn on DP's #1 and #2. (These will heat up only if the glycol safety flow switch senses greater than 2 gpm glycol coolant flow).
19. Turn on seal pump.
20. Open chamber roughing valve. (It will take approximately 30 minutes for the rootes blower to turn on at $p=15$ mm Hg. It will take an additional 30 minutes for the chamber to reach the range of $p \leq 20$ microns).
21. Turn on Varian Cold Cathode gauge (pressure should be low enough to be on scale within 1 hr. after opening roughing valve. ($p \leq 10$ microns)
22. Connect LN$_2$ supply to DP Chevron traps via LN$_2$ manifold. (The liquid level in the traps is automatically maintained. The consumption of LN$_2$ is 10-20 liters/hr). Open trap valves.
23. Connect LN$_2$ supply to Meissner trap.
24. While the chamber is roughing down it will be necessary to monitor the fore-pressure of the hot DP's as their pressure may exceed 100 microns with only the small capacity holding
chamber rough pumping after the interruption. (There is a 10 second delay built into the control circuit which delays the opening of the foreline valves after closing the chamber roughing valve).

25. When the chamber pressure is approximately 10 microns close the roughing valve and open the foreline valves to the DP's.

26. Close the holding pump valves.

27. To start high vacuum pumping on the chamber through the diffusion pumps open the high vacuum valves #1 and #2 in succession while monitoring the foreline pressure in each to not exceed 100 microns. (As a precaution against backstreaming D.P. oil into the chamber allow about one minute between opening of the High Vacuum valve #2 after high vacuum valve #1 is opened).

28. Shortly after both high vacuum valves are opened the chamber pressure should be in the low 10⁻⁵ torr range. (SEE GLOW DISCHARGE PROCEDURE).

29. With the chamber empty it takes about 1 hr. after the high vacuum valves are opened to reach a chamber pressure of approximately 5x10⁻⁶ torr.

30. During the high vacuum mode of pumping the Meissner trap should be filled as follows. Turn on the LN₂ supply to the Meissner coil by gently opening the LN₂ supply valve less than one full turn to avoid pressure vibrations from LN₂ evaporation inside the coil. Pressure rises occur within chamber if the coil is filled too rapidly. Trap fills in approximately 30 minutes. Close valve and re-fill in 10 minutes.

31. The chamber is ready for operation at a pressure less than or equal to 5 x 10⁻⁶ torr.
Procedure for Stripping Mirrors of Aluminum Coating

1. Change water filters.

2. Prepare a Solution of Hydrochloric Acid as follows:
 - 4 liters of deionized water
 - 4 liters of Reagent grade (1 Normal) Hydrochloric Acid
 - 100 grams of Cupric Sulfate crystal, Reagent grade.
 (When diluting, always add acid to water!)

3. Prepare a solution of Sodium Hydroxide:
 - 4 liters of solution at a concentration of 100 grams of Sodium Hydroxide pellets (Reagent Grade) to 1 liter of deionized water.

4. Protect radial supports attached to sides of mirror by duct taping polyethylene film around them.

5. Flush mirror surface with copious amounts of filtered tap water to remove loose particles of dust.

6. Use Xylenes to clean any oil from the mirror surface with soft Balzer's cotton wool pads.

7. Wash mirror with diluted (1:50) Liqui-Nox detergent using natural sponges and a dabbing action without heavy rubbing. Repeat this washing after a thorough rinse.

8. After mirror is clean, dry it's surface with natural chamois skins and inspect coating for condition, i.e. pinholes, stains, etc...

9. During washing operations, pay careful attention to cleaning out bubble-holes in the optical surface as these can conceal dirt.

10. If it is decided not to save the old aluminum coating and re-coating is necessary then apply the Hydrochloric/Cupric Sulfate solution to the mirror surface. Spread the solution by dragging soft cotton wool along the surface to even the flow of solution over the aluminum coating. (Always wear protective apparatus when working with acids & bases.)

11. After 5 to 10 minutes most of the Aluminum coating will have been removed. Some rubbing action may be required.

12. Rinse with copious amounts of filtered tap water and then dry the surface with Kaydry Laboratory paper towels.
13. Inspect the surface for residual aluminum or water marks and other hazy wipe marks which have stubbornly refused to be dissolved by the Hydrochloric/Cupric Sulfate solution.

14. If the surface still does not appear to be perfectly clean of old deposits it is necessary to flood the surface with deionized water and to sprinkle a small quantity of Reagent grade Calcium Carbonate powder upon the surface of the water film. A light rubbing action should remove any residual stains or deposits. (Note: the CaCO₃ powder must never be applied dry or allowed to dry upon the mirror surface.

15. The mirror surface is once again flooded with copious amounts of filtered tap water. Finish the rinse with deionized water and dry with Kaydry towels. Repeat step #14 if needed.

17. Rinse well with plenty of filtered tap water and then deionized water.

18. Dry part of the mirror with Kaydry towels being careful not to allow the mirror surface to dry on its own as water marks will occur. Gradually, dry all the mirror keeping the portions not being dried at the moment wet with deionized water. Much rubbing is involved with this step and some residue of the paper toweling will remain on the mirror surface.

19. To remove the paper residue on the mirror it is necessary to brush the surface thoroughly with the set of six parallel anti-static brushes before placing the mirror inside the vacuum chamber.

20. As with all optical coatings, success depends upon obtaining an extremely clean substrate surface.
FILAMENT INSTALLATION

Filament type: R.D. Mathis* (Order as 4 x .030 W RDM-F-16683A)

1. Install 112 new tungsten filaments onto the chamber electrodes using 10-32 x 3/4" stainless steel Allen Socket flat head screws. (1/8" Allen Socket opening)

2. Tighten all 224 screws using special torque wrench to insure equal contact resistance at joint.

 Torque setting = 15 in-lbs.

*The R.D. Mathis Company
2840 Gundry Avenue
P. O. Box 6187
Long Beach, CA 90806
PH: (213) 426-7049
OUTGASSING OF FILAMENTS

To perform high temperature (>2000°C), vacuum cycle of filaments.

1. a) Pump chamber to 5x10^{-6} range (see: Pump Down Operation).
 b) Perform a glow discharge as described in SOP 51 p. 13.
2. Turn Filament power switches to all 4 filament rings to "on" position.
3. Turn cycle selector switch to "manual" position.
4. Slowly raise power to all rings until current for inner ring #2 is about 330 amperes.
5. View all filaments or reflected light from filaments to insure they appear to heat equally and become incandescent together and with same apparent temperature.
6. After approximately 3 or 4 minutes rapidly increase the power to all filaments until there is 25 volts of potential across inner ring #2. Hold this power level for 10 seconds to degas all filaments of impurities (low melting point metal, etc.).
7. Lower power to all filaments until all ammeters read zero.
8. Turn off all 4 filaments ring power switches.
9. Turn cycle selector switch to "off" position.
10. End of Filament outgassing (See: Shutting down system).

(Note: Tungsten melts at 3,382°C)
Loading Aluminum Loops on Filaments

1. Aluminum Loops: Jori Resources*- .065 gram loops- 99.99% Al.

2. Loops are loaded only at the downward curves of the filaments near the ends where the electrodes connect to the filament. The central "pigtail" helix of the filament is left free of loops to discourage the possibility of a droplet of molten aluminum falling through the hole in the baffle plate and damaging the mirror surface. If a drop of molten aluminum does fall it will most likely fall off near the ends of the filament and will harmlessly cool and solidify on the baffle plate. Only a relatively thin layer of molten aluminum should be drawn by capillary action toward the central helix of the tungsten filament.

3. To deposit an even thickness of aluminum on the mirror substrate it is necessary to load 10 loops onto each of the outer ring filaments (those two concentric sets of filaments nearest the outer wall of the vacuum chamber) and 8 loops onto all the remaining inner rings of filaments.

*Jori Resources Corp.
2128 Knoll Drive
Ventura, CA 93003
PH: (805) 642-2266
In order to condition the substrate surface to enhance the quality of the coated film, a glow discharge is caused to occur within the chamber which has been preevacuated to 5×10^{-5} torr with the substrate inside the chamber. The glow discharge is ignited by a continuous AC high voltage arc across two insulated ring electrodes of aluminum after the pressure within the chamber has been increased by the introduction of air to a pressure of 25 to 30 microns.

The glow discharge has several beneficial effects which are:

1. The substrate surface is degassed through heating.
2. Conversion of organic substances on the substrate into their volatile components through interaction with ionized residual gas.
3. Desorption of films on the substrate surface through electron impact.

Operation-

1. The chamber is evacuated to 5×10^{-5} torr.
2. Close high vacuum valves. Shut off chamber ion gauge.
3. Open D.P. holding pump valves.
5. Open air-leak pressure control valve.
7. Monitor chamber pressure at TC #1 while adjusting vernier throttling valve until pressure is maintained between 25-30 microns (nominal setting = 10.2).
8. Monitor pressure at TC #1 throughout glow discharge cycle of approx. 10 minutes.
9. Turn powerstat located on glow discharge panel fully counter-clockwise until at the zero setting.
10. Turn on glow discharge. First turn on pressure control.
11. Turn powerstat clockwise slowly until .5 ampere is read on the ammeter. Maintain this current setting throughout glow discharge cycle. (A powerstat setting of 40% should be sufficient to maintain the .5 ampere current at an electrode potential of 1,000 to 2,000 volts.
12. After 10 minutes return powerstat to zero position and turn off the power.
13. Close pressure control valve and vernier valve.
14. After chamber has roughed to a pressure of 10 microns close the roughing valve and open the D.P. foreline valves.
15. Close holding pump valves. Turn off holding pump.
16. Open high vacuum valves #1 & #2. After a few minutes the chamber pressure will again be at 5×10^{-5} torr.

To operate glow discharge without holding pump (not recommended but doable). Run glow discharge cycle before heating D.P.'s using this procedure.

- run glow discharge cycle before heating D.P.'s
- close rough valve
- open leak until TCI reads 25 millitorr
- open rough valve (now TCI will stay at 25 millitorr)
- turn on glow discharge
- turn on pressure control
- turn up glow discharge power to .5 amp (≈ 40 on dial)
 (inspect visually the aurora)
- run ten minutes
MANUAL FIRING OF FILAMENTS

To evaporate aluminum (M.P.=660°C) from outgassed tungsten filaments which are loaded with aluminum loops at each end. Chamber pressure ≤ 5x10⁻⁶ torr.

1. Program the Inficon thickness monitor with the following parameters: Aluminum Density = 2.70 g/cm³
 Z ratio = 1.08
2. Turn cycle selector to "manual" position.
3. To fire all filaments simultaneously, turn all 4 filament ring power switches to the "ON" position.
4. Slowly raise power to all rings until inner ring #2 ammeter reads 330 amperes.
5. Within 5 minutes the aluminum loops will melt and the molten aluminum will be drawn to the center of the filaments by the "wetting" action of the molten aluminum for the stranded Tungsten filament. As the molten aluminum reaches the hotter surface of the central region of the Tungsten filament it will begin to evaporate.
6. The Inficon crystal monitor will begin to read a rate of aluminum deposition of 1 to 2 Angströms/second.
7. When the Inficon monitor reads a thickness of about 50 angstroms increase the power on all rings until the voltage on inner ring #2 reads 25 volts.
8. The Inficon monitor should now indicate a deposition rate of about 30/second.
9. When the Inficon reads a total thickness of approximately 600 to 650 the power on all rings should be returned to zero and all power switches turned off.
10. An Inficon reading of 650 Angstroms yields a coating thickness of 900 Angstroms measured with the Angstrom-scope, interferometer.
SHUTTING DOWN ALUMINIZING SYSTEM

After outgassing or aluminizing operations have been completed it will be necessary to follow these steps to discontinue vacuum chamber operation, prior to opening.

1. Start the holding pump.
2. Turn off LN₂ supply and disconnect dewars from Meissner trap and LN₂ manifolds.
3. Close high vacuum valves #1 and #2.
4. Turn off chamber seal pump.
5. Turn off chamber ion gauge and/or cold cathode gauges.
6. Turn off diffusion pumps. (Approximately 2 hr. cool down required).
7. Open holding pump valves to diffusion pumps.
8. Close foreline valves #1 & #2.
9. Turn off roughing pump. (Manually vent pump to atmospheric pressure. Air venting of pump is accomplished via manual valve on roughing manifold).
10. Leave glycol cooling on for 2 hrs. (Do not use rapid cooling).*

If chamber is to be opened:

11. Check again to be certain high vacuum valves #1 & #2 are closed. (Rapid oxidation of hot diffusion pump oil can lead to a serious explosion)!
12. Slowly open chamber air-release valve. Total venting back to atmospheric pressure takes approximately 20 minutes.
13. Disconnect the roughing pump from the chamber vacuum manifold.
14. Raise chamber about 50mm after it has been brought back to atmospheric pressure.
15. Walk around chamber to be sure all hoses and wires are free and clear and that there is ample slack to permit full upward motion of chamber.
16. Check the position of the overhead crane bridge to allow clearance and then switch crane power to "off" position.
17. Raise chamber to fully open position against up-limit switch.
18. Carriage drive switch can now be used to move bottom of vacuum chamber to desired position.
19. For best long term chamber performance it is necessary to leave the chamber at a pressure of 10 to 100 microns. This is easily done with the roughing pump only. (See: Pump down operation summit vacuum chamber checklist).

*See manufacturers' data.
MIRROR STRIPPING, CLEANING, AND COATING SUPPLIES CHECKLIST

Items:

1. 5 Natural Chamois\(^3\), well washed in Liquinox solution.
2. 8 Natural Sponges\(^3\), purified by pounding and HCL acid soak.
3. 4 Acid Vapor Masks\(^5\)
4. 4 liters Photrex Methanol Absolute\(^1\) (Baker Reagent)
5. 4 liters Trichloroethylene\(^1\) (Baker Reagent)
6. 4 liters Xylenes\(^1\) (VWR Reagent)
7. 4 liters Acetone\(^1\) (U.S.P.-F.C.C Baker)
8. 4 liters Liqui-Nox\(^1\) Detergent Concentrate
9. 1 Kg. Calcium Carbonate Powder\(^1\)
10. 2 cartons of "Miracloth" material
11. 1 Kg. Potassium Hydroxide Pellets\(^1\) (Baker Reagent)
12. 1 Kg. Sodium Hydroxide Pellets\(^1\) (Baker Reagent)
13. 2 Kg. Cupric Sulfate 5-Hydrate\(^1\), Fine Crystal (Baker Reagent)
14. 20 liters 1 Normal Hydrochloric Acid\(^1\) (Baker Reagent)
15. 2 Boxes "Pylox" gloves\(^5\)
16. 2 Boxes Neoprene gloves\(^5\)
17. 2 Boxes Nitrile-Rubber gloves\(^5\)
18. 4 pair protective goggles\(^5\)
19. 1 face shield\(^5\)
20. 5 Nalgene Mixing Buckets\(^1\)
21. 20 Boxes x 90 wipes each "Kaydry" paper towels (VWR)\(^1\)
22. 10 bags x 30 pads each cotton wipers (Balzers)
23. 10 PVC yellow Tyvek Jumpsuits\(^4\) (Large)
24. 10 Tyrel White Jumpsuits\(^4\) (Large)
25. 10 Surgeons Caps
26. 10 Surgeons Masks
27. 6 pair of rubber boots
28. 1 box of plastic booties
29. 1 garden hose (50 ft.) with outlet end cut off
30. 40 gallons of De-ionized water
31. 4 water filters
32. 1 large roll of Polyethylene film

SUPPLIERS

1. VWR Scientific,
P. O. Box 29697
Honolulu, HI 96820

2. Cole-Parmer Instrument Co.
7425 North Oak Park Avenue
Chicago, ILL. 60648

3. McMaster-Carr Supply Co.
P. O. Box 54960,
Los Angeles, CA 90054-0960

1864 Enterprise Parkway
Twinsburg, Ohio 44087

5. Lab Safety Supply
P. O. Box 1368
Janesville, WI 53547-1368
La Silla

Presentation by A. Gilliotte
WORKSHOP

ESO

SUMMARY AND PRESENTATION
OF CURRENT PRACTICE
AND
EXPERIENCE
ON
WASHING AND COATING
MIRRORS

Alain Gilliotte Optics Section
TOPICS:

1. Introduction: La Silla Facilities

2. A Complete Process: 3u60
 - Washing /Aluminium Removal
 - Coating Process
 - Plants
 - Coating Preparation
 - Coating Process: Procedure

3. Limitations / Improvements
INTRODUCTION

LASILLA: 13 Telescopes
THEN 13 MAIN MIRRORS

LASILLA: 2 ALUMINIZATION PLANTS
ONE FOR LARGE MIRRORS:
3m60, NTT, 2m20
OTHER FOR SMALLER MIRRORS
1m54D, 1m50, 1m40 CAT
Schmidt, 1m00, 0m90 Dutch
0m63 Bochum and Two 0m50
Swiss.

LASILLA TECHNICAL STAFF TRS
Technical Research Support

MECHANICANS: Telescope Dismounting
Mirror Handling

OPTICIANS: Mirror Washing and
Aluminization.

NO VACUUM SPECIALISTS.
Mirrors are realuminized every two or three years according visual inspection of the stain degree (oil, water, bird marks). Between two aluminizations, the mirrors are washed two times. The old wet sponge soap washing has been replaced since 6 months by CO2 snow technics.

Mirror aluminization is performed on 3 or 4 days according complexity of mirror dismounting [3u60 5 days minimum].

Mirrors are handled by means of transport ring or spider grab.
Mirrors are transported in special clean boxes to the aluminization plant.

The plants are installed in the 3u60 and 1m50 storage area - they are not arranged as clean room.

But floor is washed a day before the process.

A major cleaning is problematic:

Access, wall paint quality, crane...

All cleaning process is performed close to the coating chamber.

Small mirrors are installed on a washing bowl located under an air suction hood (for chemical vapor evacuation).
LARGE MIRRORS ARE INSTALLED OVER 3 SUPPORT PADS ON THE FLOOR (PLASTIC). LARGE CURTAIN DOORS CLOSED THE AREA DURING THE WASHING.

LA SILLA TELESCOPE MIRRORS ARE DONE WITH PYREX, SILICA (FUSED) (DIFFERENT DOPING) AND ZERODUR MIRROR CHEMICAL WASHING IS IDENTICAL FOR ALL OF THEM. NO SPECIAL TEMP. OR HUMIDITY REGULATION ARE PERFORMED.

COATING PROCESS IS PERFORMED WITH TUNGSTENE COILS; MIRRORS ARE MOUNTED VERTICALLY IN THE VACUUM CHAMBER.
Coating Process Check List

Have been delivered with the equipment few points were altered time to time according the experience.

3m60 plant was delivered by HVEC in 1975, 1m50 plant by Edwards in 1967.

Few details differ on the plant utilisation.

Quality control of coating is performed by visual inspection and mapping of the defects.

Aluminium thickness is measured by interferometric method on special witness plate mounted on the mirror edge during the process.
Mirror dismounting is awkward and time-consuming procedure.
Mirror is handled from telescope floor towards the first floor by means of a support ring.
Mirror is located close to the vacuum plant and rest over 3 pads.
All doors are closed (storage area, trap door)

Washing Preparation

All washing products and tools are located on a table close to the mirror.
Chemicals, gloves, masks, cotton wool and tissues, optical paper

Paper is folded by set of two sheets and piled up on the table.
A tank of 50 liters of distilled water is located close to the table.
Two waterspouts are connected to a filtered (particles) water pipe.
Optician team dress with vinyl clothes and masks (against chemical gas)
6 people are required: (3 with 3)
4 opticians for washing
2 others for product distribution
One optician goes on the mirror central hole, the 3 others rotate around the mirror edge —
washing and aluminum removal
along the mirror center hole we formed a cotton wool dike to maintain liquid over at least a \(\frac{1}{3} \) of mirror radius.
Procedure:

1. TAP WATER RINSE
 Dust/Particles Removal
 Moderate jet formed by fingers with the hose
 Major amount removed/difficult to qualify on wet surfaces

 20' according mirror size

2. NaOH 5%
 Alu removal by chemical process.
 Liquid used: ≤ 15 litres according to Alu resistance and surface
 Cotton wool allow liquid spread over mirror edge - only soft contact.
 Around 90% of aluminium removed (depends on aluminium adherence).

3. FIRST RINSE
 Cotton wool dine removed.
 Tap water rinse of NaOH.

 5'
4. Hydrochloric Acid 5% + CuSO₄
Residual Al Removal - 7 liters
Same process as NaOH (cotton wool dive) Gas Mask (Cl gas protection)
All Aluminium Removed

5. Second Rinse
First with tap water ≤ 20'
Then with distilled water ≤ 10'
Mirror surface acid neutralization > 25 liters

6. Alcohol (propanol 99.7%) Rinse 5'
Water / Residual Removal - 5 liters
Alcohol spread over the surface with optical paper hold on one edge and moved slightly - hand (finger) contact avoided. This manipulation of paper is done with bare clean hands (to avoid vinyl glove contamination)
7 - MIRROR DRYING

Alcool (propanol) is continuously distributed over the surface from the center towards the edge. (To remain wet all the surface on the same time)

3 OPTICIANS (ONE ON THE CENTER)

Rotate around the mirror with 120° relative positions.

Optical paper is changed several time to help surface drying.

When mirror surface tended to dry, the paper is replaced by cotton wool tissue.

By soft hand contact over the pad tissue with fast circulation moves the mirror is cleaned of all residual wet spot.

Mirror is clean. By visual check with strong illumination eventual cleaning stain may remain - a new process of alcool cleaning
MUST BE DONE.

The success of alcohol drying depends how fast the circulation of cotton tissues is done. (With also a fast move of optician around the mirror).

By experience a second cleaning is always compulsory.

Mirror remains "open" to dust, particle contamination until its mounting on the vacuum chamber.

Just before closing the chamber, a thorough dust removal is done with a 40cm long antistatic brush. (Starting on top of the vertical mirror).

Cleaning Process: ≤ 110' Final mounting on door: ≤ 150'

Witness mirrors (4) are mounted on the edges and on the center.
Operations for NTT and 2m20 mirrors are identical.
The only difference concerns the mirror handling.
3m60 — Handling ring
NTT/2m20 — Handling hook on mirror center.

All smaller mirrors are handled with spider grad. The mirror fixation
in chamber is done on the mirror edge. (Vertical mirror)
COATING PROCESS

THE TWO PLANTS

3W60 VACUUM
- ROUGH PISTON PUMP (ROTARY PISTON) KINNEY
- BOOSTER ROOTS PUMP KINNEY
- OIL DIFFUSION PUMP VARIAN + LN2 BAFFLE
- GLOW DISCHARGE

EVAPORATORS - TWO RINGS
 OUTER FOR LARGE MIRRORS
 INNER " SMALL MIRRORS (2W30)
 - OUTER WITH 60 COILS
 - INNER " 36 COILS

POWER IS SEPARATED IN 3 PARTS

→ PROCESS OUTER RING : 3 x 20 COILS
→ PROCESS INNER RING : 3 x 12 COILS
Aluminium: Aluminium wire

Outer ring: coil of 10 turns
4 Hooks $\phi 2 \times 18$ mm

Inner ring: coil of 10 turns
4 Hooks $\phi 1.5 \times 16$ mm

Both rings loaded few days prior aluminization - keep 10^{-2} Torr vacuum until chamber opening for mirror loading.

Mirror fixation: vertically by means of a central fixation support mounted on the chamber door.

Vacuum: - Rough piston pump (SpeediVac)
- Oil diffusion with water-cooled baffle (SpeediVac)
EVAPORATORS: 24 COILS
MOUNTED ON THE BACK
PART OF THE CHAMBER

POWER: 6x4 COILS
ONLY 4 COILS CONTROLED
ON THE SAME TIME.

ALUMINIUM: WIRE

EACH COIL OF 10 TURNS
LOADED WITH 6 HOOPS
Ø2mm, 28 mm long.
LOADING IS PERFORMED FEW DAYS AGO

MIRROR FIXATION: HORIZONTALLY

CHAMBER DOOR ROTATED HORIZONTALLY
FOR MIRROR LOADING (SPIIDER GRAB)
FIXATION IS DONE ON THE MIRROR
EDGES BY MEAN OF SPECIAL
SUPPORT ACCORDING Ø MIRROR.
THEN DOOR IS ROTATED VERTICALLY
TO CLOSE THE CHAMBER.
Coating Preparation

Vacuum chambers always under 10⁻² Torr when not used. Few days before the chamber is opened and coil are exchanged and loaded with aluminium hooks. One people in charge of maintenance check the equipment.

Coating Process

We normally use check-list. Several points have been modified according experience.

3m60 rough pump turned on once mirror located inside the chamber (exhaust oil vapor may contaminate the mirror surface)

Procedure:
- Rough pumping THE CHAMBER
 Until pressure reach 10^-2 RANGE
 3m60 plant: 80'
 1m50 plant: 40'

- Rough pumping Diffusion Pump
 With 10^-2 Torr: → HEATING PUMP OIL
 3m60 plant: 60'
 1m50: 40'
 After 30' heating 3m60 → LN2 ON
 and 20' ARE REQUIRED FOR COOLING
 THE BAFFLE

- Secondary pumping
 Until pressure reaches 10^-5 RANGE
 3m60: 50'
 1m50: 50'

- Glow Discharge
 3m60: High vacuum valve closed
 A bypass valve is opened
 and a controled outside
 air leak allows 5 10^-2 Torr
 1600 V are applied
 0.5 A discharge current
 20' process
1m50: High vacuum valve is partially closed. Air inlet valve allows 5x10^{-2} Torr required. 15' process.

- **Final Pumping**

 3m60: 10^{-5} Torr = 30'
 1m50: 10^{-6} Torr = 30'

- **Aluminium Evaporation**

 3m60: Both rings are used.

 For each one, the voltage is increased (simultaneously on the 3 sectors of 20 coils each) slowly by remote push button. Watching the filaments via two pull eyes.

 Only 3 filaments are visible. After few step increase, aluminium melt. We must then increase very
Slowly Sin Way To Insure A Correct Aluminium Melting For All Coils (Current Decrease When Aluminium Liquid Wet The Coils) ≤ 15'

Then Voltage Is Increased Faster Until Complete Evaporation (Checked Only On The 3 Visible Coils)

Operation Is Repeated With The 3x 12 Coils Of The Inner Ring.

1m50

Only 4 Coils Are Powered Simultaneously. The Operation Is Then Done 6 Times To Vaporate All 24 Coils.

Visibility Of Coil Is More Easy And Aluminium Melting Is More Easily Checked.
Both chambers are vented immediately.

Mirror aluminization quality is visually checked and systematic defect mapping is performed.

Witness glass are then tested.

In way to approximate the deposited aluminium thickness.
LIMITATIONS:
- TOO SHORT ALLOCATED TIME
- MIRROR HANDLING TOO COMPLEX AND LONG TIME CONSUMING.
- HANDLING TOOL NOT EASILY WASHABLE.
- NO SAFE PROTECTION OF MIRROR SURFACE DURING HANDLING.
- DUSTY AMBIENT
- CONTACT CLEANING ↔ SURFACE SCRATCHES
- INEFFICIENT GLOW DISCHARGE
- TOO MANY COILS POWERED SIMULTANEOUSLY.
 → MELTING CONTROL DIFFICULTY
 → POSSIBLE DROPLETS
 → POSSIBLE ALU PROJECTIONS
 → LOSS OF ALU → E RINGS
 → TOO LOW SPEED EVAPORATION

- VACUUM EQUIPMENT

A VISIT OF OUR ESO VACUUM SPECIALIST HELP US TO START MODIFICATIONS.
- Clean room concept with pumps located outside.
- Air flow roof for mirror washing protection against dust.
- Dust removal with CO₂snow prior aluminization or peel strip coating (deep cleaning with dust, organic, ... removal).
- Non contact alcohol drying.
- Separate powering of filaments computer controlled (simultaneous melting and evap).
- Argon gas glow discharge.

And a continuous mirror cleaning with CO₂snow and peel-off strip coating to increase time period between two aluminizations.
Mt. Palomar

Presentation by R. Thicksten
CALIFORNIA INSTITUTE OF TECHNOLOGY
PALOMAR OBSERVATORY

PROCEDURE FOR WASHING
AND
ALUMINIZING
THE 200 INCH MIRROR

Revised
September 21, 1991

Edited from the notes of:
Earl Emery
Bruce Rule
Robert Thicksten
Preparation for Mirror Wash

Inspect the surface of the mirror to determine if there is any material which may have come in contact with the surface that may need special cleaning attention.

Oil is removed by using solvents before preceding with soap wash.

During the wash it is necessary to prevent water from getting into the cell area below the mirror where the delicate support system for the mirror is located. To prevent this, a Mylar dam is placed around the perimeter of the mirror and should protrude about 4 inches above the surface. A skirt is then taped below the dam to prevent any over-spills or leaks in the dam from reaching the cell. A pan is installed in the center of the mirror, and is sealed to the glass with an O-ring and bolt-on clamp assembly. The pan is supported by the flange that carries the coude' pedestal. In the center of the pan is a lifting handle which, after installation, is replaced by a drain assembly which passes liquids through the mirror and cell below.

Clean the outside perimeter of the glass with acetone and alcohol so that tape will adhere well.

Tape a plastic drop-cloth around the perimeter of the glass about 12 inches below the lip edge and let it extend down below cell.

Put double-sided, 4 inch wide masking tape around the perimeter as close to the lip as possible.

Attach/Install a single 8 inch wide Mylar (or similar acid resistant material) to double sided tape and the seal bottom edge with 4 inch wide gaffers tape. Note that Mylar should extend about 4 inches below and about 4 inches above the lip of the glass.

Apply second course of gaffers tape over and extending about 3 inches below the first.

Install the center pan using O-ring and drain tube. Make sure the bottom pass-through plate has been removed for the tube to pass through.

Install the drain hose from the drain tube to floor drain.

Make sure all sponges, buckets and chamois are thoroughly cleaned in Orvus and distilled water before the wash.
MIRROR WASH

Soak

Mix about 1/4 cup of Orvus soap with about one gallon of distilled water in a plastic bucket. Make up 3 to 4 buckets. Have one person standing by to make fresh soap solution as needed.

Do not use tap water which might contaminate the sponges with particles that could scratch the mirror.

Wet the surface with the soap solution and keep it wet for a period of 15 to 20 minutes to allow the soap to lift and float away as much dirt as possible.

Note that it is important that from now until the mirror is dried, it be kept wet in order to prevent drying marks.

Rinse

Rinse using filtered tap water at low pressure through an ordinary garden hose (all metal fittings removed) for about 10 minutes. Pay special attention to the Mylar to mirror gap as soap will collect there.

Wash

When the rinse is complete, a worker is placed in the center of the mirror. This worker, along with other members of the wash team gathered around the perimeter, begin patting the surface with sponges soaked with Orvus soap and distilled water.

The procedure is to pat the surface 3 to 4 times, turn the sponge over, pat 3 to 4 times again and then rinse the sponge in the soap bucket. The idea behind this patting procedure is that debris that might scratch the surface is picked up and discarded before doing so. Rubbing could, of course, carry the debris across the surface and scratch it.

Rinse

After the entire surface has been patted/washed it is again rinsed for 10 to 15 minutes and then washed again. Be sure to change bucket solution, at the least, between every wash.

If the mirror is to be aluminized, proceed to ACID WASH section.
Clean Sponges

After the second wash, wash the sponges thoroughly to insure that no particles that might have been picked up by the sponges during the patting wash remain.

Wash

With clean sponges, apply the soap solution to the surface in a wiping motion - do not press down, but rather drag the sponge across the surface. Rinse in soap solution after 2 long swipes - one each side of sponge.

Rinse

Rinse with tap water 10 - 15 minutes.

Wash

Repeat wash, this time using light pressure in sponges when wiping.

Rinse with tap water a minimum of 20 minutes, during which time the man can be removed from the center of the mirror and the Mylar dam can be removed. Do not allow the mirror to dry!

Using distilled water poured from buckets, rinse the mirror with about 15 gallons.

Dry the mirror with clean chamois.
ACID WASH

After a hose rinse, respirators and protective clothing are put on by workers to protect them from the acids and caustic chemicals that will be used to remove the aluminum coating. Also, fans are set up to suck fumes from the work area and exhaust them outside.

Apply Green River Solution

A solution of 1 quart hydrochloric acid, HCl, mixed with 2 quarts water and 1 ounce cupric sulfate, CuSO₄, makes up what is referred to as "Green River" solution (the cupric sulfate having turned the diluted acid green).

This solution is carefully poured from plastic buckets over the surface from the perimeter. A dam of disposable, lint-free paper lab towels is normally placed around the mirror, about half way to the center. Another dam is placed around the center hole of the mirror. These dams will slow the flow of the acid from the surface and allow more time for the chemical to dissolve the aluminum. After a few minutes, have workers begin wiping the surface with lab towels to aid in the removal of the aluminum. This is a dangerous time in the aluminizing process, as workers must stretch out over the glass to reach the entire surface. The worker that is in the center pan must position himself in a squatting position as one cannot kneel in the acid that is flowing to the drain beneath him. Also workers must be careful that the fume masks and safety goggles are well secured - if they fall off and hit the surface, damage to the mirror could result. After about 5 to 10 minutes the honeycomb structure of the Pyrex glass is evident.

Rinse

After about 30 minutes or so, if there is no longer any evidence of aluminum, all lab towels are removed and a 10 minute hose rinse is begun.

Apply Potassium Hydroxide KOH solution, followed by Calcium Carbonate.

The next step is to apply a caustic solution to the surface to remove any aluminum particles which still may be adhering to the surface.

Mix 1 part KOH with 25 parts water and apply evenly over the surface.

Again, dams are placed on the surface, and after application, the solution is agitated with lab towels. After 2 to 3 minutes, CaCO₃ powder is dusted/spread over the surface. Using lab towels, the
powder is mixed with the KOH solution on the surface and then this mixed solution wiped over the surface for about 5 minutes - rinse before drying starts.

Repeat.

Rinse

Rinse for about 30 minutes - pay special attention to the dam, the CaCO₃ will want to stay between the glass and Mylar.

Apply nitric acid solution.

Mix 1 part HNO₃ with 1 part water and apply to the surface - do not leave this on the glass for more than 5 minutes.

Apply the diluted solution of nitric acid over the surface - again dams are used and the solution agitated with lab towels.

Rinse

Rinse for about 30 minutes - again, pay special attention to the dam area.

All protective clothing can now be removed and returned for washing and storage.

At the end of the rinse the Mylar dam is carefully removed to insure that there is no splash-back from the wet Mylar to the glass surface. During this, as well as preceding steps, no part of the surface is allowed to dry. If any portion of the surface dries, there will be some type of drying mark left which means returning to an acid wash.

Final Rinse

Distilled water, about 20 gallons, is now poured over the glass. As some water will go over the outside perimeter, workmen standby to mop up any spills.

The skirt which has protected the mirror cell is now removed.
DRYING AND ETHYL ALCOHOL WIPE-DOWN

Disposable lint free cotton gloves are put on and the mirror surface is dried using lint-free disposable paper lab towels. Towels are changed frequently.

Once the surface has been dried, immediately precede to wiping the surface with ethyl alcohol. A lab towel is held in one hand and a plastic squeeze bottle is used to apply a small amount of alcohol to the towel. The towel is then wiped across the surface in one pass and discarded. After about 20 minutes of wiping with alcohol, "black breath" tests are begun.

Breathing onto the surface should spread a even layer of moisture which will be evident for a few seconds when viewed against a distant light source (our fluorescent work-lights work OK for this). During the few seconds available, wipe marks or other surface defects will be apparent. When the breath test shows a smooth even surface stop wiping. The alcohol bath can take an hour or more.

Wipe the perimeter/side of the glass with ethanol.

The mirror is immediately placed into the tank and pumping begun.
PREPARATION FOR ALUMINIZING.

It is a good idea to test the system a month or so ahead of the engineering/aluminizing run to insure that the system is functioning properly, all gauges are working etc. In the past, opticians have even melted the aluminum on to the filaments during this test procedure. Experience has shown that melt-in is not necessary.

Verify that electrical leads in the tank lid have been changed from the melt-in mode (single filament firing) to the mode for pair firing and fast firing. At this point the tank lid should be on its supports on the observing floor.

Inspect the filaments visually.

Replace broken filaments and its firing partner using 8 loop filaments.

Load filaments. Wearing clean cotton gloves, use the special long-nosed pliers to install 3 loops of aluminum per filament (315 filaments in all). Each loop is 0.47 inch long aluminum wire, 0.040 inch in diameter. For fast fire filaments (total 35) use 5 loops of aluminum.

Check for continuity and possible shorts of all filaments using an ohm meter.

Record which filaments were replaced in the filament log-sheet.

Clean the tank. Remove debris, clean surfaces with solvent (acetone) as needed.

Check that the tank-to-mirror O-ring is clean, greased (silicone vacuum grease) and properly seated.

Insure that the port windows inside the tank lid have been stripped and cleaned for easy viewing of the glow discharge and filament firing.

On the tank lid, clean and grease the main flanges that seal to the rubber grooves in the base. Also clean & grease the base grooves.

If desired, put several clean glass test slides/plates on the stainless steel plug in the Cassegrain hole and around the outer shelf for possible test purposes.
Assemble Tank

With the mirror prepared, raise the four guide posts into position and lift the tank over the mirror. Lower the tank slowly until the O-ring mirror seal is a few inches above the lip of the mirror. Using a bright light source, watch to insure that the O-ring does not come off as the tank is lowered around the mirror. Stop - when the tank is about 4 inches from contacting the cart. Raise the cart until contact is made and slack is apparent on the lifting cables.

Lower the crane hook and disengage.

Lower the cart so vacuum ports are ready for contact. At this point the tank is separated from the pumping manifold by 2 feet or so. Clean upper and lower flanges and clean and grease (lightly) O-rings on manifold and roughing interfaces between tank and pumping system.

Move tank into contact with the vacuum ports; align and bolt upper and lower ports together.

Put the pair firing transformer (same as for 84" tank) and fast fire transformer on top of the tank at a convenient place towards the direction of the aluminizing console (control). Do not put these transformers on the tank before this step or the tank will be unbalanced for lifting.
PUMP-DOWN

On the observing floor:
Activate all circuit breakers
Turn on air compressor for pneumatic valves
Turn on water cooling to all 3 roughing pumps
Make sure drain-hoses are properly located.
Make sure water is flowing through each pump.

At the Control Console:
Install water lines to intermediate and bypass D.P.s. Check water flow.
Install gauges to tank.
Install glow discharge and other electrical to tank.
Turn on main power.
Check control board to insure all valves are closed.
Turn on the TC gauges.
Prepare pump-down chart recorder to record tank pressure.

Turn on the 3 roughing pumps (Stokes, Kinney, & LeBold) and monitor their individual, isolated base pressures. They should reach less than 50 microns in less that 15 minutes.

Open the Stokes pneumatic valve, RV2 to the D.P.s and fore-line.

Open the two mechanical gate hand valves, BV1 & BV2 one for each pump at about foot level on the D.P.s.

When the D.P. fore-line pressure is less than 50 microns turn on D.P.'s and the 2 refrigeration compressors for D.P. cold traps (on observing level).

Turn on the 2 separate water valves for D.P. cooling. The water temperature should be stabilized, by regulating flow, at 115 - 120 F. This takes about an hour.

The tank may be rough pumped while the D.P.'s are heating up using the Lebold and Kinney to pump the tank. Open the pneumatic valves, RV1, FV2,RV3 & RV4 between the pumps and the tank. Make sure the valve FV1 to the D.P.s from these pumps stays closed.
While the tank is pumping down connect the firing circuits. The fire lead of the small transformer connects to the inner or outer lug, with a shorting cable between inner & outer lug. The large transformer hot leads connect to lugs marked 1 through 10 on the Lucite bar. Both transformer ground leads connect to bolts on the steel structure. Make sure all Variacs are turned off and all knife switches are open.

When the tank pressure is below 1000 microns, (30 minutes or so) activate blower switch from time to time. When the pressure is low enough the blower will stay on. The pressure will fall fairly quickly (15 minutes) below 10 microns.

When the tank is below 50 microns, close valve FV2 and open valve FV1 to put the Kinney on backing for the D.P.'s along with the Stokes. This leaves only the Lebold roughing the tank.

When the tank is below 50 microns, turn on the emergency bypass and intermediate D.P.'s. Check water cooling and proper heater operation on these 4 pumps.

Turn on ion gauges.

Turn on the chart recorder.

Monitor D.P. gauges ION 2 & ION 3 to ensure they are working properly - the pressure should be at or approaching 10 \(\times 10^{-5} \) torr.

When the bypass, intermediate and main D.P.'s have come to temperature and the high vacuum ion gauges ION 2 & ION 3 indicates a pressure of less than 25 \(\times 10^{-5} \) microns, open D.P. gate valve DPV1 or DPV2 making sure the fore-line pressure does not exceed 100 microns (GAUGE TC1) for more than 30 seconds. It may be necessary to cycle the valves open and closed a few times.

The pump down will take about 5-6 hours to about 1 \(\times 10^{-6} \) torr. After the tank pressure has reached about 1 \(\times 10^{-3} \) torr (about 2 hours), fill the liquid N2 trap. Carefully monitor the filling of the large plate surrounding the filler hole. It has an O-ring seal. Avoid spilling Ln2 around the filling hole. Ln2 could freeze the O-ring seal and cause a leak.

Glow Discharge

When the tank pressure is about 1 \(\times 10^{-5} \) torr, initiate the glow discharge procedure. Connect an oxygen cylinder to the Kerotest valve on the tank feed-through. Set the pressure to 3-5 p.s.i. (Flush the air out of the hose before connection) Isolate the tank by closing the main roughing valve RV1 and the gate valves DPV1 & DPV2 on both D.P.'s. Crack the kerotest valve very slowly and let the pressure as read on gauge TC6 rise slowly to 30 microns.
Turn on glow discharge (control console) and run current up to 10 amps (200 V) for 3 minutes. Monitor and control the current button (up - down) as the current can fluctuate fast and considerably. Observe the glow discharge through the port - if there is a lot of arcing, lower the current a bit, but not so low that the glow cannot be seen.

After glow discharge, open the roughing valve RV1. After a couple of minutes the pressure should be less than 10 microns Open the D.P. gate valves DPV1 & DPV2 one at a time; the fore-pressure as measured at gauge TC1, should not exceed 100 microns - as before.

Repeat the Glow discharge 6 times. After each cycle, the pressure should return the previous value in 20 - 25 minutes or so. Proceed to next cycle.

After last glow discharge, wait for vacuum to be near 2×10^{-5} microns. Make sure the liquid nitrogen trap is full.

Filament Firing

Activate paired firing circuits. Set the Variac to 105 volts. Install clamp-on ammeter and the chart recorder clamp-on ammeter to monitor proper time on of filaments. Note: you will be moving the rotary selector though 360 degrees - 0 - 180 paired filaments, avoid getters marked G (obsolete).

Prepare chart recorder.

Attach the recorder's clamp-on amp meter to one of the firing lines. This meter will not give any indication while plugged into the recorder. Use another meter, attached to the same line, to calibrate/measure/check current as recorded on the chart.

Check that there is at least a 1/4 roll of chart paper in the recorder.

Put the 'v/mv' to the 'v' position.
Put the 'var/cal' to the 'cal' position.
Put the 'h/o/min' switch to the 'h' position.
Put the 'speed' selector to '1' position.
Put the 'range' switch to the 10 volt position.
Put the 'm/o' to the 'o' position.
Install recorder pen.

Turn on the Power
Use the green knob to align the pointer to zero on left side.

Switch the 'm/o'switch to the 'm' position.

Record the gauge readings on the log-sheet.

Set the Variac to 105 volts and turn it on.

Set the recorder speed to 10cm/hr and volts to 2V. This should give a recorded first spike that may be off the paper, but the melt-in/firing waveform will be large enough (peak to peak) to read easily.

When firing the filaments, switch the recorder speed from 'hr' to 'min' and then back - this saves paper.

Set the rotor switch to the filament pair to be fired.

While watching the recorder, press and hold the firing switch button. The current will surge and then drop and then slowly rise again as the aluminum melts and then begins to vaporize. As it starts to drop off linearly and gets just below the low point that was reached after the spike, release the button - this should take about 8 to 10 seconds. A timer will turn off the supply automatically after 12 seconds.

Note the filament number on the recorder paper as each filament pair is fired.

Continue until all filament pairs have been fired.
FAST FIRING OF FILAMENTS

Immediately after paired firing, prepare for fast fire. Put Variac at 68 volts and turn the Variac circuit breaker on. Throw the knife switches in prescribed pattern as below:

<table>
<thead>
<tr>
<th>Time (sec.)</th>
<th>0</th>
<th>1.7</th>
<th>3.3</th>
<th>5.0</th>
<th>6.6</th>
<th>8.3</th>
<th>10.0</th>
<th>11.6</th>
<th>13.3</th>
<th>15.0</th>
<th>16.6</th>
<th>18.3</th>
<th>20.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife on</td>
<td>1</td>
<td>2</td>
<td>3-4</td>
<td>5-6-7</td>
<td>7-8-9</td>
<td>8-9-10</td>
<td>9-10</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knife off</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus each knife is closed for 5 seconds, the time deemed correct to prevent filament being heated while bare of aluminum (1987).

This value was determined by activating the circuit - knife # 1 and watching through the window port for telltale visual evaporative process. This time may vary slightly according to filament age, aluminum contact initially etc. However in failure of 1987 aluminizing, the timing was grossly off. The filament was on for 9 seconds, for 4 of those seconds the filaments were bare of aluminum. - Earl Emery
SHUTDOWN

Close North and South gate valves DPV1 & DPV2 to the manifold.
Turn off the North & South D.P.s as well as the Booster D.P.s.
Turn off the Intermediate and Safety bypass D.P.s.

Note - do not close the main roughing pump valve RV1 until the intermediate and the emergency bypass D.P.s have cooled. The blower and roughing pumps must back these D.P.s. until they cool.

When all Intermediate and the Safety Bypass D.P.s have cooled:

Close main roughing valve, RV1.
Turn off the blower pump.
Turn off all ion gauges.
Introduce oxygen to the tank through the Kerotest valve at about 3-5 p.s.i. Use one bottle.

After oxygen, introduce air to the tank through the filter port.
Turn off water flow to D.P.s and roughing pumps.
Disconnect gauges to tank.
Disconnect water hoses to tank.

When temperatures of North, South and the Booster D.P.s reach ambient temperature.

Close valves IN THIS ORDER, BV1,BV2,FV1, RV2, RV3 and RV4.
Turn off the roughing pumps.
Turn off all TC gauges.
Turn off refrigerant condensors.
After 30 minutes, turn off water flow to roughing pumps.
Pump-down log sheet

ROUGHING (TC) GAGE READINGS

<table>
<thead>
<tr>
<th>Time</th>
<th>Manifold</th>
<th>Intermediate</th>
<th>High farside</th>
<th>Roughing</th>
<th>Stokes</th>
<th>Kinney</th>
<th>Leybold</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Roque de Los Muchachos

Presentation by B. Mack
Summary Presentation: The Current Plans for Future Observatories

Contents:

1. Columbus Project
 B. Atwood
2. Gemini Project
 K. Raybould
3. JNLT
 M. Nakagiri
4. Magellan
 A. Schier
5. VLT
 M. Grössl
Columbus Project

Presentation by B. Atwood
The Columbus Report

ESO Workshop:

Cleaning and Coating Large Mirrors

Eso Headquarters, Garching

7 and 8 October 1991

Bruce Atwood and Barry A. Sabol
I
Columbus Aluminization Configuration

II
Aluminization Experiments-The Columbus List

III
Aluminization Experiments at Ohio State

1. Our equipment
 Diffusion Pump system
 Thickness monitor
 RGA
 Power supply and transformers
 Monochromator with
 absolute reflectance accessory
2. Gas evolution during aluminization
3. Effect of background gasses on reflectivity
4. Pumping schemes
5. Filament geometry and source function
6. Power supply strategies
ALUMINIZING EXPERIMENTAL AND DESIGN ACTIVITIES
(version 25 March 1991)

Improved Optimization of Filament Locations

- w/o baffles
- w/baffles
- w/ baffles and plasma
- increase to 5 rings
- optimize in single filament plane

Model Aluminum Distributions vs. Reality

- comparison of model to chamber thickness measurements
- thickness measurements by transmission

Verify the Properties of "higher density" and "astronomy standard" aluminum coatings

[samples from Las Campanas]
[samples from Italy]
[samples from Sunnyside]
[samples from MMT small chamber]
- higher reflectivity
- lower emissivity
- washability (snowability)
Study Aluminizing in Argon

- reflectivity vs argon pressure
- reflectivity vs oxygen pressure
- profile variations from scattering
- ionization of the argon?

Study Plasma-Assisted Aluminizing

- reflectivity and adherence measurements
- ion assisted aluminum properties
- antenna design
- special chamber requirements

Chemistry and Logistics of Coating Removal

- quantify the aluminum removal recipe from silica
- quantify the silver, gold, chrome removal recipes
- conduct experiments with potassium ferrocyanide
- conduct experiments with Printed Circuit Board etchant
- quantify the effects of the silica recipes on E6
 - long term damage tests
 - aluminum removal rates
- consider alternate removal schemes
- integrate coating removal into cell design
- design edge seal in detail (polish the edge)
- design scheme to apply chemicals to the mirror
- design scheme to clean the mirror
Impact of Mirror Support and Ventilation on Coating

• measure leak rates of mirror supports
• measure leak rates of ventilation units
• measure leak rates of the honeycomb structure
• quantify the contaminants
• estimate the tolerable leak rates in dirty vacuum
• measure leak rates of butyl rubber seals
• estimate the tolerable leak rates in clean vacuum

Filament Power Considerations

• measure filament transformer properties
• price high current feedthroughs
• design and build filament power supplies
• estimate standard filament power and load
• measure leak rates of transformers
Pumping Designs

- estimate required pumping speed
- quantify getter pumping scheme
- cryopanel design and test
- experiment with hydrogen gas effects
- compare commercial cryopumps to cryopanels

Chamber Design

- specify number and location of ports
- specify flange configuration
- chamber testing requirements
- interior coating (epoxy, Al, stainless, Ni ?)

Bell Jar Preparation and Handling

- design fixtures for filaments and pumps
- develop loading procedure
- study integration of cleaning and coating procedure
ALUMINIZING EXPERIMENTAL AND DESIGN ACTIVITIES
(version 25 March 1991)

Improved Optimization of Filament Locations

Model Aluminum Distributions vs. Reality

Verify the Properties of "higher density" and "astronomy standard" aluminum coatings

Study Aluminizing in Argon

Study Plasma-Assisted Aluminizing

Chemistry and Logistics of Coating Removal

Impact of Mirror Support and Ventilation on Coating

Filament Power Considerations

Pumping Designs

Chamber Design

Bell Jar Preparation and Handling
BASELINE LIST OF ALUMINIZING SYSTEM FEATURES

250 -- 300 filaments, 400 -- 600 Watts each

4 -- 5 rings of filaments

Filaments in a single plane

1.0 -- 1.5 meters above the mirror

Filament shutters and baffles

Dedicated low voltage wiring to each filament

Strip mirror horizon pointing

Install chamber horizon pointing

Clean mirror horizon pointing

Aluminize horizon pointing

Chamber divided into clean / dirty sections

Blowout valve between sections

Roughing Pumps: Roots blowers backed by rotary pumps
HiVac Pumps: Cryopumps or Cryopanels

Residual Gas Analyzer

Quartz Crystal Thickness Monitors (~8)

Pressure Gauges

Bleed Valves

Edge Seals for ventilation, washing, aluminizing

Dual O-ring flange seal in keystone groove

3 -- 4 one meter vacuum ports on the top hat

Dummy mirror cell baseplate with 1.0 meter opening

Thermocouple readout system (shared with telescope?)
Ohio State/Columbus Project

![Graph showing partial pressure over time with labels for H₂, H₂O, and O₂. The initial total pressure is 6.6E-7 Torr.](image)
Ohio State/Columbus Project

Partial Pressure (Torr)

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
Time (minutes)

AMU16
AMU15
AMU14
AMU13

(Ratios as expected for Methane)
Partial Pressure (Torr)

Initial total pressure $1E-6$

Time (minutes)
Ohio State/Columbus Project

Initial total pressure 7.3E-7

Partial Pressure (Torr)

Time (minutes)
Ohio State/Columbus Project

Initial total Pressure 9E-7
850 Angstroms deposited

Partial Pressure (Torr)

Time (minutes)
Ohio State/Columbus Project

Initial total pressure 8E-6
Small air leak
Note O2 gettering

- H₂
- H₂O
- O₂

Time (minutes)
Ohio State/Columbus Project

Initial total pressure 7.8E-6

Partial Pressure (Torr)

H₂O

H₂

O₂

Time (minutes)
Ohio State/Columbus Project

Very low initial H2O

Partial Pressure (Torr)

Time (minutes)
I
Columbus Aluminization Configuration

II
Aluminization Experiments-The Columbus List

III
Aluminization Experiments at Ohio State

1. Our equipment
 Diffusion Pump system
 Thickness monitor
 RGA
 Power supply and transformers
 Monochromator with
 absolute reflectance accessory
2. Gas evolution during aluminization
3. Effect of background gasses on reflectivity
4. Pumping schemes
5. Filament geometry and source function
6. Power supply strategies
Coating Thickness Distribution
Helical Filament

Normalized Thickness

- Elevation=90
- Elevation=67.5
- Elevation=45
- Elevation=22.5
- Elevation=0

Azimuth

-90 -60 -30 0 30 60 90
This is the only copy that is any good - and it was the evanescent image vertically above the filament. The horizontal image was similar with most emission coming from the back of the inside of the filament.

Chamber: Rear

5/3/91
pinhole 1.075" dia (≈5x dia)
pinhole 4" from source - plate 4" from pinhole
pitch of helix (evanescent image) shows that most emission comes from the bottom of the coil.
Ohio State/Columbus Project

Conductance (mhos) vs. Thickness (Angstroms)

- Optical Thickness
- Mass Thickness
Gemini Project

Presentation by K. Raybould
SCIENCE RECOMMENDATIONS

1. Start an aggressive program to demonstrate the feasibility of producing durable low emissivity coatings.

2. Investigate methods for cleaning the primary mirror in-situ.
SCIENCE REQUIREMENTS

1. SCIENCE REVIEW MEETING IN US 18/ 19 JULY 1991

Concluded that one of the highest priority for the Gemini project is the capability to deposit low emissivity durable coatings.

Telescope emissivity specification 4% (excluding scattering and sky contribution).

Telescope emissivity can degrade to 5% before the mirror emissivity must be reduced to the post coating level.

Target emissivity of 2%.
SCIENCE REQUIREMENTS

GEMINI DEVELOPMENT PLAN FOR LOW EMISSIVITY COATING

IN-SITU MIRROR CLEANING

PROGRAM FOR DESIGN, PROCUREMENT, INSTALLATION AND COMMISSIONING
Telescope Emissivity Budget

<table>
<thead>
<tr>
<th>Component</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary mirror (silver coated)</td>
<td>0.5%</td>
</tr>
<tr>
<td>Secondary mirror (silver coated)</td>
<td>0.5%</td>
</tr>
<tr>
<td>0.5mm bevel around secondary mirror</td>
<td>0.22%</td>
</tr>
<tr>
<td>Secondary mirror support vanes (12mm)</td>
<td>0.4%</td>
</tr>
<tr>
<td>Primary mirror bore (hole in centre)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Diffraction at edge of secondary (10 microns)</td>
<td>0.2%</td>
</tr>
<tr>
<td>Scattering off mirror surfaces (APART)</td>
<td>?</td>
</tr>
<tr>
<td>Other sources</td>
<td>?</td>
</tr>
</tbody>
</table>
AIMS

1. Literature search on potential coating techniques. Silver is the prefered film for its low emissivity in the IR.

2. Small scale testing of a few promising techniques. Durability of coating to be tested with accelerated environmental testing.

3. Coat 1.3m IR telescope optics.

4. If 1-3 are successful, investigate methods of boosting the reflectance in the blue and UV end of the spectrum.

5. Develop methods for cleaning the primary mirror in-situ.
PROGRAM FOR DESIGN, PROCUREMENT INSTALLATION AND COMMISSIONING

1. Develop sputtering process hardware design for testing in the 4.2m chamber.

2. Design and specification

3. Procurement

4. Test assembly at manufacturers

5. Ship

6. Assemble on site

7. Commission

8. Coat primary mirror
UV LASER CLEANING OF
ASTRONOMICAL TELESCOPE MIRRORS

Contact: Dr. Wayne Kimura
STI Optronics
2755 Northup Way
Bellevue, WA 98004, USA
Phone: (206) 827-0460
FAX: (206) 828-3517
CURRENT STATUS

- Technical Issues Related to Laser Cleaning Astronomical Telescopes
 - Determining optimum technique (e.g., laser pulse energy, # of shots/site, pulse repetition rate) — depends on contaminant
 - Solving engineering issues such as best method for delivering laser beam and removal of expelled dust

- STI Optronics is Interested in Working With Observatories to Develop This Application
 - Collaborating with University of Washington Astronomy Department on joint proposal
 - In discussions with National Optical Astronomy Observatory
 - Please contact Wayne Kimura at STI Optronics for more information
BACKGROUND

• Telescope Mirrors Degrade Over Time
 - Increase of emissivity and scattering, decrease of reflectivity
 - Recoating large diameter mirrors expensive and risky
 - Need better in situ cleaning techniques

• Possible Solution: Use Laser Cleaning
 - Capable of easy and safe in situ cleaning
 - Frequent cleaning possible (e.g., daily) — ensures continual optimum telescope performance
 - Clean during daytime to minimize telescope downtime

• UV Laser Cleaning of Small Diameter Mirrors Has Already Been Demonstrated
 - UV light better than visible or IR light
 - Excimer UV lasers readily available commercially
<table>
<thead>
<tr>
<th>REVIEW OF BASIC CLEANING MECHANISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Contaminant Removal</td>
</tr>
<tr>
<td>Photochemical dissociation</td>
</tr>
<tr>
<td>molecular binding energies are typically several eV</td>
</tr>
<tr>
<td>Photothermal processes</td>
</tr>
<tr>
<td>easily broken by UV light</td>
</tr>
<tr>
<td>direct absorption of UV laser energy by contaminant</td>
</tr>
<tr>
<td>minimizes laser energy needed to clean surface</td>
</tr>
<tr>
<td>Particulate Removal</td>
</tr>
<tr>
<td>Absorption of laser light leading to vaporization</td>
</tr>
<tr>
<td>Generation of opto-acoustic stress wave</td>
</tr>
<tr>
<td>particles literally bounce off surface</td>
</tr>
<tr>
<td>requires pulsed laser source, such as an excimer laser</td>
</tr>
<tr>
<td>Electrostatic bond breaking between mirror surface and particulate</td>
</tr>
<tr>
<td>Uniform Laser Beam Profile Important for Effective Removal</td>
</tr>
</tbody>
</table>
COMPARATIVE EVALUATION
CO₂ AND UV EXCIMER LASER CLEANING OF MIXED CONTAMINANT LAYER (PARTICULATES/DIOCTYL PHTHALATE) ON Al-COATED Si

- CO₂ (5.5 J/cm²) (no effective removal)
- UV (0.3 J/cm²) (complete removal)
KITT PEAK NATIONAL OBSERVATORY

SCHEDULES AND STAFFING

FOR MAINTENANCE OF TELESCOPE OPTICS

COATING SCHEDULES:

ALL TELESCOPE OPTICS ARE REALUMINIZED ONCE A YEAR EXCEPT FOR THE 2.1 METER AND 4 METER TELESCOPES. DUE TO THE TIME AND EFFORT REQUIRED FOR REALUMINIZING THE 2.1 METER AND 4 METER TELESCOPE OPTICS, THEY ARE BEING REALUMINIZED EVERY THREE TO FIVE YEARS.

WASHING SCHEDULES:

ALL TELESCOPE MIRRORS ARE WASHED A MINIMUM OF ONCE EVERY SIX MONTHS.

STAFFING:

• PART TIME SERVICES OF ONE ENGINEER FOR SCHEDULING AND TECHNICAL SUPPORT.

• PART TIME SERVICES OF TWO TRAINED TECHNICIANS FOR WASHING, COATING, AND OVERSEEING ALL MIRROR HANDLING.

• PART TIME SERVICES OF REGULAR MOUNTAIN OPERATIONS TECHNICIANS TO ASSIST IN MIRROR REMOVALS.
KITT PEAK ALUMINIZING CAPABILITIES

2.4 METER & 4 METER COATING CHAMBER FACILITIES

I. Both coating chambers are permanently installed in fixed locations (aluminizing rooms) and all optics are transported to the aluminizing rooms for coating.

II. The aluminizing rooms are fully equipped to handle all mirror operations. Each room has overhead cranes to handle the optics and washing facilities for stripping and cleaning the mirrors.

III. It has been Kitt Peak's experience that the use of stationary coating chambers and fully equipped aluminizing rooms has provided quick turn-around times and minimum down time due to equipment failures. About the only maintenance required on any of the chambers is the standard preventive maintenance activities.

NOTE

Originally, the 4-meter chamber was designed to be moved to the main floor of the 4-meter building for aluminizing the primary mirror and the mirror was to be installed in the chamber on its cell. In practice, it was found to be much easier, quicker, and safer to remove the mirror from its cell and transport the mirror to the chamber on the ground floor of the building.
COATING CHAMBER DETAILS

1. Only aluminum coatings are currently being done in both chambers.

2. Both chambers are only capable of using filament arrays for evaporation.

3. Both chambers are using diffusion pumps and meissner traps.

4. Only the 4-meter chamber has glow discharge capabilities which is not currently in use.

5. Both chambers have never experienced any major mechanical problems in over twenty years of use and the coatings produced in both chambers are of equal quality.
PERFORMANCE OF COATING CHAMBERS

4 METER CHAMBER

DESIGN PERFORMANCE SPECIFICATION:

- Coating Uniformity: ±5%
- Deposition Thickness: ≥1000Å

DELIVERED PERFORMANCE:

- Coating Uniformity: ±27% thickness variation under the best conditions.
- Deposition Thickness: Maximum thickness seldom approached 800Å (Usually 400Å - 600Å)

CURRENT PERFORMANCE:

In 1985, modifications were made to the filament arrays, the filament baffles, and power distribution circuit.

- Coating Uniformity: Better than ±10%.
- Deposition Thickness: Approximately 1000Å

2.4 METER CHAMBER

DELIVERED AND CURRENT PERFORMANCE:

- Coating Uniformity: ±10%
- Deposition Thickness: 800Å - 1000Å
4 METER CHAMBER MODIFICATIONS

FILAMENT ARRAY ARRANGEMENTS:

ORIGINAL FILAMENT CONFIGURATION

<table>
<thead>
<tr>
<th>ARRAY NUMBER</th>
<th>ARRAY DIAMETER (CM)</th>
<th>NUMBER OF FILAMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>165</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>231</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>282</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>363</td>
<td>36</td>
</tr>
</tbody>
</table>

MODIFIED FILAMENT CONFIGURATION

<table>
<thead>
<tr>
<th>ARRAY NUMBER</th>
<th>ARRAY DIAMETER (CM)</th>
<th>NUMBER OF FILAMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>363</td>
<td>36</td>
</tr>
</tbody>
</table>

BAFFLE ARRANGEMENT:

The baffles were catching much of the evaporated material.

The baffles were raised closer to the filaments increasing the angle of incidence of the deposition on the substrate from 20 degrees to 45 degrees.

PERFORMANCE:

The ±10% coating uniformity achieved with these changes was adequate for all known NOAO coatings. The cost for further uniformity improvements was prohibitive.
MIRROR REFLECTIVITY MEASUREMENTS FOR REALUMINIZED MIRRORS

<table>
<thead>
<tr>
<th>TELESCOPES</th>
<th>CHAMBER</th>
<th>3500Å</th>
<th>5500Å</th>
<th>2200Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIYN 3.5M</td>
<td>4 METER</td>
<td>91.7%</td>
<td>89.5%</td>
<td>95.3%</td>
</tr>
<tr>
<td>0.9M</td>
<td>4 METER</td>
<td>85.2%</td>
<td>87.1%</td>
<td>94.9%</td>
</tr>
<tr>
<td>U of A (2M)</td>
<td>4 METER</td>
<td>88.7%</td>
<td>89.0%</td>
<td>95.4%</td>
</tr>
<tr>
<td>#1 VACUUM</td>
<td>2.4 METER</td>
<td>89.2%</td>
<td>90.3%</td>
<td>95.4%</td>
</tr>
<tr>
<td>#2 VACUUM</td>
<td>2.4 METER</td>
<td>88.1%</td>
<td>90.2%</td>
<td>95.7%</td>
</tr>
<tr>
<td>McMATH MAIN #1</td>
<td>2.4 METER</td>
<td>89.5%</td>
<td>90.3%</td>
<td>95.4%</td>
</tr>
<tr>
<td>McMATH WEST AUX #1</td>
<td>2.4 METER</td>
<td>88.5%</td>
<td>90.5%</td>
<td>95.9%</td>
</tr>
<tr>
<td>McMATH EAST AUX #1</td>
<td>2.4 METER</td>
<td>90.0%</td>
<td>90.2%</td>
<td>96.2%</td>
</tr>
<tr>
<td>COUDE FEED #2</td>
<td>2.4 METER</td>
<td>88.5%</td>
<td>89.5%</td>
<td>95.7%</td>
</tr>
</tbody>
</table>
MIRROR CLEANING PRIOR TO ALUMINIZING

1. ALL LARGE TELESCOPE OPTICS ARE STRIPPED AND CLEANED IN THE ALUMINIZING ROOM.

2. THE MIRRORS ARE REMOVED FROM THEIR HANDLING CARTS OR CONTAINERS AND PLACED ON STANDS OVER THE FLOOR DRAINS FOR STRIPPING AND CLEANING.

3. IMMEDIATELY AFTER THE MIRRORS HAVE BEEN CLEANED THEY ARE PLACED IN THE CHAMBERS FOR COATING.

4. THE COATING CHAMBERS ARE PREPPED AND READIED FOR FIRING PRIOR TO BRINGING THE MIRRORS INTO THE ROOM FOR CLEANING.
PROCEDURE FOR STRIPPING AND CLEANING MIRRORS PRIOR TO ALUMINIZING

The following solutions are used in this process:

Solution "A": Mix Hydrochloric Acid (HCL, 37%), Reagent grade, with distilled water in a ratio of 1:1. Then add 28 grams of Copper Sulfate (CuSO₄), Reagent grade, per liter of solution and shake until dissolved.

Solution "B": Mix distilled water with Potassium Hydroxide (KOH), Reagent grade, in a ratio 20:1 and shake until dissolved.

Solution "C": Mix Nitric Acid (HNO₃, 70%), Reagent grade, with distilled water in a ratio of 1:1.

1. Rinse mirror thoroughly with filtered tap water.

** Wear Protective Rubber Gloves for the Following Steps **

2. Remove any oil spots with Acetone or Xylene.
3. Apply Solution "A" to mirror surface. Using lint-free tissues soaked in solution "A", rub the surface briskly to remove the coating.
4. Rinse mirror thoroughly with filtered tap water.
5. Repeat steps 3 and 4 until old coating is completely removed.
6. Apply solution "B" to mirror surface and rub briskly with lint-free tissues.
7. Rinse mirror thoroughly with filtered water.
8. Reapply solution "B", spread a light coating of Calcium Carbonate (Reagent grade) over the entire surface, and rub the surface with lint-free tissues.
9. Rinse mirror thoroughly with filtered tap water.
10. Repeat steps 8 and 9 several times.
11. Apply solution "C" to mirror surface and rub briskly with lint-free tissues.
12. Rinse mirror thoroughly with filtered tap water for 5-10 minutes.

** Remove Gloves **

13. Apply enough distilled water to thoroughly rinse off tap water.
14. Wipe surface dry with lint-free tissues. Do not let standing water air-dry on surface.
15. Use filtered gaseous nitrogen (N₂) to blow off any dust or lint.
16. Mirror is now ready for aluminizing.
TELESCOPE MIRROR WASHING

CURRENT PRACTICE (ALL TELESCOPES):

1. Mask off surface of mirror from rest of telescope with plastic sheeting and tape.

2. Position telescope to permit wash solution to drain out holes provided for water removal.

3. Wash mirror in accordance with the approved wash procedure (see attachment).

4. Remove any excess water from the cell area with a wet or dry shop vacuum cleaner.

5. Remove plastic sheeting.

EXPERIENCE:

For several years strippable plastic coatings were successfully used for cleaning mirrors, but has been discontinued due to the potentially hazardous chemicals some of them contain.
CLEANING PROCEDURE FOR COATED MIRRORS

I. Required Supplies:
 a. Two 20-liter, hand-operated, pressure sprayers.
 b. Two liters of reagent grade alcohol.
 c. One tablespoon of Alconox (phosphorus-free detergent soap).
 d. Ten liters of distilled water.
 e. One half liter of acetone or xylene.
 f. Several clean sponges.
 g. Several boxes of lint-free tissues.

II. Cleaning Procedure:
 a. Clean spray containers thoroughly with distilled water and alcohol.
 b. Fill "Rinse" container

 \[
 \begin{array}{c}
 \text{1/2 full distilled water} \\
 \text{1 liter of alcohol} \\
 \end{array}
 \]

 c. Fill "Wash" container

 \[
 \begin{array}{c}
 \text{1/2 full water} \\
 \text{1 teaspoon Alconox} \\
 \text{1/4 liter alcohol} \\
 \end{array}
 \]

 d. Use acetone or xylene to remove any oil stains.
 e. Spray mirror with "Wash" until all loose particles are removed and gently rub surface with wet sponges.
 f. Spray with "Rinse."
 g. Use tissues to tamp surface dry. DO NOT RUB!
PRIMARY MIRROR HANDLING

2.1 & 4 METER TELESCOPES

MIRROR REMOVAL AND INSTALLATION:

1. THE LARGE TELESCOPE MIRRORS ARE REMOVED AND INSTALLED WITH THEIR CELLS ONTO MOBILE HANDLING CARTS.
 a) 4 METER USES THE 4 METER COATING CHAMBER CART.
 b) 2.1 METER USES A SEPARATE CART DESIGN SPECIFICALLY FOR THE TASK.

MIRROR HANDLING FOR WASHING, AND COATING:

1. THE LARGE MIRRORS ARE HANDLED SEPARATELY WITH THE AID OF OVERHEAD CRANES AND CENTER LIFTING FIXTURES FOR MOVING THEM ON AND OFF OF THEIR CELLS, INTO THE CLEANING BAY, AND ONTO THE COATING CHAMBER CARTS FOR ALUMINIZING.
Japanese National Large Telescope

Presentation by M. Nakagiri
an 8-m optical-infrared telescope project

SUBARU
Voyage to the Unknown
Coating Procedure of SUBARU Telescope

1. Outgasing the Vacuum Chamber
2. Lockup the Telescope
3. Carriage Move in under the Telescope
4. Demount the Mirror/Cell
5. Lower the Mirror/Cell on the Carriage
6. Move the Carriage on the Mirror Hatch
7. Lift up the Mirror(Cell)
8. Carriage Move out
9. Lower the Mirror to Vacuum Facility
10. Cleaning, Removal of Coating
11. Cleaning, Drying
12. Put the Mirror in the Vacuum Chamber
13. Vacuum Pumping + Ion Bombardment
 Aluminizing
 Reverse Operation
SUBARU = JNLT's new name for public

- Primary Mirror 8.3m blank 20cm thick supported at 264 points by mach. actuators.
- Coating Plant Aluminizing for 8m blank Sputtering for smaller comp.
 * Mirror with cell in Vacuum Chamber.
 * Horizontal Position
- Cleaning Plant
- Telescope Enclosure designed to house and handle 8m Coating/Cleaning Operations
- Schedule

M. Iye
Mr. N. Ito Principal Engineer (M&Co)
Mr. M. NAKAGIRI Coating Specialist
MIRROR HANDLING PROCEDURE
MIRROR STRESS DURING HANDLING

- Supporting Condition

 ![Diagram showing inside edge and 15 points on outside edge.]

- Stress Calculation

 - Results of FEM using Model without Holes

 Upper Side

 \[0.050 \sim 0.067 \, \text{kgf/mm}^2 \]

 Pad

 Lower Side

 \[0.063 \sim 0.077 \, \text{kgf/mm}^2 \]

 \[\sigma = 0.077 \, \text{kgf/mm}^2 \]

- Effect of Stress Concentration and Lifting Shock

 \[\sigma_{\text{max}} = 0.077 \times 3 \times 2 = 0.46 \leq 0.5 \, \text{kgf/mm}^2 \]

 Lifting Shock (2G)

 Stress Concentration Factor due to Hole

 Allowable Stress (0.05 MPa)
Magellan

Presentation by A. Schier
MIRROR HANDLING FOR RECOATING

6.5 METER HANDLING CONCEPTS:

- All mirror handling done on one level with one transport cart. No cranes, elevators, or frayed nerves.

- Cart runs on rails

- Mirror aluminized in the cell. No removal required.

- Mirror cell and cart are bottom sections of vacuum chamber. Cell stays on cart in same orientation once removed from the telescope.

- Alignment for reinstallation achieved with long guide rails and bullet-nosed pins between the cell and telescope. Cart has adequate compliance.

- Gross vertical positioning via power screw jacks. Final positioning via hand-operated hydraulic jacks.
MIRROR HANDLING FOR RECOATING

PRIORITIES:
(Everything assumes adequate personnel safeguards and a good resulting coating)

- Mirror Security
- Simplicity
- Mechanisms and structures
 Better reliability
 Cheaper fabrication
 Cheaper maintenance
- Operations
 Fewer variables (places for mistakes) in the process
 Fewer trained people required
- Consistent operations/process
 - Few adjustable elements
 - No sensitive adjustments required anywhere
COATING AND COATING EQUIPMENT FOR 6.5 METER

- Process based on currently used techniques (thermal Al evaporation)
- Chamber design:
 - Fixed upper portion, stainless steel
 - Mirror cell and handling cart form lower portion
 - Pumps:
 2 48-inch (55,000 l/sec N₂) cryopumps
 15hp Roots blower
 25hp oil-sealed pump
 - 3 rings of filaments, 336 filaments total, fired all at once
 - 36 getter filaments
 - Simple seal to segregate upper (clean) vacuum chamber from lower chamber
- Priorities: (within the constraint of personnel and mirror safety)
 - Cleanliness
 - Fast deposition of coating
VACUUM CHAMBER ASSEMBLY

- VACUUM PUMP
- 48" CRYO-YL
 (QTY TO BE DETERMINED)

- DETAIL "A"
- 324'0.0'

- DETAIL "B"
- 84' (TOP SECTION)
- 72" MIRROR FILL
- 40" (REF)
- 5' (REF)

- (4) STEEL WHEEL ASSY
 WITH GEARED DRIVE (2) PLAIN
 (50,000# WHEEL RIG.)

VACUUM CHAMBER ASSEMBLY
Pump-Down Curve

p [Torr]

t [min]

2×RPK60000+ 1×RA9001+ 1×RA3001+ 2×S630FII (60hz)
LEYBOLD VACUUM PRODUCTS Inc., Export, PA
21-NOV-1988 /JG/
VLT

Presentation by M. Grössl
VLT MIRROR MAINTENANCE CONCEPT

GENERAL

OBJECTIVES:

- Maintaining High Optical Performance
 - specular reflectance
 - homogeneity
 - long term stability

- Safety
 - personnel
 - mirrors

- Reliability
VLT MIRROR MAINTENANCE CONCEPT

GENERAL

REQUIREMENTS for PRIMARIES (TERTIARIES) exposed to dirty environment

- Broad Band Reflectance ($i < 10^\circ$)
 \(R \geq 86\% \) from 300 nm to 20 \(\mu \)m

- Homogeneity
 better 0 / -1 \%

- in situ optical performance control

- Coating Renewal
- in situ Cleaning

- Standard Coating: Aluminium

- Coating Options:
 - Improved Mechanical Stability
 - Improved Reflectance
VLT MIRROR MAINTENANCE CONCEPT

GENERAL

REQUIREMENTS FOR OTHER MIRRORS placed in environment with contamination control

- Broad Band Reflectance
 \[R \geq 96\% \text{ from } 500\text{ nm to } 20\mu\text{m} \]
 \[R \geq 80\% \text{ from } 300\text{ nm to } 500\text{ nm} \]

- Long Term Stability \(> 15 \text{ a} \)

- Wear (abrasive) Resistant Surface

 - in situ optical performance control

 - in situ Cleaning
VLT COATING RENEWAL
PRIMARIES (AND TERTIARIES)

REQUIREMENTS

- Handling Concept
- Coating Renewal Procedure
 - Coating Removal
 - Mirror Cleaning
 - Coating
- Safety
- Reliability
- Telescope Down Time < 48 hours
- Consumables
- Investment
VLT COATING RENEWAL FOR PRIMARIES

HANDLING CONCEPT

REQUIREMENTS
(Mirror Maintenance Building MMB 1.8 km for from telescopes)

- Procedures
 - Dismounting the Cell from telescope
 - Attachment of Coverage
 - Dismounting M3-Tower
 - Transfer Cell to MMB
 - Dismounting Mirror from Cell
 - Transfer Mirror to Coating Carrier

- Mirrors covered and horizontally face-up during all handling operations

- Handling Devices
 - redundant
 - self-aligning
 - force control for movements

- Reliability, Safety

- Duration: \(\leq 10 \) hours

- Personnel Requ: 2(1) mechanician
 1 mech. operator
 1 controller
VLT COATING RENEWAL FOR PRIMARIES

HANDLING CONCEPT

Out-of-Cell Procedure: ADVANTAGES

- Simple single vacuum vessel
- Minimum vessel volume
 \((\approx 80 \, \text{m}^3 \text{ for substrate } + \text{ carrier})\)
- Consequent high vacuum design of substrate carrier
- Simple long term storage
- High reliable vacuum quality and thus coating quality
- Mirror washing on eye level
- No risk of chemical attack for the cell due to washing
- No vacuum requirements for M-Cell
- No delicate alignment and sealing procedure for the mirror

Out-of-Cell Proc: DISADVANTAGES

- Dismounting the mirrors out of cells
- Mirror handling from cell to carrier
DRAWER CONCEPT: Advantages

- Minimum Volume and vacuum exposed surface in loading section
- Simple Substrate Carrier integrated in vacuum vessel design
- All lubricated elements (wheels, drives, gears, damping elements) on atmospheric side
- Natural barrier against carry-in of dirt from floor
- No vacuum area safety risks for Personnel

DRAWER CONCEPT: Disadvantages

- Contamination risk during washing
- Prolonged air exposition for vac vessel
- Additional vertical movement for closing the coating chamber
VLT 8m Coating Unit
LOADING CONCEPT

DRAWER CONCEPT

VACUUM CONCEPT
VLT COATING RENEWAL FOR PRIMARIES

FILM REMOVAL AND MIRROR CLEANING

CONCEPT

- Cleaning rear and side surfaces
- Automated front side treatment
 - purging away dirt, dust, bird droppings, oil and grease
 - removal of old coating
 - chemical neutralizing
 - drying
- Particle contamination control
 - drying
 - mirror loading in coating plant
- Pre-cleaning prior to coating (in vacuo)
PROCEDURE

- Cleaning rear and side walls, lateral pads, axial tripods:
 - manually with alcohol
 - in lifting area
 - while M1 is hanging, prior to front side treatment

- Crane operation: Setting mirror on Coating Cart, removal of lifting tool and top cover

- Moving mirror into Washing Area (coating carrier on rails)

- Allow recovery of contamination control

- Attachment of Washing Unit (manual)
 - mirror hole plugged tightly by collecting tank
 - Spilling protection on outer mirror edge
VLT COATING RENEWAL FOR PRIMARIES

FILM REMOVAL AND MIRROR CLEANING

PROCEDURE (cont'd)

- Machine process for AI-Coatings
 - Soaking and large dirt removal: o Tap water rinsing, (recycled)
 - Dirt removal, (mechan./chem.) o 3x detergent, 50°C Jet spraying
 - Detergent removal o 2x Tap water rinse o 1x Tap water spraying
 - AI-film removal o 2x NaOH, 5% aqu. rinsing (recycled)
 - Lie residues, O-layers removal o 1x HCl, 5% aqu. + CuSO₄, rinsing
 - Neutralizing 5.5 ≤ pHₜ ≤ 6.5 o 1x buffer (e.g. NH₄OH) o 3x H₂O dist., rinse
 - Drying o 1x Ethanol, rinsing o 2x Ethanol > 96%, rinsing, fresh o air draught support (sucking or blowing)
PROCEDURE (cont'd)

- Motor driven removal of Washing Unit
- Opening contamination control area and loading Coating Unit
- Down-pumping to 1×10^{-3} mbar
- Pre-cleaning by Glow Discharge in air (≈ 0.02 mbar)
MECHANICAL WASHING UNIT:
Advantages

- Minimum wear load on mirror
 - well controlled mechanical purging operation (spraying)
 - homogeneous permanent treatment of surface
 - minimum duration (chemical action)
 - no contact of surface with solids

- stainless drying

- minimum liquid consumption (recycling)

- minimum particle contamination

- safe handling of aggressive chemicals and vapours

NOTE: Process can be fully automatic if no Al droplets have to be removed!
VLT COATING RENEWAL FOR PRIMARIES

FILM REMOVAL AND MIRROR CLEANING

MANAGEMENT PLAN

- Pilot Washing Unit (PWU)
 or ≤ 3.6 m mirrors: Requirements
 - PWU Engineering, external
 - Manufacturing

- Process Development for AI Testing with 3.6m and NTT mirror

- Washing Unit for 8 m mirrors: Requirements
 - WU Engineering, external
 - Manufacturing
 - Installation in MMB

- Process Application and Tuning for VLT 8 m mirrors
CONTAMINATION CONTROL CONCEPT

- Washing in Clean Zone

- Clean Zone
 - completely separated from MMB
 - cleanroom class: \(\leq 5000 \) per cf
 - air exchange rate according to HEPA filters (< MAK requirements)
 - gowning and filter masks (MAK) for personnel
 - starting procedure: complete cleaning and switch on ventilation 3 days in advance

- Proper interface design: Clean Zone / Coating Unit

- Finishing washing with minimum personnel present (automatic removal of Washing Unit, automatic loading)
VLT 8M-COATING UNIT

COATING TECHNOLOGY

Crosssection Clean Zone
Mirror Maintenance Building
Opacity of Aluminium Vapour Deposits

Reflectance [%]

coating thickness [nm]

-0.5%
-1.0%

5461Å

ESO/PGI/07.79
althick
Fig. 26b
Spectral reflectance of opaque metal films at 45° incidence of linear polarized light. (Films produced and measured by Carl Zeiss, FRG).
Spectral reflectance of various opaque metal films obtained at nearly normal incidence of the light beam. The films were deposited by evaporation in high vacuum. (according to Carl Zeiss, FRG).
Fig. 5
Infrared absorption spectra of SiO$_2$ films deposited with (a) and without (b) activation (oxygen ion beam of 200 mA). The absorption spectrum of the latter film exhibit several absorption bands indicating an oxygen deficient film [40].
NEW COATINGS DEVELOPMENT PLAN

- Film layer design
- (small) Sample manufacturing
- Adherence, wear test MIL 13508C (cheese-cloth rubbing)
- Accelerated aging (80°C, 20%RH, 5 x 3 days)
- 1:1 Coating Process Development
- Reflectance Measurement
- Removal Procedure Development
- Film density Check (Pt/C replica)

APPLICATION
VLT 8m-Coating Unit

Coating Technology

Coating Geometry (horiz, face-up)

Film Design, Materials

Film Quality (Thickness, Homogeneity...)

Scale-up Requirements

Film Quality

Vacuum Requirements

Pre-Cleaning

Vac. Vessel Design (dimensions, shape...)

Consumables (Power, Water...)

Small scale Simulation

Price Coating Unit
VLT 8M-Coating Unit
Coating Technology

PVD Techniques used Currently on Production Scale for Optical Coatings

Source type indicated	Substrate conditions indicated

Evaporation
- Resistance heated
- Electron Beam heat
- Low Volt. Arc heat
- Hollow Cathode Arc
- Ion Plating (IP)
 - Activated *
 - * DC, RF Bias *
 - * Reactive *
 - Reactive IP (RIP)

Sputtering
- DC magnetron sp.
- RF sputtering
- RF magnetron sp.
- Ion beam sp.

Activated Reactive Evaporation
Biased ARE
High Rate Reactive Sputtering
DC/RF Bias Sputtering
VLT 8m-COATING UNIT

COATING TECHNOLOGY

COATING by EVAPORATION

- Emission characteristic of source type - coil (or basket) shape filaments

- Source arrangement after J. Strong
 - single source ring \(D_{\text{source}} > D_{\text{mirror}} \)
 - \(D_s \geq 8.4 \) m
 - \(H \geq 4.2 \) m above mirror surface

- Moderate filament load (\(\approx 15 \) mg/cm)
 minimizing droplet formation

- El. Power Requ.: \(\approx 210 \) kW
 no. filaments: \(\approx 400 \)

- Vacuum vessel (coating partition):
 \(D \times H \approx 8.5 \times 5.5 \) m
 Volume \(\approx 300 \) to \(340 \) m\(^3\)
 vac exposed metal surface \(\approx 300 \) m\(^2\)

- Residual pressure: \(< 2 \times 10^{-5} \) mbar

- In vacuo cleaning: Glow discharge

NOTE: Al alloys & wets; W stranded superior. No dielectric materials.
Fig. 53 a
Various types of resistance heated evaporation sources.
Fig. 61 b
Ring shaped glow discharge cathode and electrodes for the spiral shaped Al-evaporators mounted at the top of the metallizing plant.
Mirror Aluminium Coating
by ring evaporators on outer edge

required power [kVA]

80nm: fil/ring
50nm: fil/ring
80nm: power
50nm: power
OBS: power
OBS: fil/ring

0.33 g/fil

filaments/ring

diameter [mm]
Magnetic field and electron path in a planar magnetron.

Shield

Erosion Zones

Anode (grounded)

Cathode body

Permanent magnets

Iron core

Water and d.c. supply
RESIDUAL PRESSURE REQUIREMENTS

Common performance rule for optical coatings:

current density Γ_G < 10% current density of film material Γ_F

\[
\frac{\Gamma_G}{\Gamma_F} = 4.37 \times 10^5 \quad \frac{M_F \ p_G}{\delta_F \ r_D \ \sqrt{M_G \ T_G}}
\]

δ_F............film density [g/cm3]
M_F.............molar mass of film [g/mol]
M_Gmolar mass of gas [g/mol]
p_Gresidual gas pressure [mbar]
T_Ggas temperature [K]
r_Ddeposition rate [nm/s]

Example:

$r_D = 10 \text{ nm/s, } \delta_F(\text{Al}) = 2.7 \text{ g/cm}^3$,
Air $20 \ ^\circ C$

Result: $p_G \leq 2 \times 10^{-5} \text{ mbar}$
Fig. 11
Reflectance of two Al coatings prepared under extremely different evaporation conditions in the wavelength region from 0.22 to 11 microns.
VLT 8M-Coating Unit
Coating Technology

Sputtering: Advantages

- Vacuum vessel height/volume small
 \[H_{\text{Ch-SPUT}} \approx 2.5 \text{ m} \approx 1/2.7 \ H_{\text{Ch-EVAP}} \]
 \[V_{\text{Ch-SPUT}} \approx 150 \text{ m}^3 \approx 1/2.7 \ V_{\text{Ch-EVAP}} \]
- Less foreline pumping capacity
- Low el. power requirement
 \[P_{\text{SPUT}} \leq 1/2 \ P_{\text{EVAP}} \]
- Flexibility in film material
 Multi layer dielectric film stacks
 feasible
- No loading (high target lifetime)
- Reliable automatic process
- Excellent homogeneity (no droplets)
- Small scale simulation feasible
- Price (coating unit, transport, installations)
SPUTTERING: Disadvantages

- Water cooling systems required
- Periodic Cleaning of sources (surroundings)
- Moving parts in vacuum close to mirror surface required
VLT 8m-Coating Unit

Coating Technology

Precleaning (in vacuo)

- By irradiation IR or UV
 - dedicated to substrate
 - dedicated to contamination

- By Glow Discharge
 - efficient
 - versatile
 - inexpensive
VLT 8m-Coating Unit

Pumping

Requirements

- Residual pressure: \(\leq 2 \times 10^{-5} \) mbar
- Working pressure (sputtering): \(\approx 2 \times 10^{-3} \) mbar
- Pumping Duration: \(\leq 4 \) hours
- Reliability (oil backstreaming)

Solutions

- Roughing with roots blower + rotary vane pump to \(\geq 0.08 \) mbar
- High vacuum pumping with High Vac Pump + Meissner Trap:
 - Bath-cryo pump
 - Diffusion pump with LN2 Baffle (Silicon Oil DC 704)
 - Refrigerator cryo pump
 - Throttle position for Sputtering
VLT 8m-Coating Unit

Pumping

Consumables (preliminary)

- Electrical power
 - Foreline pumps: 65 kW
 - Idle (low p): 45 kW
 - Diffusion pumps: 100 kW
 - Bath-Cryo pumps: 0 kW

- Cooling Water
 - DIF System: 125 l/min
 - CRYO System: 5 l/min

- LN2 / 8 hour batch
 - Pumps/Baffles: 600 l
 - Meissner Trap: 1500 l

- LHe / 8 hour batch
 - CRYO: 40(?) l

(first charging not included)
VLT 8m-Coating Unit

Purchase

Management Plan

- Requirements 8m Coating Unit (loading concept, film requ., film quality, [coating technology], power requ., pumping system, precleaning)

- Engineering
- Design
- Manufacturing
- Process Developmmt
- EU Perform. test
- Transport on site
- Weight load tests, witness tests
- Acceptance test with mirror

- Development alternative films
VLT 8m-Coating Unit

Quality Assurance

PLANNINGS

- Activities prior to production
 - starting clean zone
 - 1 test run with witness plates

- Quality Control during production
 - film thickness check (witness)
 - adhesion tape test (at the edge)
 - reflectance measurement (in situ)
 - monitoring selected parameters of sequences for washing and coating
 - final visual observation (dark field illumination)

- Maintenance plan
 - weight load tests
 - cleaning coating equipment
Discussions on Topics for Future Observatories

Mirror Handling for Re-coating S. Prat
Coating and Coating Equipment K. Raybould
Cleaning Mirrors in situ the Telescopes P. Giordano
Mirror Handling for Re-coating

Presentation by S. Prat
VLT site layout

Coating plant now 2 km away
ELEVATOR / TRANSPORTER INQUIRY

- **OBJECT:** M1 Unit
 - **Carriage**
 - mass 8 Tons
 - h 0.7 m
 - 5 m x 8 m
 - steel wheels on rails
 - with lifting platform
 - self propelled
 - mass 40 Tons
 - h 3.3 m
 - top Ø 9 m
 - bottom Ø 5.5 m

- **STATION 1:**
 - 4 x telescope buildings
 - h 5.2 m above ground
 - extraction through opening h 4.2 m w 10 m

- **TRAVEL:**
 - distance 500 m to 2 km
 - stabilized paved road
 - max. slope 10 %

- **STATION 2:**
 - maintenance building
 - same rails or floor as station 1
 - with lifting loading platform

- **REQUIREMENTS:**
 - duration < 4 h
 - elevator is mobile and can be parked away
 - used every 6 months
 - SAFETY is critical:
 - load transfer
 - vertical movement
 - transport
 - failure of 1 element causes no prejudice
 - standard parts for easy maintenance
Self propelled carriage including a lifting platform
SLIDING PLATES SYSTEM
FOR LATERAL ADJUSTMENT
Lifting platform embedded at entrance of maintenance building.
1. GENERAL PREPARATION

* Position telescope
* Lock tube
* Shut down telescope
* Clear floor
* Prepare tracks
* Drive elevator/transporter
* Bring carriage under M1

<table>
<thead>
<tr>
<th>duration</th>
<th>manpower</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H</td>
<td>3</td>
</tr>
</tbody>
</table>

2. PREPARATION OF M1 UNIT

* Disconnect all lines to M1 unit
* Raise lifting platform
* Adjust and attach to M1 cell

<table>
<thead>
<tr>
<th>duration</th>
<th>manpower</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H</td>
<td>3</td>
</tr>
</tbody>
</table>
3. REMOVAL OF M1 UNIT

* Disconnect attachment M1 cell to telescope
* Lower M1 unit
* Slide carriage out of fork
* Install rigid cover

<table>
<thead>
<tr>
<th>duration</th>
<th>manpower</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>4</td>
</tr>
</tbody>
</table>

4. TRANSPORT OF M1 UNIT

* Remove M3 and tower
* Cover hole
* Slide carriage on elevator
* Lower elevator
* Transport to maintenance building

<table>
<thead>
<tr>
<th>duration</th>
<th>manpower</th>
</tr>
</thead>
<tbody>
<tr>
<td>4H</td>
<td>4</td>
</tr>
</tbody>
</table>

END OF FIRST DAY: TOTAL 11 H
5. PREPARATION OF M1 UNIT

- Roll in carriage in the preparation area and align
- Prepare gantry crane and attach to cover
- Install guides on M1 cell
- Disconnect cover from M1 cell
- Remove cover and store

<table>
<thead>
<tr>
<th>duration</th>
<th>manpower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>3</td>
</tr>
</tbody>
</table>

6. PREPARATION OF M1 MIRROR

- Disconnect 64 rods of lateral supports (5 minutes/rod)
- Disconnect lateral fixed point

<table>
<thead>
<tr>
<th>duration</th>
<th>manpower</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 H</td>
<td>3</td>
</tr>
</tbody>
</table>
7. PREPARE HANDLING OF M1

* Bring handling tool attached to crane
* Lower handling tool and guide into position
* Attach the 15 clamps to M1

<table>
<thead>
<tr>
<th>Duration</th>
<th>Manpower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H</td>
<td>3</td>
</tr>
</tbody>
</table>

8. HANDLING OF M1

* Lift M1
* Remove cell
* Roll in the support trolley
* Lower M1 on trolley
* Detach the 15 clamps
* Lift handling tool
* Roll trolley to washing area

<table>
<thead>
<tr>
<th>Duration</th>
<th>Manpower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 H</td>
<td>3</td>
</tr>
</tbody>
</table>

END OF SECOND DAY: HANDLING 6 H + WASHING + PREPARE FOR COATING
M1 COATING

<table>
<thead>
<tr>
<th>PREPARATION TIME</th>
<th>M1 ALONE</th>
<th>M1 IN CELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERAL PREPARATION</td>
<td>2H</td>
<td>2H</td>
</tr>
<tr>
<td>2. PREPARATION OF M1 UNIT</td>
<td>2H</td>
<td>8H</td>
</tr>
<tr>
<td>3. REMOVAL OF M1 UNIT</td>
<td>3H</td>
<td>3H</td>
</tr>
<tr>
<td>4. TRANSPORT OF M1 UNIT</td>
<td>4H</td>
<td>4H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TOTAL DAY 1</th>
<th>TOTAL DAY 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. PREPARATION OF M1 UNIT</td>
<td>11H</td>
<td>15H to 23H</td>
</tr>
<tr>
<td>6. PREPARATION OF M1 MIRROR</td>
<td>3H</td>
<td>4H to 12H</td>
</tr>
<tr>
<td>CELL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. HANDLING OF M1</td>
<td>2H</td>
<td>4H</td>
</tr>
<tr>
<td>PREPARATIONS FOR WASHING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. AFTER WASHING</td>
<td>2H</td>
<td>4H</td>
</tr>
<tr>
<td>9. PREPARE FOR COATING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL HANDLING TIME

- **34 H**
- **58H to 74H**

including re-installation in telescope
12 supports on outer edge
+ 3 # on inner edge

axis of maintenance building

maximum stress in M1: 1.3 MPa
Von Mises stress at bottom surface of M1 mirror

\[
\sigma_{\text{max}} = 1.24 \text{ MPa}
\]
Principal stress at bottom surface

$\sigma_{1,\text{max}} = 1.04 \text{ MPa}$
Coating and Coating Equipment

Questionnaire by K. Raybould
CLEANING MIRROR PRIOR TO COATING

"Coating Clean" often means \underline{absence of detrimental impurities} ...

INITIAL CLEANING - uncoated mirror

- Optician's residue, oxides
- Exotic dust particles
- Chemical residue from stripable protection

WASHING BEFORE STRIPPING -

- CO2 Cleaning
- Long soaking vs multiple washes
- Degreasing spots; acetone vs.

SAFETY ATTIRE?

Options in STRIPPING CHEMISTRY (assume Aluminum Oxide or Silver/copper or chrome)

- Empirical or analytical derived
- Short-cut to Stripping?
- How much rubbing is too much
- Alternatives to 'manual scrubbing/wiping
- Removing the last traces of old aluminum, cleaning bevels & edges. important?
CLEANING (cont.)

SAFETY

NITRIC ACID WASH -
- Alternate de-greaser
- Viable alternative to Glow Discharge?
- Multiple wash cycles
- SAFETY CLEANUP?

RINSE

- Filtered tap H₂O vs De-mineralized vs Steam Distilled
- How much & how long?
- Mechanical scrubbing / wiping?

DRYING

- Towels vs Chamois vs __________
- Blow drying, nitrogen

FINAL CLEANING (Electrostatic de-izer(s))
- Distilled water only or preservative
- Solvents; safety, residue
- Alternatives to most volatile,
 Iso. & alcohol with very low water
- Verification &/or Test of ‘Coating Clean’
 Indicators: ‘Black Breath pattern(s)
 Wipping friction
 High intensity light…

Drying only washing.
Electrical Discharge Method(s)

- To Glow or not to Glow
 - Why not?
 - What are the cost / risks?

- Optimum Gas, pressure level, duration

- Oxygen essential?
- Limitation of 'Glow discharge'

How well did you do?

- Reflectivity / emissivity
- Adhesion
 (Mil Spec. 'Scratch test')
- Visual inspection
 Visual/visible importance of defect
Presentation by B. Mack
Integration / external

- CO₂ Snow technique
- Quality Control techniques
 1. Reflectometers
 2. Scatterometers
- Eximer Laser Cleaning
- Other plans for cleaning in situ.
4.2 m. 120 nm. ± 2 1/2%

Time - 12-15 Seconds.
Power - 125 kVA.

8.2 m. 120 nm ± 2 1/2%

Time - ?
Power - 200-300.

2 m → 4 m → 8 m.

Is this possible.

Are there easier alternatives.
FIG 7: Types of magnetron installation

INTERNAL MOUNT

EXTERNAL MOUNT

Scale bar in mm
(1) **Diffraction, spike**
(2) **Quality of coating thickness**
(3) **Reflectivity**.
(4) **Adhesion**.
Move Magnetron
or Move Mirror

Speed = \(\frac{1 \text{ m}}{\text{min}} \)

8 m mirror 25 m.

2 revs/hour.

Mask Control.
EVAPORATION SOURCE

8m MIRROR ALUMINISING TANK USING EVAPORATION

Figure 2
SECTION B-B

SECTION A-A

4.2m ALUMINISING TANK
WITH SPUTTERING TEST EQUIPMENT
APP II Figure 6
A spherical surfaced mirror with a radius of curvature of approximately 250mm and a diameter of 150mm was used for this test. The mirror has a central hole, with a linear extent of one third the diameter of the mirror, which allowed the radial deposition of the sputtered coating as proposed for the 8m mirror.

The mirror surface was checked, in its uncoated state, using a scatter plate interferometer with a helium neon laser as the source of illumination. The resultant fringe pattern was photographed and analysed using WISP software. The test was set up twice with the fringes running in two directions, at 90 degrees to each other, across the mirror. The mirror surface is of good quality with localised surface deviations at the lambda/8 level and RMS deviations of 0.04 lambda (see Figure 1).

Tests of two sputtered coatings were undertaken. The first set (tested 30th May 1990) was on a coating which showed a band of reduced reflectivity at the overlap region where the sputtering source was switched on and off. The interferometer was set up with fringes running both perpendicular and parallel to this band to look for a step function or slope in the reflected wavefront which might be associated with this feature. The uniformity of the fringes limit such an effect to the lambda/8 level and the RMS values from the measurements are again at the 0.04 lambda level (see Figure 2).

The second test was of the surface produced by the sputtering run made on the 11th September 1990 when the magnetron was powered off with a ramp-down voltage. The area of reduced reflectivity was much smaller and could only just be detected under close inspection. A similar set of fringes to the previous tests were produced, again looking for distortions in the reflected wavefront arising from the overlap region in the coating (see Figure 3). As with the previous test no noticeable localised fringe shifts are present and the measured RMS values are still about 0.04 lambda.
Figure 1: Tests of uncoated spherical mirror.
Figure 2: Tests of sputtered aluminium coating. Direction of overlap region marked with arrow.
Figure 3: Tests of sputtered aluminium coating with magnetron ramp-down. Direction of overlap region marked with arrow.
A spherical surfaced mirror with a radius of curvature of approximately 250mm and a diameter of 150mm was used for this test. The mirror has a central hole, with a linear extent of one third the diameter of the mirror, which allowed the radial deposition of the sputtered coating as proposed for the 8m mirror.

The mirror surface was checked, in its uncoated state, using a scatter plate interferometer with a helium neon laser as the source of illumination. The resultant fringe pattern was photographed and analysed using WISP software. The test was set up twice with the fringes running in two directions, at 90 degrees to each other, across the mirror. The mirror surface is of good quality with localised surface deviations at the lambda/8 level and RMS deviations of 0.04 lambda (see Figure 1).

Tests of two sputtered coatings were undertaken. The first set (tested 30th May 1990) was on a coating which showed a band of reduced reflectivity at the overlap region where the sputtering source was switched on and off. The interferometer was set up with fringes running both perpendicular and parallel to this band to look for a step function or slope in the reflected wavefront which might be associated with this feature. The uniformity of the fringes limit such an effect to the lambda/8 level and the RMS values from the measurements are again at the 0.04 lambda level (see Figure 2).

The second test was of the surface produced by the sputtering run made on the 11th September 1990 when the magnetron was powered off with a ramp-down voltage. The area of reduced reflectivity was much smaller and could only just be detected under close inspection. A similar set of fringes to the previous tests were produced, again looking for distortions in the reflected wave front arising from the overlap region in the coating (see Figure 3). As with the previous test no noticeable localised fringe shifts are present and the measured RMS values are still about 0.04 lambda.
Figure 1: Tests of uncoated spherical mirror.
Data Points

Figure 2: Tests of sputtered aluminium coating.
Direction of overlap region marked with arrow.
Figure 3: Tests of sputtered aluminium coating with magnetron ramp-down. Direction of overlap region marked with arrow.
Cleaning Mirrors
in situ the Telescopes

Presentation by P. Giordano
OPTICAL MAINTENANCE

Objectives:
- Maintain high level of efficiency
- Increase the lifetime of coatings and optical surfaces by reducing the frequency of handlings.

Means:
Preventive actions:
- Have to be developed in the conceptual phase
 - Dome design (Outside - Inside) to satisfy cleanliness requirements.
 - Dust tight covering of M1 and M3 mirrors
 - Overpressure in the volume - clean air (dust - condensation).

Curative actions:
- In-Situ cleaning based on the CO2 snow flakes technique
- In-Situ and fully incorporated on the Telescope.
3. **Dust Monitoring**:
 - Scattering measurements,
 - Dewpoint meter (CO₂ Snowflakes),
 - Optimization of cleaning frequency

4. **Pilot project**:
 - Manual cleaning of all the La Silla's telescopes - CO₂ Snow - periodicity 1 month.
In-situ cleaning for the VLT

1.1.1 Sensitivity

Past experience at La Silla shows that the average loss of reflectivity is of the order of 10% per surface and per year. For a three-mirrors telescope (e.g. Nasmyth) the total loss per year is estimated to be of the order of 20% (it is assumed that because of its usual orientation the secondary mirror is less affected) i.e. 1.8% per month. Therefore the reflectivity \(R \) \(N \) months after coating, should be

\[
R = R_0 0.982^N
\]

where \(R_0 \) is the initial reflectivity after coating. The loss of reflectivity is equivalent to a reduction of the light collecting area of the telescope. The consequence on the effective diameter of the telescope is shown in the table hereafter, under the assumption that dust contamination is the only contributor to signal reduction.

<table>
<thead>
<tr>
<th>Months after coating</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Diameter</td>
<td>8000</td>
<td>7790</td>
<td>7580</td>
<td>7370</td>
<td>7170</td>
<td>6980</td>
<td>6790</td>
<td>6610</td>
<td>6430</td>
</tr>
</tbody>
</table>

A loss of reflectivity of 20% after one year also means that even under good seeing conditions (0.4 arc seconds) where optical quality should be the limiting factor (and, where best scientific results are expected), the dust contamination reduces the performance by the same amount as optical quality.

With a monthly cleaning procedure which would compensate for 90% the loss of reflectivity due to dust contamination the evolution of the effective diameter of the telescope would be as follows

<table>
<thead>
<tr>
<th>Months after coating</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of reflectivity</td>
<td>((1)) 0</td>
<td>10%</td>
<td>20%</td>
<td>28%</td>
<td>35%</td>
<td>10%*</td>
<td>20%*</td>
<td>28%*</td>
<td>35%*</td>
</tr>
<tr>
<td>((2)) 0</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Effective Diameter</td>
<td>((1)) 8000</td>
<td>7580</td>
<td>7170</td>
<td>6790</td>
<td>6430</td>
<td>7580*</td>
<td>7170*</td>
<td>6790*</td>
<td>6430*</td>
</tr>
<tr>
<td>((2)) 8000</td>
<td>7960</td>
<td>7910</td>
<td>7870</td>
<td>7830</td>
<td>7790</td>
<td>7740</td>
<td>7700</td>
<td>7660</td>
<td></td>
</tr>
</tbody>
</table>

Loss of reflectivity and effective diameter with and without in-situ cleaning procedure. \((1) \): without cleaning; \((2) \): with cleaning. *without in-situ cleaning, recoating is supposed to take place after 2 years.

The conclusion is that monthly cleaning which would compensate for 90% the loss of reflectivity due to dust pollution would allow to keep the signal throughput above 92% of the ideal situation (fresh coating) with a four month interval before recoating.
Figure 1: Typical Measurement Head

\[\mu \text{scan scatterometer} \]
TMA μScan: TEST SENSITIVITY

KEY

1. CLEAN MIRR
2. 89h EXPOSU
3. AVER VALUE
4. CLEANED MI

Measurements

[Graph showing measurements over time with key points marked as 1, 2, 3, and 4.]
COMMENTS:
REFERENCE MIRROR MT4: Exposed 89 hours to dust pollution

SOURCE INFORMATION:
Wavelength = 670 nm Incident Angle = 25.0 degrees
RMS ROUGHNESS BANDWIDTH LIMITS:
[0.010, 1.000] 1/\mu m

MEASUREMENT SUMMARY:

<table>
<thead>
<tr>
<th>#</th>
<th>TIME</th>
<th>DATE</th>
<th>REFLECT</th>
<th>RMS</th>
<th>TIME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>08:52:01</td>
<td>06-24-1991</td>
<td>4.314E-05</td>
<td>91.7</td>
<td>08:52:01</td>
<td>06-24-1991</td>
</tr>
<tr>
<td>3</td>
<td>08:52:10</td>
<td>06-24-1991</td>
<td>5.239E-05</td>
<td>91.7</td>
<td>08:52:10</td>
<td>06-24-1991</td>
</tr>
</tbody>
</table>

STATISTICAL SUMMARY:

<table>
<thead>
<tr>
<th>MINIMUM</th>
<th>MAXIMUM</th>
<th>LINEAR</th>
<th>LOGARITHMIC</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
<th>LINEAR</th>
<th>LOGARITHMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>4.090E-05</td>
<td>1.328E-04</td>
<td>8.619E-05</td>
<td>3.198E-05</td>
<td>8.043E-05</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>180.0</td>
<td>2.465E-05</td>
<td>8.144E-05</td>
<td>4.957E-05</td>
<td>1.560E-05</td>
<td>4.739E-05</td>
<td>0.1</td>
</tr>
<tr>
<td>90.3</td>
<td>91.7</td>
<td>91.6</td>
<td>0.4</td>
<td>91.6</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>8.3</td>
<td>6.4</td>
<td>1.3</td>
<td>6.3</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurements = 10
PSF (with 13.4 rms surface roughness)
LOG FLX/AREA

BRDF

Dirty mirror 8.2×10^2

Clean mirror 5.3×10^4

1 = composite / 2 = signal psf / 3 = scatter psf

$\sigma = 13.4 \text{ nm}$

$\sigma' = 1.2 \text{ nm}$

100.E-3

ASAP/rabet
8-0CT-91 09:20
CLEANING TECHNIQUES: TESTS

KEY
- FRESH AL
- Peeling
- CO2 Snow
- DUSTY

Fig 1

(Chart showing efficiency and wavelength measurements)