(EeNeNeld O O O 2

v O |

L z<3¢ :
D :

2 0

— | Y 6 S P8 I -

O T

Vo 2ise

ESO OPERATING MANUAL NO.

ESO-MIDAS User Guide

Volume A: System

LES-
0
+

MIDAS Release 95INOV

Reference Number: MID-MAN-ESO-11000-0002

L Section Title Date
Chapter 1 Introduction 1-November-1995
Chapter 2 Cook-Book 1-November-1991
Chapter 3 Monitor & Syntax 1-November-1995
Chapter 4 Data Structures NA
Chapter 5 Table File System 1-November-1992
Chapter 6 Graphics & Image Display 1-November-1994
Chapter 7 Data Exchange Format 1-November-1993
Chapter 8 Fitting of Data 15-January-1988
Appendix A | Command Summary 1-November-1995
Appendix B | Acknowledgements 1-November-1995
Appendix C | Site Specific Implementation | 1-November-1995
Appendix D | Release Notes 1-November-1995

EUROPEAN SOUTHERN OBSERVATORY

Data Management Division

Karl-Schwarzschild-Straie 2, D-85748 Garching bei Miinchen

Federal Republic of Germany

Contents

1 Introduction 1-1
1.1 How to use the MIDAS Manual 1-1
1.I.1. New Users. o o e e e 1-2

1.1.2 Site Specific Features.o 1-2

1.2 General Concept of MIDAS L 1-2
1.3 Distribution Policy e 1-3
L4 Support e e 1-3
1.5 Requirements for Running MIDAS 1-4
1.5.1 Hardware e e e 1-4

1.5.2 Software e 1-5

1.6 Other Relevant Documents 1-6
2 Cook-Book 2-1
2.1 Terminology L e 2-1
2.2 Commands e e 2-2
2.3 Getting Started e 2-3
2.3.1 Simple MIDAS Session e 2-3
2.3.2 Exitand Logout 2-10
2.3.3 Executing System Commands 2-11
2.3.4 Some Useful Commands 2-11

3 Monitor and Command Language 3-1
3.1 Starting the MIDAS Monitor32
3.2 MIDAS And the Host Operating System35
3.3 MIDAS Data Structures oo e e 3T
3.3.1 Specifying a Descriptor L Lo oo 3-8
3.3.2 Specifying Keywords o oL 3-9
3.3.3 Specifying Elements in a Table310
3.3.4 Specifying PixelsinanImage311
3.3.5 Specifying Sub-Image 0. 0311

3.4 Command Syntax. v v v v i i e e e e e e e e e 3112
3.4.1 Command Recalling314
3.4.2 Command Line Editing315

iii

3.4.3 Command Line Suspension316

344 On-LineHelp 3-16
3.4.5 Input/Output Redirection in Midas318
3.5 Execution of Commands319
3.6 MIDAS Command Language 3-20
3.6.1 Passing Parameters in MIDAS Procedures322
3.6.2 Symbol Substitution in Command Procedures326
3.6.3 DOLoops o e e e e 3930
3.64 Local Keywords. 331
3.6.5 Conditional Statements, Branching332
3.6.6 Special Functions335
3.6.7 Interrupting Procedures 33T
3.6.8 Entry pointso oo 338
3.7 Context Levels 03440
3.8 Running a Program within MIDAS341
3.8.1 Debugging of Procedures and Modules342
3.9 Catalogsin MIDAS 343
3.9.1 Using Catalogs in MIDAS Procedures344
3.10 Adapting MIDAS to your personal needs345
3.11 MIDAS User Levels e .. 346
Data Structures 4-1
Table File System 5-1
5.1 Tables in Image Processing 5-1
5.2 Structureof Tables L 5-2
5.3 Input/Output of Tables 5-3
5.4 Managementof Tables L oo 5-3
5.4.1 Definition of Tables e 5-3
5.4.2 Displaying Tables. L 5-4
5.4.3 Modification of Tables 5-4
5.4.4 Interactive Editing of Tables 5-5
5.5 Operationson Tables, 5-8
5.6 Command Overview i ittt 5-8
5.6.1 List of Commands, 5-9
5.7 Table Format Files o 5-9
5.8 Example e 5-12
Graphic and Image Display 6-1
6.1 Graphic Facilities e 6-1
6.1.1 Introduction 6-1
6.1.2 Graphic Devices 6-2
6.1.3 General Commands 6-3

6.1.4 Plot Commands i i e e 6-5

6.1.5 Graphic Cursor Commands 6-10

6.1.6 Handling of Plotfiles 6-12
6.1.7 Bncapsulated PostScript Files L. 6-13
6.1.8 Examples e e e e e e 6-14
6.1.9 Command Summary« c o it vt e e e e e e 6-14
6.2 Image Displays o e 6-16
6.2.1 IP8B00 display o o o e e 6-16
6.2.2 XWindow displayo 6-21
6.2.3 Image Hardcopy 6-25
Data Exchange Format 7-1
7.1 FITS Format e e e e e s e e 7-2
7.1.1 Structure of FITS files o o o L. 7-2
7.1.2 FITS data~types and extensions o 7-2
7.1.3 FITS keywords« . . i i e 7-3
7.1.4 Restrictions e e e e e e e -7
7.2 ITHAP Format e 7-7
7.2.1 Translation of IHAP header 7-7
7.2.2 Restrictions e e e e 7-7
7.3 Conversion between FITS and internal format 7-8
7.3.1 Devices e e e e e e 7-8
7.3.2 Filenaming o o o 7-9
733 Reading FITS. o o 7-9
7.3.4 Writing FITS o o e 7-10
Fitting of Data 8-1
8.1 Outline of the Available Methods 8-1
8.1.1 The Newton—Raphson Method. 8-3
8.1.2 The Modified Gauss—Newton Method. 8-3
8.1.3 The Quasi-Newton Method.., 8-4
8.1.4 The Corrected Gauss—Newton No Derivatives. 8-5
8.2 Function Specification o o e 8-5
8.3 External Functions e 8-6
8.4 The Fitting Process. e 8-9
8.5 Outputs o L e e e e e 8-10
8.6 Tutorial e e e e e e 8-11
8.7 Command SUINIMATY . . « .« v v v v e e e e e e e e e e e e e e 8-12
8.8 Basic Functions e 8-12
8.8.1 Polynomials (ID and 2D) 8-12
8.8.2 Logarithmic and Exponential Function 8-12
8.8.3 Trigonometric Functions L. 8-13
8.8.4 Sinc and Sinc Square e 8-13
8.8.5 Distributions 8-14
8.9 References L e e 8-14

A Command Summary : A-1

Al
A2
A3

A4

Core Commands e A-1

Application Commands Lo A-21
Standard Reduction Commands A-23
A3l do ..o e A-23
A3.2 echelle e A-24
A3 drac2 . .. e A-27
AB4 drspec . .o e e e e A-27
A35 long e e A-29
A3.6 optopus L. e e e e e e e A-31
AZT PISCO . o L e e e A-32
A8 spec ... e e e e e A-32
Contributed Commands A-33
A4l astromeb. Lo e e A-33
Ad2 coud ..o e A-33
A43 daophot A-33
Add esolv . . oL e A-33
A4D geotest. L e A-34
A46 dnvent e e A-34
AAT mva ... e e A-34
A48 PePsYs . . o i e e e e e e A-35
A49 romafot L A-35
A4 10 surfphot L e A-37
B - A-37
Procedure Control Commands. A-38
Commands Grouped by Subject 0. A-39
A.6.1 MIDAS System Control A-39
A.6.2 Help and Information A-40
A.6.3 Tape Input and Output e e A-40
A.6.4 Image Directory and Header A-40
A6.5 ImageDisplay A-40
A.6.6 Graphics Display A-41
A.6.7 Image Coordinates A-42
A.6.8 Coordinate Transformation of Images A-42
A.6.9 Image Arithmetic o o o oo o A-42
A6.10 Filtering A-43
A.6.11 Image Creation and Extraction A-43
A.6.12 Transformations on Pixel Values A-43
A.6.13 Numerical Values of Image Pixels A-43
A.6.14 Spectral Analysis e A-44
A.6.15 Least Squares Fitting A-44

A.6.16 Table File Operations A-45

B Acknowledgements B-1

B.1 General e e e e e B-1
B.2 Packages and Commands B-1
B.3 Libraries e e e e e e e B-2
B.3.1 AGL . . . o e B-2
B.3.2 IDI. . . e e B-2

B.4 Manual e e e e e e e B-2
C Site Specific Implementation C-1
C.1 HardwareSetup. i C -1
C.I.1 UNIX Workstations C-1
C.1.2 Printer and Plotter QueuesC -1
C.1.3 X11 Window Systems . . . v v v v v v i e e e e e e e C-2
(C.1.4 Film Hardecopy & . o o i i e e e e e C-2
C.1.5 Tapel/O .. . o o o C-2

(.2 Operating Systems o e C-4
C.2.1 Login Procedures C-4

C.3 Data Format CompatibilityC -5
D Release Notes D-1
D.1 Current Status 0 i i e e e e e e e e e e e e e D-1
D.2 Imstallation e D-1
D.3 Software Modifications D-2
D.4 Manual Updates v i i i o e e e D-2

D.5 Useof NAG Library o o D-3

List of Figures

1 Layout of the Table Editor Left Keypad
5.2 Layout of the Table Editor Right Keypad

viil

List of Tables

NS o
NS —

@ Lo
[N

52 B S 2 B2 B
Tt o W N =

2 I B |
©O© o~ >

D

D
S R

o o
S RS

NN
WAy

=1
W

-~J
(o)

3.1
8.2

List of Tutorials o e e 2-11
List of Often Used Commands 2-12
Help Features 3T
Special Functions available for operations on keywords 3-36
Conversion between ASCII Files and MIDAS Tables 5-3
Commands to Define Tables 5-4
Commands to Display a Table. L. 5-4
Commands to Modify aTable 5-5
Commands to Transfer Table Data 5-5
Table Editor COMMAND Functions 5-6
Layout of the Table Editor Central Keypad 5-6
Operations on Table Data 5-9
Table Commands e 5-10
Supported Devices L 6-3
SET/GRAPHIC Options o v i i s e et e e e e 6-6
Meta Character in AGL and MIDAS 6-9
TgX-like Characters for text strings in MIDAS Graphics 6-11
Graphic Commands L 6-15
Relation between FITS and MIDAS data types 7-3
Relation between FITS Extensions and MIDAS frame types 7-3
Name translation between standard FITS keywords and MIDAS descrip-

tors. Asterisk indicates that data value is transformed (see text). 7-4
Name translation between special non-standard FITS keywords and MIDAS

descriptors. L L L e e e 7-5
Levels defined for ESO hierarchical FITS keywords and the abbreviations

used for the translations to MIDAS descriptor names 7-6
Name translation between IHAP header and MIDAS descriptors. Asterisk

indicates that the value is transformed (see text). 7-8
Basic Fit Functions o 8-6
Fitting Commands e 8-13

Chapter 1

Introduction

ESO-MIDAS 'is the acronym for the European Southern Observatory - Munich Image
Data Analysis System which is developed and maintained by the European Southern
Observatory. The official name, ESO-MIDAS, is a registered trademark. In this manual
the name MIDAS is used as an abbreviation of ESO-MIDAS. The MIDAS system provides
general tools for image processing and data reduction with emphasis on astronomical
applications including special reduction packages for ESO instruments at La Silla. The
system is available for both VAX/VMS and UNIX systems.

A large number of contributions have been made to MIDAS by people inside and
outside ESO. We greatly appreciate and acknowledge these efforts. A full list of acknowl-
edgements can be found in Appendix B.

This manual gives the necessary information to do useful data reduction with the
system, whereas a detailed technical description of the design and software interfaces can
be found in other documents (see Section 1.6). These documents also describe how users
can write and add their own application programs to the system.

1.1 How to use the MIDAS Manual

This document is intended to be a description of how to use the various facilities available
in the MIDAS system. The manual consists of three volumes:

Volume A: describes the basic MIDAS system with all general purpose facilities such
as MIDAS Control Language, data input/output (including graphics and image dis-
play), table systemm (MIDAS Data Base). A summary of all available commands as
well as site specific features are given in appendices.

Volume B: describes how to use the MIDAS system for astronomical data reduction.
Application packages for special types of data or reductions (e.g. long slit and
echelle spectra, object search, or crowded field photometry) are discussed assuming
intensity calibrated data. A set of appendices gives a detailed description of the
reduction of raw data from ESO instruments.

'"Trade-mark of the European Southern Observatory

1-1

1-2 CHAPTER 1. INTRODUCTION

Volume C: gives the detailed description for all commands available.

It is intended that users will mainly need Volume A for general reference. For specific
reduction of raw data and usage of special astronomical packages, Volume B will be more
informative. A printed version of the MIDAS help files is available in Volume C. Users
are recommended to use the on-line help facility which always gives a full up to date
description of the commands available.

1.1.1 New Users

To be able to use MIDAS, it is a great advantage to have some basic knowledge of computer
systems such as how to login, use of the file editor and simple system commands. Such
instructions can normally be found in local system documentation or in Appendix C of this
volume. After having acquired this knowledge, new users should read Chapter 2 carefully.
This will give a basic introduction to the MIDAS system with some examples.

1.1.2 Site Specific Features

MIDAS is used at many different sites on a large variety of configurations. The main part
of this manual does not refer to special configurations or hardware devices. Site specific
implementations and details of the'local installation can be found in Appendix C.

1.2 General Concept of MIDAS

The MIDAS system is built along lines which should allow easy integration of complex
analysis algorithms as well as allowing greater flexibility in interactive use and in the cre-
ation of user specific procedures from the basic building blocks. The first design proposal
for MIDAS, made late 1980, used some ideas from the UK STARLINK project for the
software interface definitions. The present version which became available in 1984 follows
a similar philosophy in its application program interfaces, but has been expanded to the
new Standard Interfaces which have a broader base than previously.

MIDAS has benefitted greatly from the experience gained at ESO using the Hewlett-
Packard based image processing system IHAP (see F. Middelburg, [HAP Manual, ESO
1985). Not only have many of the internal design features such as “world coordinates”
been incorporated, but also the command language has been designed in such a way that
it is similar to the basic philosophy of IHAP.

The MIDAS system can be run in both an interactive and a batch mode. In addition,
the interactive user will be able to create batch jobs which will run in parallel with the
interactive work.

MIDAS is based on three sets of general interfaces for application programs to data
structures, namely: a) the “Standard Interfaces” for general 1/O and image access, b) the
“Table Interfaces” for access to table structures, and the “Graphics Interfaces” for data
representation in graphical format. These interfaces allow easy integration of application
programs into MIDAS. To provide a portable system a layer of OS-routines have been

I-November—1995

1.3. DISTRIBUTION POLICY 1-3

used to shield MIDAS from the local operating system. These routines may only be used
at lowest levels and are not available for normal applications.

To facilitate easy implementation of different graphic and display devices, MIDAS
has adopted a set of device independent interfaces for plotting and image display. All
plotting routines in MIDAS are based on the ASTRONET Graphic Library, developed
and maintained by the italian ASTRONET. Further, the image display applications are
using the Image Display Interface routines defined in collaboration with ST Scl, UK
STARLINK, KPNO and Trieste Observatory.

1.3 Distribution Policy

The MIDAS system is available, free of charge, to all non—profit research institutes, whereas
other organisations or companies may be charged a nominal fee to cover distribution. Insti-
tutes interested in using MIDAS must sign a User Agreement before they receive MIDAS.
The necessary forms can be obtained by contacting the Data Management Division at
ESO/Munich. MIDAS is distributed in source code copyrighted by ESO with all rights
reserved. Institutes receiving the MIDAS system are not allowed to redistribute it to other
sites without explicit written permission from ESO. The use of the MIDAS system for data
reduction should be properly acknowledged in papers and publications. It is recommended
to refer to the specific MIDAS version used, e.g. 95NOV, in the acknowledgement.

The availability of new releases is announced through electronic mail. Requests can
be submitted either on special MIDAS Request Forms or through e-mail quoting the user
agreement number. Currently, MIDAS has one yearly release in November (e.g. the release
in 1995 is will be named 95NOV). The current system at ESO/Munich is frozen several
months prior to the official release. The official release is based on this version, which
is extensively tested both at ESO and at a number of f-test sites. Problems detected
during these tests are corrected in the official release version which is then given free for
distribution. For institutes with internet access, the release can only be obtained from the
MIDAS ftp account with a password (on an exceptional basis it is also available on tape).
Institutes without internet access can request MIDAS on a range of tape media.

Binary copies of ESO-MIDAS (already installed and without sources) for specific sys-
tems are publicly available in the anonymous ftp account and do not need the signing of an
ESO-MIDAS User Agreement. Official user support and documentation service from ESO
for these binary copies are however not granted without a prior signed User Agreement.

Updates of the manual and other documentation take somewhat longer to prepare and
print and can be obtained from the anonymous ftp account. Only in extreme cases, e.g.
in cases where an Internet connection is absent, copies and updates of documentation can
be obtained by writing to the Data Management Division at ESO/Munich.

1.4 Support

The MIDAS system is supported in a variety of ways. If people encounter problems which
cannot be solved locally (e.g. through the manual) they can use the MIDAS Hot—Line

1-November—1995

1-4 CHAPTER 1. INTRODUCTION

service, This service will provide answers to MIDAS related questions received through
the following list of electronic mail and telex addresses:

e uucp: midas@eso.uucp

e internet: midas@eso.org

e span: eso::midas

e Telefax: +49 89 32006480 (attn.: MIDAS HOT-LINE)
o Telex: 528 282 22 eo d (attn.: MIDAS HOT-LINE)

Requests and questions are acknowledged when received and processed as soon as pos-
sible, normally within a few days. Users are also strongly encouraged to send suggestions
and comments via the MIDAS Hot—Line.

In urgent cases, users can use a special MIDAS Support telephone service at ESO on
the number +49-89-32006-456. This line is connected to the MIDAS Users Support which
is able directly to answer questions concerning MIDAS or investigate the problem in more
complicated cases. Although this telephone service is available we prefer that questions
or requests are submitted in writting via the MIDAS Hot—Line. This makes it easier
for us to process the requests properly. A database with problem reports and answers
is available for interogation using the STARCAT utility at ESO. General information
concerning the MIDAS system should be addressed to User Support Group, European
Southern Observatory, Karl-Schwarzschild-Strafle 2, D-85748 Garching bei Miinchen (attn:
Midas Support).

Besides these support services, a newsletter, the ESO-MIDAS Courier, is issued twice a
year. The ESO WWW Xmosaic server may be accessed for up-to-date information about
ESO-MIDAS via URL “http://http.hq.eso.org/midas-info/midas.html”.

1.5 Requirements for Running MIDAS

MIDAS can run on computers with either VAX/VMS? or UNIX? operating systems. De-
tails of hardware and software requirements for MIDAS are listed below.

1.5.1 Hardware

e Computer system: any system which can run either VAX/VMS or UNIX operating
systems. MIDAS implementations have been made on a large number of systems
from vendors e.g. VAX stations, DEC stations, SUN SPARCstations, HP 700 series,
IBM RS/6000 systems, PCs. The availability for a specific system can be checked
by asking the MIDAS Hot-line.

e Memory: depending on the number of users of the systems but normally at least 8
Mbyte. A physical memory that is too small may significantly reduce the perfor-
mance due to swapping of data to disk.

2Trademarks of Digital Equipment Corporation
3Trademark of AT& T

1-November—1995

1.5. REQUIREMENTS FOR RUNNING MIDAS 1-5

e Disk: the full MIDAS system requires of the order of 100 Mbyte of disk storage
depending on the type of CPU. During installation an extra 10 Mbyte should be
available for temporary files such as object code. The size of the system can be
reduced in three ways: a) source files can be deleted after implementation, b) help-
files can be removed if on-line help is not required, and c) parts of the system
which are not used (e.g. crowded field photometry or echelle packages) need not be
loaded. Implementations using shared libraries are available on some systems (e.g.
SPARCstations and PCs). This reduces the needed disk space significantly.

A typical disk size for a single user system is approximately 200 Mbyte assuming 60
Mbyte for the operation system, 80 Mbyte for MIDAS, and 50-100 Mbyte for a user
with 2—dimensional data.

o Terminals: any alpha-numeric terminal can be used. MIDAS can either work in a
simple line-by-line mode or provide special features such as line editing by using a
terminal definition file for special terminal features.

e Graphic display: the graphics software of MIDAS uses the device independent plot-
ting library AGL * made by the italian ASTRONET. Drivers for a significant number
of different devices are available e.g. Tektronix 4010/4015, X Window System, ver-
sion 11 and PostScript (see a complete list in Chapter 6). It is possible to write
drivers for devices for which none exist (see the AGL driver manual).

e Image displays: MIDAS uses the Image Display Interfaces which provides a general
interface to image display devices. IDI-routines are available for DeAnza IP 8500
and X Window. X Window System, version 11, will be supported as the general
interface to workstations. Other devices can be used if an appropriate set of IDI-
routines are written. A list of currently available IDI-routines can be obtained from
the User Support Group.

1.5.2 Software
e System: VAX/VMS or UNIX operating systems.

e Compilers: C- and FORTRAN-77 compilers (a FORTRAN-to-C convertion package
may be used instead of a FORTRAN-77 compiler).

e Libraries: AGL is used for all plotting in MIDAS. This library is normally available
on the release media but can also be obtained from the Italian ASTRONET (free of
charge for non-profit research institutes).

NAG?® is used in a few packages such as fitting. It is under license and can be
purchased from the Numerical Algorithms Group. MIDAS can be installed without
this library in which case some commands will be unavailable.

* Astronet Graphical Library made by the Italian ASTRONET
SNAG made by Numerical Algorithms Group

I-November-1995

1-6 CHAPTER 1. INTRODUCTION

1.6 Other Relevant Documents

There are several other documents relevant to the MIDAS system. General descriptions
of the system can be found in the following references:

e Banse, K., Crane, P. Ounnas, C., Ponz, D., 1983 : ‘MIDAS’ in Proc. of DECUS,
Zurich, p.87

e Grosbgl, P., Ponz, D. , 1985 : ‘The MIDAS Table File System’, Mem.S.A.It. 56,
p.429

e Banse, K., Grosbgl, P., Ponz, D., Ounnas, C., Warmels, R., ‘The MIDAS Image
Processing System in Instrumentation for Ground Based Astronomy: Present and
Future, L.B. Robinson, ed., New York: Springer Verlag, p.431.

For general bibliographic reference to the MIDAS system (VAX/VMS version), the first
reference in the above list should be used.
Detailed technical information of software interfaces and designs used in MIDAS is

given in the following documentation:
e MIDAS Environment
e MIDAS IDI-routines
e AGL Reference Manual

Users who want to write their own application programs for MIDAS should read the
MIDAS Environment document which gives the relevant information and examples.

For users who have to work with both the IHAP and MIDAS systems a cross-reference
document has been made for the most commonly used commands:

e MIDAS-THAP/THAP-MIDAS Cross-Reference

All documents, either in postscript or in ascii format, are available via the MIDAS
anonymous ftp acccount.

I1-November—1995

Chapter 2

Cook-Book

This chapter outlines the necessary information to get started with the MIDAS system.
Further details can be found in the appropriate sections of the following chapters.
The essential steps are:

e To login to the computer you want to use.

Start up the MIDAS monitor.

e Load some data from tape into your disk space.
e Execute the MIDAS commands you want.

e Save processed data on tape.

e Exit from the MIDAS monitor and logout.

These steps are outlined in the following sections.

2.1 Terminology

The following explain various terms used in this manual.

Keywords — global variables in the MIDAS monitor. They can be single numbers or
characters or one dimensional arrays used to store input, output, or control information
for MIDAS commands.

Frames — arrays of numbers representing data values with uniform sampling. They are
used for storage of images or spectra.

Images — used interchangeably with frames.

Descriptors — variables associated to frames, tables or masks describing the contents in
them. They are basically the same as keywords just associated to data files instead of
the monitor. These descriptors have names like NAXIS (the dimension of the image

array), CUNIT (the units of the axes), etc.

2-1

2-2 ' CHAPTER 2. COOK-BOOK

Tables — two dimensional arrays organised with rows and columns. They are used for
storage of heterogeneous data contrary to frames and masks which store homogeneous
data. They are typically used for saving lists of e.g. stellar positions and magnitudes.
See Chapter 5 for a full description of the table facilities. Many commands output their
results or take their input from tables. They constitute a simple data base system for
MIDAS.

Catalogues — a list of frames, tables, or masks which can be used for input to various
commands or merely for reference.

Procedures — These are lists of MIDAS commands stored in a file of type filename.prg
and which can be executed by typing @@ filename. See Chapter 3 for further details.

Fit file — a file that contains the function and parameter values for use in conjunction
with the fitting commands described in Chapter 8.

2.2 Commands

MIDAS is a command driven system in which the user enters commands followed by
parameters. This implies that the user must know a few commands and their structure in
order to make effective use of the system. Since most users cannot keep all the commands
and their parameters at their finger tips, an extensive on—line help facility has been created
as well as a printed version of the help text (see the Appendices).

A MIDAS command has the following structure:

COMMAND/QUALIFIER parl par2 ... par8

where par1l is the first parameter and so on. The important points are:
e Command and qualifier are separated by a / (slash).
e The command/qualifier and the parameters are separated by a space.
e Most commands have qualifiers.
e A parameter may contain several sub-parameters which are separated by commas.

e In most cases if the parameters are not specified, the system makes sensible defaults,
but the user should not always trust these default values to be those he might have
chosen.

e Keep these rules in mind, otherwise you will confuse the command.
MIDAS commands divide themselves into three categories:
e MIDAS primitive commands

e MIDAS application commands

1-January-1994

2.3. GETTING STARTED 2.3

e procedure control commands

The MIDAS commands are listed in alphabetical order and explained in detail in Volume C
of the MIDAS User Guide. The application commands are developed for special purposes
such as CCD or CASPEC reductions. They are described and listed in the various sections
related to particular applications. For reductions of data you should refer to Volume B of
this manual. The procedure control commands are described in Chapter 3.

2.3 Getting Started

The first thing to do is to login to the computer which you would like to use for your data
reductions. The detailed procedure for getting permission to use the computer and getting
allocated disk space for your data reductions can be found in Appendix C. Assuming that
you have succeeded in logging into the computer, the following subsections describe typical
use of MIDAS. » '

When you have logged in you should check that you.have sufficient disk space in the
directory in which you are working. For reductions of images an area of the order of 50
Mbytes would be adequate while for spectra reductions and analysis of final results less
space is needed. Now you are ready to start the MIDAS system:

e Type INMIDAS on a VMS system or inmidas on a UNIX system. This will initiate
the MIDAS environment and the terminal should respond with:

Midas 001>

e The available commands can be listed out by typing HELP. This only gives you
the names of the commands presently available in the system. A summary and a
subject grouped listing of the commands you will find in Appendix A. You can
find the full explanation of the individual commands in Volume C of the MIDAS
User Guide. A command can have several qualifiers which will change the mode of
execution of the command e.g STATISTICS has qualifiers IMAGE, TABLE and POISSON.
It is possible , typing HELP command, to get a display of all the command/qualifier
combinations available for the given command. Detailed information about a specific
command/qualifier combination can be obtained by typing HELP command/qualifier.

e In some installations a number of tutorial commands are available. (see Table 2.1)
They provide an illustration of different parts of the system.

2.3.1 Simple MIDAS Session

This section gives two examples of simple MIDAS sessions. The first one reads some
frames from a magnetic tape, displays them on a monitor and performs some simple
operations. The second one creates MIDAS tables and performs some simple operations.
In the following examples, user input is written in bold face type while comments, (after
an exclamation mark) are written in normal roman font.

1-January-1994

CHAPTER 2. COOK-BOOK

$ inmidas
Midas 001> HELP INTAPE lget help for tape input
Midas 002> INTAPE # x TAPE1 FNN llists headers of all files

!from tape mounted on TAPE1
Midas 003> INTAPE 2,16-17,31-33,52 CCD TAPE1 Iread files from TAPE1
Image ccd0002 : FFDV 205 , naxis: 2, pixels: 337, 520
Image ccd0016 : DK BIAS 1S , naxis: 2, pixels: 337, 520
Image ccd0017 : DK BIAS 18 , naxis: 2, pixels: 337, 520
Image ccd0031 : DK 603 , naxis: 2, pixels: 337, 520
Image ccd0032 : DK 60S , naxis: 2, pixels: 337, 520
Image ccd0033 : DK 60S , naxis: 2, pixels: 337, 520
Image ccd0052 : A0B32-527 V 300 , naxis: 2, pixels: 337, 520
Midas 004> INTAPE 78 ccd image.fits 'read fits file from disk
Image ccd0078 : A1029-459 V 40S , naxis: 2, pixels: 337, 520
Midas 005> CREATE/ICAT Icreate a catalogue of images
Image catalog icatalog.cat with 8 entries created...
Midas 006> SET/ICAT lenable catalogue
Midas 007> READ/ICAT ' llist the catalogue out
Image Catalog: icatalog.cat
No Name Ident Naxis Npix(1,2)
#0001 ccd0002.bdf FF DV 208 2 337 520
#0002 ccd0016.bdf DK BIAS 1S 2 337 520
#0003 ¢ccd0017.bdf DK BIAS 1S 2 337 520
#0004 ccd0031.bdf DK 60S 2 337 520
#0005 ccd0032.bdf DK 60S 2 337 520
#0006 ccd0033.bdf DK 605 2 337 520
#0007 ccd0052.bdf A0632-527 V 300 2 337 5B20
#0008 ccd0078.bdf A1029-459 V 408 2 337 520
Midas 008> STAT/IMA ccd0016 Icompute statistics for this frame
frame: ccd0016 (data = R4)
complete area of frame
minimum, maximum: 184..0000 16383.00
at (215, 2),(337, 520)
mean, standard_deviation: 251.2245 880.0140
3rd + 4th moment: 0.1306419E+11 0.2137182E+15
total intensity: 0.4402457E+08
median, 1. mode: 16287.41 16287.71
total no. of bins, binsize: 256 63.52549
of pixels used = 175240 or 100.00 % of all possible pixels (= 175240)
from 1 1 to 337 520 (in pixels)

Midas 009> STAT/IMA ccd0017

frame: ¢cd0017 (data = R4)
complete area of frame

1-January-1994

2.3. GETTING STARTED

minimum, maximum:

at (113, 1),(337,
mean, standard_deviation:
3rd + 4th moment:

total intensity:

median, 1. mode:

total no. of bins, binsize:
of pixels used = 175240
from 1 1 to 337

Midas 010> CREATE/DISPLAY
Midas 011> LOAD/IMA ccd0017
Midas 012> GET/CURS

cursor #0

frame pixels

frame: ccd0017
334.0 . 166.0

world

334.000

Midas 013> EXTRACT/IMA ff
biail
biai2
dkl =
dk2 =

dk3 =

014>
015>
016>
017>
018>
019>
020>
021>

EXTRACT/IMA
EXTRACT/IMA
EXTRACT/IMA
EXTRACT/IMA
EXTRACT/IMA
EXTRACT/IMA
EXTRACT/IMA ima2
STAT/IMA biail

Midas
Midas
Midas
Midas
Midas
Midas
Midas
Midas

frame: biail (data = R4)
complete area of frame
minimum, maximum:

at (215, 2),(147, -
mean, standard_deviation:
3rd + 4th moment:

total intensity:

median, 1. mode:

total no. of bins, binsize:
of pixels used = 171600
from 1 1 to 330

Midas 022> STAT/IMA biai2

frame: biai2 (data = R4)
complete area of frame
minimum, maximum:

at (113, 1),(286,

mean, standard_deviation:
3rd + 4th moment:
total intensity:

2-5

187.0000 16383.00
520)
251.2514 880.0129

0.1305419E+11 0.2137182E+15
0.4402929E+08
16287.30 16287.73
256 63.51373
or 100.00 % of all possible pixels (=
520 (in pixels)

175240)

lcreate a display window
!display image
Iread some pixels values from the image

coords intensity

166.000 228.000

Iremove
lirrelevant columns

ccd0002[<,<:@330,>]

i

ccd0016[<,<:@330,>]
ccd0017[<,<:0330,>]
ced0031[<,<:0330,>]
ccd0032[<,<:0330,>]
ccd0033[<,<:0330,>]

imal = ccd0052[<,<:0330,>]
= ¢cd0078[<,<:0330,>]

184.0000 497.0000
408)
203.2299 3.752572
8402620. 0.1709546E+10
0.3487425E+08
202.0980 - 204 .2529
266 1.227451

or 100.00 % of all possible pixels (= 171600)

520 (in pixels)

187.0000 613.0000
473)

203.2554 3.836732

8406459. 0.1710918E+10

0.3487864E+08

I-January—1994

2-6

CHAPTER 2. COOK-BOOK

median, 1. mode: 201.6387 202.8706
total no. of bins, binsize: 256 1.670588
of pixels used = 171600 or 100.00 % of all possible pixels (= 171600)

from i 1 to

330

520 (in pixels)

Midas 023> READ/DESCR biail STATISTIC

frame: BIAI1 (data = R4)
STATISTIC
184.0000 497 .0000 203.2299
0.1709546E+10 202.0980 204 .2529
0.3487425E+08
Midas 024> COMPUTE/IMA f£fb = f£f-203.
Midas 025> COMPUTE/IMA dkib = dki-203.
Midas 026> COMPUTE/IMA dk2b = dk2-203.
Midas 027> COMPUTE/IMA dk3b = dk3-203.
Midas 028> COMPUTE/IMA imailb = imal-203.
Midas 029> COMPUTE/IMA ima2b = ima2-203.
Midas 030> AVERAGE/IMA dk = dkib,dk2b,dk3b

dkib processed ...
dk2b processed ...
dk3b processed ...

Midas 031> COMPUTE/IMA ffd = ff-dk

Midas 032> COMPUTE/IMA imalbd = imaib-dk
Midas 033> COMPUTE/IMA ima2bd = ima2b-dk
Midas 034> COMPUTE/IMA imaibdf = imalbd/ffd
Midas 035> COMPUTE/IMA ima2bdf = ima2bd/ffd
Midas 036> LOAD/IMA imalbdf

Midas 037> READ/DESCR imalbdf LHCUTS .
frame: imaibdf (data = R4)

LHCUTS

0.0000000E+00 0.0000000E+00 —-0.7500000E-01
0.0000000E+00

Midas
Midas
Midas

038> CUTS imalbdf 0.,1.992
039> LOAD imailbdf
040> READ/ICAT icatalog

Image Catalog: icatalog.cat

No Name Ident

#0001 ccd0002.bdf FF D V 208
#0002 ccd0016.bdf DK BIAS 1S

#0003 ccd0017.bdf DK BIAS 1S

#0004 ccd0031.bdf DK 605
#0005 ¢ccd0032.bdf DK 608
#0006 ccd0033.bdf DK 60S
#0007 ccd00562.bdf A0B32-827 V 300
#0008 ccd0078.bdf A1029-459 V 40S

1-January—1994

Iread descriptor statistic

3.752572
256.0000

8402620.
1.227451

'biais correction

lcompute an
laverage of DARK frames

!dark subtraction

flat-field the frame

1.992324 0.0000000E+00

Imodify display cuts

=
o
P4
[*8
is]

Npix(1
337
337
337
337
337
337
337
337

N NMNBRNMNNMNNDNDN

»2)
520
520
520
520
520
520
520
520

2.3. GETTING STARTED

#0009 ff
#0010 biaiil
#0011 biai2
#0012 dki
#0013 dk2
#0014 dk3
#0015 imal
#0016 ima2
#0017 ££fb
#0018 dkidb
#0019 dk2b
#0020 dk3b
#0021 imailb
#0022 ima2b
#0023 dk
#0024 ffd
#0025 imailbd
#0026 ima2bd
#0027 imaibdf
#0028 ima2bdf

FF DV 208
DK BIAS 18
DK BIAS 1S
DK 60S
DK 60S
DK 60S
A0B32-827 V
A1020-459 V
FF DV 20S
DK 605
DK 60S
DK 608
A0B32-527 V
A1029-459 V

300
40S

300
405

average frame

FF DV 208
A0532-527 V
A1029-459 V
AQ532-B27 V
A1029-459 V

300
408
300
40S

Midas 041> OUTTAPE icatalog,9-28 TAPE1

File ff.bdf

File biail.bdf
File biai2.bdf
File dki.bdf
File dk2.bdf
File dk3.bdf
File imal.bdf
File ima2.bdf
File ffb.bdf
File dkib.bdf
File dk2b.bdf
File dk3b.bdf
File imalb.bdf
File ima2b.bdf
File dk.bdf

File ffd.bdf
File imalbd.bdf
File ima2bd.bdf
File imaibdf.bdf
File ima2bdf.bdf

written to
written to
written to
written to
written to

tape
tape
tape
tape
tape

written to tape

written to
written to
written to
written to
written to
written to
written to
written to
written to

tape
tape
tape
tape
tape
tape
tape
tape
tape

written to tape

written to

tape

written to tape

written to
written to

tape
tape

Midas 042> OUTTAPE icatalog,7-8 ima

File imal.bdf
File ima2.bdf

Midas 043> PRINT/LOG
Midas 042> BYE

written to disk> ima0001.mt
written to disk> ima0002.mt

1-January-1994

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

241
243
243
241
241
241

241

241
241
241
241
241
241
241
241
241
241
241
241
241

blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks

330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330

NNDNDDNMDODNNMDODDDNONDNDNOMDNONMNODNDNDNDNONNDND

Isave data on tape

!save data on disk in FITS format

!print logfile on the default printer

2-7

520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520

2-8

CHAPTER 2. COOK-BOOK

$ inmidas

Midas 001> CREATE/TABLE flux1i 2 30 fluxi ! create table from ASCII file
Midas 002> SHOW/TABLE fluxi ! list table parameters
Table : fluxl [Transposed format]
No.Columns : 2 No.Rows : 30

All.Columns: 3 All.Rows : 32

Sorted by Sequence Reference : Sequence

Col.# 1:LABOO1 Unit:Unitless Format:E15.6 R#*4
Col.# 2:LAB0O2 Unit:Unitless Format:E156.6 R4

Selection : ALL

Midas 003> READ/TABLE fluxl :LABOO1 :LABO0O2 @1 @9
Iread data from table

Table : fluxi

Sequence LABOO1 LABOO2
1 4.71000e+03 1.12850e+04
2 4.77000e+03 1.08300e+04
3 5.05000e+03 8.77000e+03
4 5.09000e+03 8.55000e+03
5 5.12000e+03 8.34000e+03
6 5.19000e+03 7.93000e+03
7 5.23500e+03 7.73500e+03
8 5.26500e+03 7.55000e+03
9 5.39000e+03 7.00500e+03
Midas 004> NAME/COLUMN flux1 :LABOOL "(sec)" F6.0 Ichange

! format and define unit
Midas 005> NAME/COLUMN fluxi :LAB002 "(erg/sec)" F6.0
Midas 006> READ/DESCR flux1.tbl HISTORY

HISTORY :

CREA/TABL fluxl 2 30 fluxi NULL TRAN
NAME/COLU fluxi :LAB001 "(sec)'" F6.0
NAME/COLU fluxl :LABQ02 "(erg/sec)" F6.0

Midas 007> STAT/TABLE fluxi :LABOO1 lcompute statistics of
!one of the column

Table : fluxi

Column # 1 Label :LABOQO1 Type :R*4

Total no. of entries : 30, selected no. of entries : 30
Miminum value : 0.47100E+04, Maximum value: 0.96800E+04

Mean value : 0.66437E+04, Standard dev.: 0.15539E+04

Midas 008> $more flux2.fmt

1-January-1994

2.3. GETTING STARTED 29

! format file flux2.fmt
1

DEFINE/FIELD 1 6 R F6.0 :LABOO1
DEFINE/FIELD 9 13 R F6.0 :LAB0OO2
END

Midas 009> CREATE/TABLE flux2 2 8 flux2 flux2
Midas 010> READ/TABLE flux2

Table : flux2

Sequence LABOO1 LAB0O2

1 9705 2750
2 9930 2700
3 10130 2655
4 10150 2650
5 10520 2580
6 10740 2540
7 11040 2485
8 11570 2410
Midas 011> MERGE/TABLE fluxi flux2 flux !merge of two tables
Midas 012> SHOW/TABLE flux
Table : flux [Transposed format]
No.Columns : 2 No.Rows : 38
All.Columns: 3 All.Rows : 40
Sorted by # Sequence Reference : Sequence
Col.# 1:LABOO1 Unit: (sec) Format:F6.0 R*4
Col.# 2:LABOO2 Unit:(erg/sec) Format:F6.0 R*4

Selection : ALL

" Midas 013> SORT/TABLE flux :LAB0O2 Isort table according to
lincreasing values of a column

Midas 014> REGRESSION/POLYNOMIAL flux :LABOO1 :LAB0O2 5 Ipolynomial fit

flux
POLYNOMIALS Input Table : UNION Type : MUL L-S
N.Cases : 38 ; N.Ind.Vars : 1
Dependent variable : column # 1
Independent variable: column # 2 degree : 5
degree

0 4.4818E+04
1 -2.6778E+01
2 7.4671E-03
3 -1.0405E-06
4 7.1309E-11

1-January-1994

2-10

5 -1.9126E-16
R.M.S error : 72.04162
Midas 015> SAVE/REGRESSION flux REGRE
Midas 016> CREATE/COLUMN flux :FIT

Warning: Column overflow mechanism activated

Midas 017> COMPUTE/REGRESSION flux :FIT = REGRE

Midas 018> READ/TABLE flux :FIT @1..4,06,Q9

Table : flux

Sequence FIT

.1337231e+04
.0955642e+04
.0690593e+04
.0605399e+04
.0174703e+04
.7462227e+03

O O WN
[{o O S I O Y

Midas 019> CREATE/GRAPH
Icreate graphic window
Midas 020> PROJECT/TABLE flux newflux :LAB002

CHAPTER 2. COOK-BOOK

Isave the result of
Iregression in a descriptor
Icreate a new column

lin the table

lcompute

lthe results of the regression

! project one

lcolumn of a table in a new one
Midas 021> INTERPOLATE/TT newflux :LAB0Q2,:SPLINE flux :LAB002,:LAB001 0.001

Midas 022> CREATE/GRAPH

Icreate graphic window

Midas 023> PLOT/TABLE newflux :LAB002 :LABOO1
Midas 024> SET/PLOT LTYPE=1 STYPE=0

Midas 025> OVERPLOT/TABLE flux :LABOO2 :SPLINE

Midas 026> SELECT/TAB newflux sequence.gt.5
Midas 027> COPY/TAB newflux result
Midas 028> OUTTAPE result.tbl result.fits

Midas 029> BYE

2.3.2 Exit and Logout

Ispline interpolation

Iplot table columns
!plot table columns

Iselect part of the table

lcopy selected table
Isave file in FITS
Hormat on disk

To exit from the MIDAS monitor type BYE. You can reenter the MIDAS monitor at any .
time by typing GOMIDAS (for VMS systems) or $gomidas (for UNIX systems).

1-January—-1994

2.3. GETTING STARTED 2-11

Command Description

TUTORIAL/ALIGN Explains the use of the ALIGN command

TUTORIAL/EXTRACT Demonstrates the extraction of a subimage from a father image

TUTORIAL/FILTER Displays some of the filtering options

TUTORIAL/FIT Shows the fitting capabilities

TUTORIAL/HELP Explains the usage of the HELP command

TUTORIAL/ITT Shows the effect of various Image Transformation Tables on an
image

TUTORIAL/PLOT Demonstrates the plot package facilities

TUTORIAL/LUT Shows the effect of various Look-Up Tables on an image

TUTORIAL/PLOT Demonstrates the plot package facilities

TUTORIAL/SPLIT Shows the split—screen capabilities of the display

TUTORIAL/TABLE Demonstrates the table system

Table 2.1: List of Tutorials

2.3.3 Executing System Commands

It is possible to execute commands of the operating system inside MIDAS. This is done by
typing a $ followed by the operating system command you want to have executed. After
this command has been finished you can continue your work inside MIDAS.

2.8.4 Some Useful Commands

In table 2.2 you will find a list of some of the most frequently used MIDAS commands.
Refer to the detailed command description or the on-line HELP for more details

1-January-1994

2-12

CHAPTER 2. COOK-BOOK

Command

Description

HELP command
HELP/QUAL
qualifier
SET/CATAL
CREATE/ICAT
READ/ICAT
‘LOAD/IMAGE frame
MODIFY/LUT
COMPUTE/IMAGE
EXTRACT/TRACE
PLOT/TRACE
ZO0OM

display help for command

help for all commands with the given qualifier such as IMAGE,
TABLE, CATALOGUE, etc.

enable cataloging

create a catalogue of image files

list the image frames available

load and display frame on the image display
interactively change the look—up table
perform image arithmetic

interactively extract a line from an image
plot the extracted line

zoom an image on the cursor

execute one of the existing tutorials

TUTORIAL/tutorial

Table 2.2: List of Often Used Commands

1-January—1994

Chapter 3

Monitor and Command Language

This chapter is organised as follows:

In the first two sections we describe how to start MIDAS and how the host operating
system and MIDAS coexist.

Section 3 explains the different data structures used in MIDAS and how to access
them in a MIDAS session.

Section 4 describes the syntax of the MIDAS commands, as well as the editing and
recalling of commands and also the on-line HELP facility in MIDAS.

In section 5 you will find some details about how the MIDAS commands are executed.

Then follows the largest and most detailed section (section 6), which gives in-depth
information about the MIDAS command language (MCL).

With MCL you can write high level MIDAS “programs” which are called MIDAS
procedures.

The topics include:

— the MCL commands

passing parameters in MIDAS procedures

symbol substitution

loops and conditional branching

— special functions
Section 7 introduces the MIDAS contexts.

Section 8 explains how to run application programs written in FORTRAN or C inside
MIDAS. It also shows how to debug these programs as well as MIDAS procedures.

All the commands related to MIDAS catalogs are listed in section 9, together with
an example of how to use catalogs in MIDAS procedures.

3-1

3-2 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

e The MIDAS login procedure and MIDAS user levels are the topics of the last two
sections.

The MIDAS directory tree structure is not covered in this chapter. For those interested,
please refer to the MIDAS Environment document.

3.1 Starting the MIDAS Monitor

In order to get properly initialised, MIDAS needs the following information

e the MIDAS user mode to work in: Parallel or Single User mode,
the default is Single User mode

e the MIDAS working directory for internal files and (optionally) private procedures:
the default is a subdirectory midwork in your login directory,
i.e. SYS$LOGIN: [MIDWORK] in VMS or $HOME/midwork in Unix.
This directory does not have to be (or even should not be) the same directory where
your data files are stored.

On a VMS system type SETMIDAS and follow the dialog if you want to change the defaults
for the mode and the MIDAS work directory.

On a Unix system use the option -m <mid_work> to change the default working directory,
and -p or -P to run MIDAS in parallel mode when you start MIDAS via the command
inmidas (see below).

Two other variables are very important to MIDAS - MIDVERS, which holds the MIDAS
version you use at your site, and MIDASHOME, the root directory for the MIDAS system code.
These variables should have been set up correctly by your system manager when MIDAS
was installed or use again SETMIDAS in VMS; for Unix these variables can again be chosen
within the inmidas command. There are many more options for the inmidas command in
Unix, which can be accessed interactively via the man page of inmidas (a complete Midas
installation should also include the setting up of the man pages for inmidas, gomidas and
helpmidas).

The detailed command description is as follows:

SYNOPSIS
inmidas [unit] [-h midashome] [-r midvers] [-d display]

[-m mid_work] [-p/-P/-nop] [-noh] [-j midas-command-line] [-help]

Without arguments, inmidas initiates a MIDAS session with default

definitions. Some of these definitions can be modified with arguments in

the command line of inmidas or by enviromment variables. The arguments

in the command line override the corresponding environment variables.
OPTIONS

inmidas has been configured by the Midas system manager at installation

time to start a specific release of MIDAS. However, alternative releases

30-November—1995

3.1.

STARTING THE MIDAS MONITOR 3-3

can be specified using the command line arguments:

~h

-r

midashome

Home directory for MIDAS. Absolute pathname containing, at least, one
release of MIDAS. It may also contain subdirectories for demo and
calibration data.

midvers

Release of MIDAS to be executed. It must be a subdirectory under
midashome.

display

Specifies another X server for the display and graphical MIDAS windows
NOTE: be aware of allowed access to a remote X server using the “xhost"
command.

-p/-P/-nop

Options -p and -P set the MIDAS environment variable MIDOPTION to
PARALLEL while option -nop sets it to NOPARALLEL (default: NOPARALLEL).
In NOPARALLEL mode all intermediate MIDAS files in the MIDAS startup
directory are deleted when starting MIDAS via inmidas.

In PARALLEL mode no intermediate files are deleted, and this is
necessary to run several MIDAS sessions with the same startup directory.
With -P option and if unit is not given the system will select
automatically one free unit for you. With -p option and no unit, the
user will be requested to enter one.

unit

~m

Unit to be associated to the MIDAS session (default: 00 only if MIDAS
is working in NOPARALLEL mode). Valid values for this option are in the
range (oo, 01, ..., 99, xa, ..., 2zz) where numerical values indicate
that the user is working in an X11 enviromment (DISPLAY environment
variable or argument -d should be given), and the others indicate an
ASCII terminal.

mid_work

Specifies the MIDAS startup directory (default: $HOME/midwork) .

-noh

-J

Starts MIDAS without clearing the terminal and without welcome message.
midas—command-line

midas-command-line will be executed in MIDAS as if it were the first
command line typed in the MIDAS monitor.

This option sets also the -noh option.

NOTE: midas-command-line should be typed between single quotes to be
interpreted by inmidas as a single argument and to be passed to the
MIDAS monitor as it is.

-help

Display this help page.

30-November—1995

3-4 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

So, to start MIDAS, type INMIDAS on a VMS system or inmidas [argl] ... on a Unix
system. This will initialize the MIDAS monitor as follows:

- In VMS the logical name MID.WORK is assigned to the MIDAS working directory; in
Unix the environment variable MID_WORK is set accordingly. If the working directory
does not yet exist, it is created.

All internal files created by the MIDAS monitor will be stored in the MIDAS working
directory. This is also the place to store your own login.prg as well as all your other
MIDAS procedures which you want to execute from any other directory.

- In Single User mode, all MIDAS log- and keyfiles (FORGRxy.LOG, FORGRxy.KEY
- where xy is the MIDAS unit described below) which exist in the MIDAS working
directory as well as all MIDAS internal files are deleted.

In Parallel mode no files are deleted.

- In VMS the user process is renamed to MIDASxy

- In VMS and in parallel mode in Unix you will be asked to enter the identification of a
MIDAS unit as a two-character (case insensitive) string.
Units are in the range (00, 01, ..., 99, xa, ..., zz) where numerical values in-
dicate that the user is working in an X11 environment (DISPLAY environment variable
should be set), and the others define a MIDAS session with no image display capabil-
ities.
So 23, xa, yf or Z3 will all be valid units. If you work in Parallel mode you have to
use different MIDAS units for each session because the MIDAS unit is appended to
the names of all MIDAS internal files.

~ On startup the current MIDAS version and the computer and operating system you are
using are displayed together with a copyright notice. Then the prompt string

Midas 001>

appears on the terminal screen and you are ready to execute any of the available MIDAS
commands.

The internal MIDAS files all reside in the MIDAS working directory (MID_WORK), the data
files are taken from the current working directory unless the complete file specification is
given in the data file name.

Since MIDAS executes its applications in a child process (subprocess for VMS) which
leaves no traces after termination, you cannot simply use the host command SET DEF
(VMS) or cd (Unix) to change the working directory once you are in a MIDAS session.
Instead, use the MIDAS command change/direc for that purpose.

Another possibility is to set the search path for your data files via the command
set/midas_system DPATH=directory. Use the MIDAS Help Utility for obtaining detailed

30-November—1995

N |

3.2. MIDAS AND THE HOST OPERATING SYSTEM 3-

information about these commands, e.g. HELP change/direc.

MIDAS is a case insensitive system. That means, you can type your input with upper
or lower case characters. There are, however, some pitfalls with respect to the data files
that reside in the local file system. In VMS, the system automatically translates all file
names to upper case, so LOLA.BDF and lola.bdf specify exactly the same file. In Unix,
file names may be specified using lower and upper case, so LOLA.BDF and lola.bdf are
two different files. The convention in MIDAS is to always use lower case file names (e.g.
in tutorial procedures) to guarantee portability between VMS and Unix. Also, all default
file types are specified in lower case, e.g. .bdf and .tbl for images and tables.

Note

All MIDAS commands in the following sections are printed with capital letters.
This 1s just for reasons of readability, i.e., to highlight them. The commands
could all be typed in lower case as well.

3.2 MIDAS And the Host Operating System

Care has been taken that MIDAS and the Host Operating System (DCL for VMS and
Bourne or C-shell for Unix) co—exist smoothly and complement each other. Migration
from one environment to the other is simple:

If you are in the MIDAS environment, type BYE to switch back to the Host System.

If you have returned to the host environment from a MIDAS session, (indicated by the
$—prompt in VMS, and by $ or % in Unix), type GOMIDAS (in VMS) or gomidas (in Unix)
to revive MIDAS. The status of the keywords and the command buffer of the stopped MI-
DAS session are preserved - if you want to start afresh, use INMIDAS (VMS) or inmidas
(Unix) again.

You may also use host commands directly inside MIDAS by preceding them with ‘¢’. For
instance,

Midas 027> $DIR (in VMS) or

Midas 027> $1s (in Unix)

will display the contents of the current directory.

Please, note, that currently this mode of operation will only invoke Bourne shell com-
mands in Unix, not C-shell or Kornshell commands. To execute C-shell (or any other
Shell) commands you have to insert them in a Bourne shell script which has as the first
line: #! /bin/csh, or: #! /bin/ksh, etc.

Note

If you work on a VMS system, beware of DCL command procedures:

DCL modifies command 1/0 streams when ezecuting a procedure. This causes
problems for the interprocess communication inside MIDAS. When executing
a DCL procedure via $ @ ‘procedure’ the correct settings will be maintained
inside MIDAS.

30-November-1995

3-6 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

However assigning a symbol MIMI to the command above and then executing
the DCL procedure by just typing $ MIMI will lead to disaster from which only
a BYE and subsequent GOMIDAS will get you going again.

Since images, tables, etc. are standard disk files, all host commands related to file opera-
tions can be employed. However, if a MIDAS catalog is used, care has to be taken that
the information in the catalog is not invalidated, when e.g. renaming or deleting data files
outside MIDAS (i.e. using commands of the host file system directly).

The output from MIDAS commands can be redirected to ASCII files enabling easy
combination of MIDAS and host commands. E.g.
Midas 123> READ/DESCR myimage * >dsc.dat
will send all the output from the READ/DESCR command to the ASCII file dsc.dat (created
in your current work directory) which can then be used by any host command. For
example,
Midas 124> $EDIT dsc.dat (in VMS) or
Midas 124> $vi dsc.dat (in Unix)

Note

This mechanism is pretty much like the one used in Uniz with the exception that
there should be no space between the > and the output file name. Furthermore,
this output redirection also works on VMS.

Midas 125> STATISTICS/IMAGE myimage >dsc.dat

always creates a new file dsc.dat, if you want to append data to an existing ASCII file
use

Midas 126> STATISTICS/IMAGE myimage >>dsc.dat

instead.

As you may have guessed already, there is also input redirection. E.g.

Midas 127> $ls a*.bdf >dscin.dat

Midas 128> READ/DESCR <dscin.dat

will display the standard descriptors of all Midas images with names beginning with the
letter ‘a’ in the current directory.

Again there should be no space between < and the file name.

See also the subsection 3.4.5 for more info about 1/O redirection.

On a Unix system you can connect MIDAS and Unix command via the pipe symbol ,

e.g.
Midas 129> READ/DESCR myimage * | $grep NGC425

Midas 130> $1s a*.bdf | read/descr

30-November—1995

~1

3.3. MIDAS DATA STRUCTURES 3-

3.3 MIDAS Data Structures

Here we describe and discuss the various data entities (structures) that MIDAS recognizes.
They are stored in an internal binary format, accessible only through MIDAS and fall into
the following categories:

Images are a set of data of same physical significance in one to three dimensions. The
data must be sampled with constant step size along all 1, 2 or 3 axes and are stored
in different formates, e.g., as bytes, 16 bit integers, or 32 bit reals on disk. However,
most MIDAS applications work on real data, so the image pixels are converted on the
fly to real format if necessary. The default file type is .bdf .

Tables are a structure for handling data which can be arranged in rows and columns. The
data may be of numerical or character type. Numerical data may be sampled in any
arbitrary fashion. The default file type is .tbl .

Fit-files are “degenerate” image files with just descriptors and no pixels and used to store
the parameters needed for the fitting functions. The default file type is .fit .

Descriptors are variables attached to the structures mentioned above (i.e. stored in the
same file) and describe the structure of the tables, images and fit files. They can
also store any other auxiliary information connected to the data such as histograms,
coordinates, comments and so on. For fit files they contain the fitting parameters.

Catalogs contain lists of either images or tables or fit files for the purpose of grouping data
together within MIDAS. They are exceptional in the sense that they are implemented
as ASCII files so you can list and edit them (with care!) outside MIDAS. The default
file type is .cat .

Keywords are variables which can be used to pass information from one MIDAS program
to the next or to temporarily store intermediate results (there are also reserved or
system keywords that keep MIDAS system parameters). They are referred to by a
name and can be easily manipulated from the terminal or MIDAS procedures.

The individual data points in an image are referred to as “pixels” and in a table they
are called “elements”. The paragraphs below describe the structure of descriptors, and
keywords, and the methods for specifying the individual data values in images and tables.

Note

There is no special syntaz for file names in MIDAS. You can use any legal
name of your host file system for images, tables and fit files. However, a name
beginning with a digit or using any of the characters

+,5 % /5L, (and), should be avoided, because these symbols will cause
problems in e.g. the COMPUTE/IMAGE command. If you do want to use a file
name with these special characters in a COMPUTE/IMAGE command you have to

30-November—1995

3-8 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

enclose the full name in quotes, t.e.
Midas 456> COMPUTE/IMAGE res = 12 -+ "quasar01412.bdf"

The length of these names is, in principle, limited to 60 characters for MI-
DAS applications (which is the size of keywords IN_A, OUT-A, used in most
procedures to store the image, table names...).

Also file names like abc.bdf.mine will not be appreciated by all MIDAS ap-
plications.

As mentioned before, file names are case sensitive in MIDAS on Uniz systems;
names for descriptors and keywords are not. Thus, referring to a keyword with
name KEYA may be done e.g. via keyd or Keya.

3.3.1 Specifying a Descriptor

Descriptors have been derived from the concepts used in a FITS file header and have many
similarities with the FITS keywords. In particular the names of the MIDAS standard de-
scriptors, e.g. NAXIS, NPIX, etc., (for details see Appendix “Standard Descriptors” of the
MIDAS Environment doc.) correspond to those in the FITS header.

Descriptors come in four flavours: integer, real, double precision and character. Mixed
types are not possible, i.e. you cannot have a real descriptor TEST and an integer de-
scriptor TEST at the same time. Each descriptor also has a name (max. 15 chars.) and
a length (no. of elements). Writing values into positions beyond the current length leads
to an automatic extension of the descriptor (and update of its length) just as a text file is
extended by the “editor” when you are editing it.

Beware, that you do not create ‘holes’ by writing to descriptor elements which are not
immediately following the current last element! MIDAS will not initialize the descriptor
elements in between, so their values are unpredictable.

The command to write values into a descriptor requires the name of the data file (which
could be an image, table or fit file), the descriptor name, the descriptor type, the first
element to be accessed, and the total number of elements to be transferred (all separated
by a ‘/’ (slash)). Finally, the data values are given (separated by commas for numeric
data, but no spaces). For example,

WRITE/DESCR imgfile Descname/C/1/7 Anyname

would write the ASCII string Anyname into the character descriptor Descname associated
with the data file imgfile.bdf. Since spaces serve as parameter delimiters in MIDAS
they have to be enclosed by double quotes (") if used as data. So

WRITE/DESCR imgfile Descname/C/1/7 " "
would fill Descname with 7 blanks.

WRITE/DESCR imgfile Descname/R/4/3 17.3,8.8E2,-.3

30-November—1995

3.3. MIDAS DATA STRUCTURES 3-9

would write the numbers 17.3, 880.0, -0.3 into elements 4,5 and 6 of real descriptor
Descname. If the descriptor were created with fewer than 6 elements it would be expanded
automatically.

WRITE/DESCR tblname.tbl Descname/R/4/3 17.3,8.8E2,~.3

would write the numbers 17.3, 880.0, -0.3 into elements 4,5 and 6 of real descriptor
Descname of the table file tblname.tbl.

Note, that we had to add the file extension .tbl to the name tblname, since the command
WRITE/DESCR defaults the first parameter to an image and appends the file type .bdf if
none is given by the user.

Single descriptor elements can also be written in a more direct way, via

frame,descr = value, e.g. to set STEP(2) of image lola.bdf to 1.234, use
lola,step(2) = 1.234

The walue can also be an ezpression made up of constants and elements of any MIDAS
data structure, see the subsection 3.6.2.

This is how descriptors work at the most basic level. However, in many cases, higher
level commands have been implemented to update specific descriptors. The MIDAS com-
mand CUTS, which sets the high and low cuts of an image (in descriptor LHCUTS) for
displaying or plotting it, is an example of this.

Some of the commands dealing with descriptors are:
READ/DESCR, WRITE/DESCR, SHOW/DESCR, DELETE/DESCR, INFO/DESCR, COPY/DD.

An optional help text can be attached to each descriptor and is then displayed via the
READ/DESCR and SHOW/DESCR commands. This text is copied from the original FITS file
(if existing) when reading in the data file or can be explicitly set via WRITE/DHELP.

3.3.2 Specifying Keywords

As is the case for descriptors, keywords also have a name (max. 8 chars.), a type and a
length (i.e. no. of elements). However, this length is fixed, and once the keywords are
created with a certain size, they cannot be extended. The possible types for keywords are:
real, integer, character and double precision. Like for descriptors there are no mixed types

possible.
In order to write a value to a keyword, the same format as for descriptors is used.

WRITE/KEYWORD INPUTC/C/1/8 AKeyword

This command would write the ASCII string AKeyword into the character keyword INPUTC
and

WRITE/KEYWORD AZTEC/I/1/2 17,-22

30-November—1995

3-10 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

would write the values 17 and -22 into the integer keyword AZTEC (elements 1 and 2).

Single keyword elements can also be written in a more direct way, via

key = value, e.g. to set the 12th element of keyword INPUTR to 1.234, use

inputr(12) = 1.234 '

The value can also be an ezpression made up of constants and elements of any MIDAS
data structure, see the subsection 3.6.2.

Some of the commands dealing with keywords are:

READ/KEYWORD, WRITE/KEYWORD, SHOW/KEYWORD, DELETE/KEYWORD, COPY/KEYWORD,
COMPUTE/KEYWORD. Keywords and descriptors can be copied to each other via COPY/KD and
COPY/DK.

3.3.3 Specifying Elements in a Table

The MIDAS table file system is described in detail in chapter 5 of this volume. Here
we just explain briefly how to access the various elements in a table file. To do so, it is
necessary to specify the table name, the column and the row. This is done in the following
format (order):

table column row

where

table is the table name;

column is the desired column which can be referenced by label as :col or by sequence
number as #n;

row is the desired row referenced by number as @n or by a value in a predefined reference
column.

Like descriptor and keyword names, column labels are case insensitive. The command:

READ/TABLE tname #3 @10

would display the element in column 3 of row 10 in table file tname.tbl .
Similarly, the command:

READ/TABLE tname :MAGNITUDE 20.0

would access the element in the column labeled ‘MAGNITUDE’ and value 20.0 in the refer-
ence column (this reference column must have been defined before via the SET/REFCOLNUM
command).

Note, that we need not specify the file extension .tbl as in the descriptor related com-
mands. All table commands default the data files to tables with extension .tbl.

Single table elements can also be written in a more direct way, via

table,column,row = value,

e.g. to set the element in the 3rd row of the column labeled :XREF in the table lola.tbl
to 1.234, use

lola, :xref,@3 = 1.234

30-November—1995

3.3. MIDAS DATA STRUCTURES 3-11

The value can also be an ezpression made up of constants and elements of any MIDAS
data structure, see the subsection 3.6.2.

Some of the commands dealing with tables are:
READ/TABLE, WRITE/TABLE, COMPUTE/TABLE, SHOW/TABLE, EDIT/TABLE, COPY/TABLE.

3.3.4 Specifying Pixels in an Image

In some commands it is necessary to specify the columns and rows of an image to which
that command should refer.

This is done in the following way for e.g. a 2-dim frame: frame[x1,y1:x2,y2]

where the column specification, x or the row specification, y can be any of

e world coordinates, indicated via real or integer numbers: 20.0,300
e pixel numbers, indicated via integers preceded by @: @35,@200

e or a special symbol to indicate start (<), or end (>) of a row or column; thus
[@20,<:@20,>] specifies the complete 20th column of a 2-dimensional image

World coordinates are the physically meaningful coordinates with units such as wave-
lengths or arc seconds (which are defined in the descriptor CUNIT). Pixel numbers (starting
with 1 for each dimension) are the indices of an image seen as an array.

For example, extracting the complete 12th plane from the 3-dim image stored in cube.bdf
is done via

EXTRACT/IMAGE planel2 = cube[<,<,@12:>,>,012]

Single pixels can also be written in a more direct way, via

frame[x,y,z] = value, e.g. to set the pixel in row 27 and column 1023 of the 2-dim
image lola.bdf to 1.234, use lola[@1023,027] = 1.234

The wvalue can also be an ezpression made up of constants and elements of any MIDAS
data structure, see the subsection 3.6.2.

Some of the commands dealing with images are:
READ/IMAGE, WRITE/IMAGE, COMPUTE/IMAGE, STATIST/IMAGE, DELETE/IMAGE, COPY/II.

3.3.5 Specifying Sub-Image

In all MIDAS commands which accept images as parameters you can also provide subim-
ages in the syntax specified above.

For example, the command LOAD/IMAGE loads an image into the MIDAS display (window).
Then,

Midas 567> LOAD/IMAGE mygalaxy

would try to display the whole 2-dim image mygalazy.bdf, whereas

Midas 568> LOAD/IMAGE mygalaxy[@iOO,@QOO:@199,@299]

would only load a 100x100 subimage of mygalazy.bdf beginning at the 100th x-pixel and
200th y-pixel.

30-November—1995

3-12 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

3.4 Command Syntax

After start—up, the MIDAS monitor prompts you to interact with MIDAS by entering
commands on the terminal which are terminated by (Enter key).

To enter a command-line on more than one terminal/window line, use the continuation
character, a minus sign (=), as the last character of a line. The command line is limited
to 256 characters. If you want to enter more than one command on a single line, separate
the commands with a semicolon and space (;).

A MIDAS command line is structured as

command/qualifier pari par2 ... par8 !comments

The command describes the general action you want to perform (a verb) and the qual-
ifier usually specifies the object of that action, e.g. WRITE/DESCRIPTOR. The command
parameters (max. 8) hold all other information needed to perform the required action. All
parameters are separated by spaces.

Currently the following “objects” exist in MIDAS:
e keywords
e descriptors
e bulk data frames

— images
— tables
— fit files
— ASCII files

catalogs

— for images
— for tables
— for fit files

auxiliary image-display data structures (where applicable)

— LUTSs (Colour Look-Up Tables)

— ITTs (Intensity Transfer Tables)
(internally these structures are stored in MIDAS table files)

All user input and output from MIDAS commands is recorded in an ASCII file, named
FORGRxy.LOG (with xy the MIDAS unit) and stored in the MID WORK directory. This
MIDAS logfile serves as a hardcopy of a full MIDAS session. Terminating MIDAS with

30-November—1995

3.4. COMMAND SYNTAX 3-13

BYE and continuing later on via gomidas will not restart a new logfile but append to
the existing one. The logging in MIDAS can be controlled via commands like LOG/OFF,
LOG/ON, LDOG/TOF, DELETE/LOG.

Comments may be appended to the command string and are separated by at least one
white space and ‘!’ (exclamation mark) from it. To give a complete line of comments,
enter ‘!’ as the first character of the input line (useful for structuring the contents of the
MIDAS logfile).

Commands and qualifiers may be abbreviated to the number of significant characters
needed to distinguish them from the rest. At most 6 characters are necessary for the
command and 4 characters for the qualifier. Command and qualifier are separated by
a ‘/’ (slash). Nearly all commands need a qualifier, but there is only one qualifier per
command (e.g. comm/quall/qual2 is unsupported in MIDAS). In case you omit the
qualifier, the default qualifier of that command is used by MIDAS. The default qualifier
of a MIDAS command may be displayed via SHOW/COMMAND command. For example, the
default qualifier for the LOAD command is IMAGE, so typing LOAD/IMAGE or LOAD will have
the same effect.

The parameters depend on the actual command. A space (blank) is the delimiter for
parameters in the command-line. Commas are used to subdivide parameters. If you need
a space inside a parameter, this parameter has to be enclosed in double quotes (7).
Normally, parameters are position dependent, i.e. parl is the first, par2 the second, and
so on. This may be overridden by using the following syntax: '

command/qualifier P4=par4 Pi=parl P7=par7 ... !comments

If the command procedure which is activated by a MIDAS command uses the CROSSREF
command, it is also possible to execute that command via:

command/qualifier label4=par4 labell=parl label7=par7 ... !comments

The help text of each command specifies whether such a cross referencing of parameters
is possible and if so, which labels to use. For details about the command CROSSREF see
the description of it in the section below on MIDAS procedures.

Whenever possible parameters have defaults. If you do not want to override them use
the symbol ‘?” (question mark) for a parameter if you use the position dependent format.
Therefore, '

command/qualifier P4=22.345 is equivalent to

command/qualifier 7 7 7 22.345

The preset default values of MIDAS commands can be overridden with CREATE/DEFAULTS.
For example, the default for the descriptor name(s) in the READ/DESCR command is
NAXIS,NPIX,START,STEP,IDENT,CUNIT,LHCUTS for an image frame. Thus, typing

Midas 234> READ/DESCR myimage

will display the contents of the descriptors NAXIS, NPIX, START, STEP, IDENT, CU-
NIT and LHCUTS of image myimage.bdf. After changing this default via

Midas 235> CREATE/DEFAULTS READ/DESCR 7 HISTORY

30-November—1995

3-14 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

the same command
Midas 236> READ/DESCR myimage
will display the contents of the descriptor HISTORY of myimage.bdf.

To abort a MIDAS command, use |Ctrl/C|(sometimes you also have to hit),

which will return control to you.
Note

Be careful when aborting commands which interact with a display/graphics
window in the X1I-Environment. For, you run the risk of losing the synchro-
nisation with the MIDAS display server, which must then be re—initialized via
RESET/DISPLAY (see chapter 6 for details).

3.4.1 Command Recalling

By default, the last 15 commands entered on the terminal are kept in an internal buffer
(the no. of commands saved can be changed via SET/BUFFER). To recall (and execute) any
of these commands, simply type the associated command number. This is the number
“xyz” appearing in the prompt Midas xyz> when that command was entered. To display
the command buffer, simply hit .

If you want to recall more than one command at once, enter all the relevant command
numbers (separated by a semicolon and space), e.g. enter 14; 17; 22 if you want to re-
peat the commands numbered 14, 17 and 22 . Also 14; read/keyw in_a; 17 is possible.

To recall commands not by number but by pattern, use :pattern to repeat the last
command matching the specified pattern. For example, if the last two commands in your
command buffer are:

22 READ/IMAGE supernova
23 show/commands

Then, typing 22 as well as :READ or :nova will execute the command READ/IMAGE supernova
again. Note that for the pattern matching MIDAS does make a distinction between upper
and lower case.

You can also use the vertical arrow keys to navigate up and down through the command
buffer.

Besides repeating complete input lines it is also possible to just use parts of the last com-
mand line. Each “token” of the last command line is saved internally until the next input.
A “token” is the information separated by spaces in the command line. To repeat the
tokens on a subsequent command line merely type a ‘.’ For example, if you have in the
command buffer:

READ/KEYWORD in_a
LOAD/IMAGE myframe O 2,2

30-November-1995

3.4. COMMAND SYNTAX 3-15

Then typing ° yourframe . . ’ as the next command is equivalent to typing

‘LOAD/IMAGE yourframe 0 2,2°.

All features described so far apply to genuine MIDAS commands as well as to host system
commands (where the first character of the command line is the § sign).

Some words of caution:

In VMS the version number of files may be specified using a semicolon, e.g.
$ RENAME file.typ;7 lola.bdf.
Typing such a command inside MIDAS will not work, since the monitor will interpret this
input as two Midas commands. Instead, use a dot to separate the version number, e.g.
Midas 234> $ RENAME file.typ.7 lola.bdf.

In Unix the repetition of tokens may cause trouble. Consider the following:
Midas 123> load/image vaca
Midas 124> $cp /elsewhere/toro.bdf .
The intention was to simply copy the file toro.bdf from somewhere else to the current
directory. But instead of toro.bdf you will find a strange file named 7 in your directory...
In the line ‘123’ only two tokens are entered, so all other 8 tokens are set to the default
value ‘7’. In line ‘124’ the third token will be set to the third token in the line above, so
it changes to:
Midas 124> $cp /elsewhere/toro.bdf 7
Instead, specify also the result frame completely, e.g.
$cp /elsewhere/toro.bdf toro.bdf.

Preceding a host command by $$ disables the interpretation of specific symbols by
MIDAS, thus
Midas 124> $$cp /elsewhere/toro.bdf .
will actually do the expected copy.

3.4.2 Command Line Editing

The commands in the internal command buffer may also be edited.

~ On Unix systems MIDAS comes (since the 94NOV release) with two different line-
editors: TermWindows (the one developed at ESO) and readline (which is from the GNU
project). The default line-editor is readline which provides a history stack of commands,
emacs or vi editing functions, command and filename completion functions, and a com-
munication channel to the MIDAS GUI Xhelp for the On-Line Help utility. See the man
page of readline for a complete list of options.

To use the old Term Windows line-editor just set the environment variable TERMWIN to yes.
Please, note, that the Term Windows editor will be phased out in a future MIDAS release.

On VMS systems MIDAS comes only with the Term Windows line-editor.

To edit a MIDAS command, type the command number preceded by a dot (period) or
followed by a dot. So ‘.xyz’ or ‘xyz.’ will both display the command ‘xyz’ and put

30-November—-1995

3-16 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

you into the edit mode where you can modify that command.

If you employ the pattern matching style, use ‘.:pattern’ or
previous command containing that pattern.

You edit that line using the arrow keys and delete key of the keyboard and retyping the
characters. On VMS systems to toggle between Replace and Insert mode use CtrlA.
Using ¢.xyz’ (¢.:pattern’) will lead to the creation of a new MIDAS command with
new command number, whereas ‘xyz.’ (‘:.pattern’) modifies the specified command
directly (and keeps this command number).

Also the commands recalled via the arrow keys can be edited.

As mentioned above only the 15 most recently used commands are kept in the command
buffer on a first—in, first—out basis. So if you repeat or edit a certain command via its
MIDAS command-number at least once in 15 command inputs, this command will always
be kept in the buffer.

However, you may wish to make sure that a command remains always in the buffer. En-
tering ‘xyz/LOCK’ will lock the command with number ‘xyz’ in the buffer; to unlock the
command, use ‘xyz/UNLOCK’.

The command CLEAR/BUFFER empties the command buffer and resets the command counter
to 1. Since 3 digits are used for the command count, the counter is also reset to 1 after
MIDAS command no. 999.

‘:.pattern’ to edit a

3.4.3 Command Line Suspension

If, while entering a command, you realize that you forgot the full command syntax or
want to check something else, a mechanism has been introduced to let you interrupt
the command line, execute another command or commands, and then resume with the
interrupted line. To interrupt a command line enter *\’ (back-slash) as the last character
and hit . The command string is then saved internally. To resume entering the
interrupted command line, type ‘\’ (back—slash) again followed by . The saved

command line will be displayed on the terminal and you may add more input.

Note

You cannot edit or change the saved portion of the command after reentering
the interrupted string, since your new input is handled as if it were a continu-
ation of the original command line.

3.4.4 On-Line Help

The help facility of MIDAS (command HELP) provides detailed descriptions of all sup-
ported commands and qualifiers. This applies also to the HELP command itself. !

If you work in an X-Window environment we suggest to use XHelp, the graphical user
interface to the MIDAS Help facility, by executing the MIDAS command CREATE/GUI
HELP. Besides providing a separate and convenient interface to the MIDAS Help utility
this GUI also supports a feedback facility for reporting errors, problems and suggestions

LAl MIDAS commands are described in detail in Volume C of this User Manual.

30-November—-1995

3.4. COMMAND SYNTAX 3-17

to the MIDAS group at ESO (this problem-report mechanism is based on the GNATS

system from the GNU project).
And if you use the readline line-editor you can also update the MIDAS Help facility with

the current command-line by typing |Ctrl/X Ior F1].

Also, the TUTORIAL commands will help you in exploring the MIDAS system. Use the
MIDAS command HELP TUTORIAL to find out which tutorials exist and try them out.
There is also a tutorial about the HELP command itself. Use TUTORIAL/HELP to exercise
many of the features described in this section.

Some of the other HELP features are given in the following table.

Command Description
HELP To display all currently existing MIDAS commands and topics
HELP comnd To display all the comnd/qualif combinations available for the

HELP comnd/qualif
comnd/qualif ??

pattern?
HELP/QUALIF qualif

HELP/SUBJECT
subject

HELP/CL comnd

HELP/KEYWORD
keyword

HELP [Topic]

HELP/APPLIC
HELP/CONTRIB

given comnd

To get detailed information about the specified comnd/qualif
combination

To display full command syntax (one line) of specified
comnd/qualif

To list all commands which begin with given pattern

To list all commands which may use the given qualif

For any info related to subject

To get detailed information on the MIDAS command language
comnd
To get detailed information about the specified keyword

To get information about a topic, e.g. the standard descriptors
or available contexts
To get information about available application procedures

To get information about available contributed procedures

Table 3.1: Help Features

Normally, the HELP text is not written to the MIDAS logfile (to save space in the logfile)
but if you wish to include this, you may do so by setting keyword LOG(3) to 1 via e.g.
the MIDAS command LOG(3) = 1. To print out the help text, use PRINT/HELP.

30-November—1995

3-18 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

3.4.5 Input/Output Redirection in Midas

Similar to Unix MIDAS commands also accept input from an ASCII file instead of an
input line typed on the terminal. For example, you can use host commands to create a
list of files and then execute a MIDAS command on all files in that list:

Midas 045> $ 1s bb*.bdf >input.dat

Midas 046> STATISTICS/IMAGE <input.dat

This command sequence will execute the STATISTICS/IMAGE command for all frames in
the file input.dat, i.e. all images beginning with ‘bb’.

For more elaborate processing of groups of files you should use MIDAS catalogs and the
STORE/FRAME command (see section 3.9 for detailed info about catalogs).

Different ways exist to save the output of a MIDAS command in an ASCII file besides
just using the logfile. There is a set of PRINT/... commands to print out the contents
of the different MIDAS data objects, e.g. PRINT/TABLE. By default the output from these
commands is sent to a printer but this can be changed to a file via the ASSIGN/PRINT
command. So, if you want an ASCII copy of a MIDAS table, you do:

Midas 088> ASSIGN/PRINT file mytable.dat

Midas 089> PRINT/TABLE mytable

Another possibility which is applicable to all MIDAS commands, not just the PRINT com-
mands, is to specify the output file directly in the command. Thus,
Midas 089> WRITE/TABLE mytable >mytable.dat
is equivalent to the two commands above. The file mytable.dat is created in the current
directory. If you want to append the data to an existing file, use
Midas 090> WRITE/TABLE mytable >>mytable.dat
Midas 090> WRITE/TABLE mytable >terminal
only produces output on the terminal, i.e. it’s the same as
Midas 090> WRITE/TABLE mytable
but is useful if you want to provide optional file output in a procedure (see section 3.6.2
for more details about that).
In case, the output should go to a file and also be displayed in the MIDAS command
window, use
Midas 091> WRITE/TABLE mytable >mytable.dat+terminal
If you want to suppress the output completely use the special name Null for the output
file, e.g.
Midas 092> WRITE/TABLE mytable >Null
will omit all output. No file Null is created.
Currently it is not possible to redirect the input as well as the output in the same
command line, e.g.
Midas 046> STATISTICS/IMAGE <input.dat >output.dat
is not possible.

Note
No space should be between the <, > or >> and the in/output ASCII file

30-November—1995

3.5. EXECUTION OF COMMANDS 3-19

names!
This output redirection scheme has been modeled after the way it is done in
Uniz but it also works on VMS systems.

3.5 Execution of Commands

MIDAS commands fall into two categories: the basic commands and all other application
commands. The basic commands are executed inside the MIDAS monitor, which is the
program you are interacting with. All other commands are implemented by executing
a MIDAS procedure which runs one or more programs in a subprocess (child process).
During the time a command is being processed in the subprocess, the MIDAS monitor
is suspended until the corresponding program terminates in the subprocess. Only then
control is returned to the user. To stop a command prematurely, type .

Since process creation is much more expensive in VMS than in Unix these subprocesses
are handled differently in VMS and Unix:

In VMS, the subprocess, named FORGRxy (with xy the MIDAS unit specified at start-
up), is created at MIDAS initialisation time and kept alive until you exit from MIDAS via
the command BYE.

In Unix, the child process is created each time the MIDAS command executes an applica-
tion program. Upon termination of that program the child process dies. This also applies
-~ to commands of the host system — they are executed in a subshell.

Therefore, issuing ‘$ cd /elsewhere’ inside MIDAS does not change your current direc-
tory permanently...

See also section 3.1 about the change-directory problem.

Some internal files are created when starting a MIDAS session in the directory speci-
fied via MID WORK:. The most important ones are the keyword file and the logfile.

The keyword file is named FORGRxy .KEY (xy the MIDAS unit) and holds the keyword data
base accessible by all programs running in the MIDAS environment.

The logfile is named FORGRxy.LOG and receives a log of all user input and all MIDAS
output on the terminal (except HELP text, as explained before, and output from the
host system). The logfile serves also as a “fall back” utility in case of system crash or
other breakdown. In such a case the command PLAYBACK/LOG ‘logfile’ may be used to
regenerate the complete MIDAS session.

Note
In order to use the playback facility, you have to rename the original logfile

before restarting MIDAS via INMIDAS or inmidas. Remember that INMIDAS
deletes old MIDAS logfiles unless you run in parallel mode.

30-November-1995

3-20 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

3.6 MIDAS Command Language

The MIDAS command language (MCL) consists of all the commands which you enter in-
teractively, and an additional set of commands to provide the necessary tools to write
MIDAS “programs”, called MIDAS procedures.

The MCL is a flexible and powerful tool to integrate application modules into MIDAS and
to do rapid prototyping. But it is not intended to be a full blown programming language
- for programming tasks MIDAS supports the standard interfaces in FORTRAN 77 and
C (cf. the MIDAS Environment document). It is an interpreted language, so you do not
need to compile MIDAS procedures. It is also a “Macro” language in the sense that you
can build complex procedures, attach these procedures to a MIDAS command and qual-
ifier combination and then put a single line with that command name into yet another
procedure (up to 20 levels deep).

MIDAS procedures are handled in the following way:

The ASCII procedure file is read in by the MIDAS monitor and translated into an internal
more compact format. This translated code is then executed inside the Monitor.

The individual lines of code are parsed and decoded in two passes: In the first pass, all
symbol substitutions are done using the specified formats to convert from binary to ASCII.
In the second pass, all control and conditional statements are processed directly by the
Monitor (e.g. positioning the internal program pointer to the command line referred to
by a GOTO statement) until an “executable” command line is found which is passed on to
the usual command input pipeline of MIDAS as if it were typed in by the user.

For a detailed explanation of all the MIDAS Command Language commands see the
appendix of this volume or use the MIDAS command HELP/CL.

The following Command Language commands provide the necessary programming con-
structs like looping and conditional branching for MIDAS procedures, they cannot be

used interactively:

BRANCH variable comparisons labels
Compare variable with comparison values and branch to related labels

CROSSREF labell ... label8
Define cross reference labels for parameters parl ... par®

DEFINE/LOCAL key data all flag level flag
Define local keyword key and initialize it using data

DEFINE/PARAMETER par def type prompt limits
Declare default value, type, promptstring and limits for parameter par

DO loopvar = begin end step_size

30-November—1995

3.6. MIDAS COMMAND LANGUAGE 3-21

...command body...
ENDDO
Execute a do-loop (as in FORTRAN)

ENTRY procedure
Define the beginning of a MIDAS procedure in procedure file with a different name

GOTO label
Jump to a label defined as label:, see below

IF parl op par2 command
Execute conditional statement (as in FORTRAN)

IF parl op par2 THEN

...if-sequence...
ELSEIF paril op par2 THEN

...else if-sequence...
ELSE

...else-sequence...
ENDIF

Execute a conditional statement (as in FORTRAN)

INQUIRE/KEYWORD key prompt-string
Demand value for key from the user

label:
Declare a labele.g. HOME:

RETURN parl ... par3
Return to calling procedure or terminal and pass up to 3 parameters

PAUSE
interrupt the current procedure and return to interactive level

DEFINE/MAXPAR nopar

Indicate that max. nopar parameters are expected

The following commands may also be used interactively, but are especially useful inside
MIDAS procedures:

@ (or: @@, or: @a, or: @s, or: @c proc parl ... par8)

Execute the MIDAS procedure proc which is stored
in MID_PROC:, (or in the current directory or MID_WORK:),

30-November-1995

3-22 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

or in APP_PROC:, or in STD_PROC:, or in CON_PROC:, respectively

ECHO/qualif levela,levelb
Control the display of MIDAS commands (qualif = ON, OFF, FULL)
for procedures executing at a level in the interval [levela,levelb]

COMPUTE/KEYWORD reskey = expression
Evaluate an algebraic ezpression involving keywordss and constants, store result in

reskey

SET/FORMAT I-format E-format
Define formats used for replacements of keyword and descriptor names
in procedures with their actual values

WRITE/OUT text
Display text on terminal

! comment
Indicate beginning of a comment line

Note

It is good practice not to abbreviate the commands and qualifiers of a MIDAS
command mside a procedure. Since new MIDAS commands can be created any
time an abbreviated command may work at one time but become ambiguous at
other times and cause the procedure to fail.

The command TRANSLATE/SHOW myproc X will check that all commands and
qualifiers are fully specified in procedure myproc.prg.

3.6.1 Passing Parameters in MIDAS Procedures

A MIDAS command procedure may be created with an editor or via the command
WRITE/COMMANDS which constructs a MIDAS procedure from the current command buffer.
Default type for such a procedure file is .prg . This MIDAS procedure can then be
executed with the commands:

@ file parl par2 ... par8 !'if the procedure is in MID_PROC

@@ file parl par2 ... par8 !'if in current directory or MID_WORK

@a file parl par2 ... par8 ''if in APP_PROC

@s file parl par2 ... par8 !'if in STD_PROC

@c file paril par2 ... par8 !'if in CON_PROC
where parl ... par8 are the actual parameters which may be accessed within the com-
mand procedure through the character keywords P1 ... P8.

As with data files you can specify a search path for procedures via the command SET/MIDAS _SYSTEM

30-November—1995

3.6. MIDAS COMMAND LANGUAGE 3-23

PATH=directory.

The maximum size of a single parameter is 80 characters, but all parameters together
may not exceed 256 characters (which is the maximum size of a command line). The size
of the code of a procedure is not limited.

In the following, let us assume that all procedures are stored in the directory specified by
MID _WORK so that we always use the MIDAS command @@ to execute them. A command
procedure in turn can execute another command procedure (or itself) — up to 20 procedure
levels deep. The end of a procedure file or the commands RETURN or ENTRY will bring you
back up to the next higher level. '

To pass parameters back to a higher level command, use the command

RETURN retparil ... retpar3 . These return values can then be accessed via the char-
acter keywords Q1, Q2, Q3. This technique is an alternative to using global keywords for
that purpose.

To use the actual values of a parameter in the procedure, the formal parameters P1,...,P8
have to be enclosed in curly brackets ({, }):

I+
! Example 1, MIDAS procedure exal.prg

'+
READ/KEYWORD {P1} ! read keyword the name of which is given as parl
@@ test {P2} ! execute test.prg and pass par2 as first parameter

WRITE/KEYWORD INPUTC {P2} ! write contents of par2 into keyword INPUTC

Entering the MIDAS command @@ exal OUTPUTC ESO-Garching will lead to the execu-
tion of:

READ/KEYWORD OUTPUTC
@@ test ESO-Garching
WRITE/KEYWORD INPUTC ESO-Garching

The command @@ always passes 8 parameters to a command procedure. If fewer than
8 parameters are specified in the command line, dummy parameters (indicated by the
special character ‘?’ (question mark)) are internally appended.

Therefore, @@ exal OUTPUTC will put the character ‘7’ into the first element of the char-
acter keyword INPUTC.

If we enter the command ECHO/ON before executing the procedure we would actually see
the above commands displayed on the terminal (cf. subsection 3.8.1).
Note
Up to MIDAS release 88NOV apostrophes were used for symbol substitutions
(e.g. 'P1’). Because of the backward compatibility of MIDAS you could still
use apostrophes to indicate symbol substitutions, which is, however, discour-
aged. The main reason being that using { and } instead, makes nesting of
substitutions possible.

30-November—1995

3-24 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

The command DEFINE/PARAMETER should be used for each parameter that is referenced in
the procedure. This command will set the defaults, the type, and the prompt string for
each parameter. For numeric values passed as parameter also lower and upper limits can
be specified in the DEFINE/PARAMETER command.

The default values defined inside the procedure will be used in case the parameters are
not explicitly provided (i.e. entered as ‘7°):

1+

! Example 2, MIDAS procedure exal.prg

1+

DEFINE/PARAM P1 999 NUMBER "Enter first input number: " 22,1024
DEFINE/MAXPAR 1 ! only 1 parameter expected
WRITE/KEYWORD INPUTI/I/7/1 {P1} ! store contents of P1 in INPUTI(7)

The MIDAS command: @@ exa2 77 will set INPUTI(7) to 77, whereas @@ exa2 will set
INPUTI(7) to 999.

Entering @@ exa2 17 will result in an error since the valid interval for the number passed
as the first parameter is [22,1024].

If you do not want to give default values for a parameter (in other words, if specific input
is required for this parameter), use the symbol ‘?’ as default. In that case, and if the
relevant parameter is not given, the user will be prompted for this parameter (using the
prompt string specified in the DEFINE/PARAMETER command) .

The DEFINE/PARAMETER line above also demonstrates how to put a character string with
embedded blanks into a single parameter (remember that blanks are parameter delimiters
in MIDAS) by enclosing the prompt string with double quotes.

The DEFINE/PARAMETER command also checks the type of the parameter. The types which
may be tested are: I(mage), T(able), F(itfile) , N(umber), C(haracter).

If for any reason you do not want type checking, use the character ‘7’ instead of any of
the types listed above.

For file—type parameters the following translations are executed:

catalog entry numbers, e.g. #27 are replaced by the corresponding file name in the catalog
(if that catalog is active!) and the asterisk (‘*?) is substituted by the currently displayed
image, if any.

For numerical parameters it is tested if the input is a number; for character strings it is
only checked that the first character is a non—numeric character.

Using the plus sign (‘+’) as default value is another way to disable parameter type check-
ing. This is the correct way to test inside a procedure whether a certain parameter has
been entered or not, because it is impossible to distinguish between a parameter defaulted
to ‘7’ and an explicitly entered ‘7’ parameter. For an example see example 14a, 14b in
subsection 3.6.5.

The system keyword PARSTAT holds 8 flags (for P1,...,P8) which are set to 1 or 0, if the

30-November—1995

3.6. MIDAS COMMAND LANGUAGE 3-25

type of the ith parameter conforms to the specified type or not. If PARSTAT(i) is O for
any i the MIDAS procedure is aborted.

However, if /C(ONTINUE) is appended to any of the types listed above, the keyword
PARSTAT will only be set to 0 or 1 and the execution of the procedure continues, leav-
ing it to the user to test PARSTAT(i) and decide how to go on.

So in our example above the command @@ exa2 KB will result in an error message and
the procedure is aborted.

If we change the procedure to:

L+
! Example 3, MIDAS procedure exa3.prg

I+
DEFINE/PARAM P1 999 N/CONT "Enter first input number:"
DEFINE/MAXPAR 1 ! only 1 parameter expected

IF PARSTAT(1) .EQ. 1 -
WRITE/KEYWORD INPUTI/I/7/1 {P1} !store contents of P1 in INPUTI(7)

then @@ exa3 KB will not yield any error.

If we enter @@ exa3 RW PG CG KB MP PB the message

Warning: & parameter(s) more entered than required...

will be displayed but the execution of the procedure continues (the additional parameters
are ignored). Note also the use of the continuation character (~) in the IF statement above.

The MIDAS command CROSSREF defines labels (of maximum 10 characters) for the
parameters P1,...,P8 to enable cross-referencing of parameters if they are passed in arbi-
trary order.

Note

The command CROSSREF has to be the first ezecutable command (i.e. any
command but a comment line) in a MIDAS procedure!

The command DEFINE/MAXPAR provides an additional consistency check and
helps to detect erroneous usage of MIDAS procedures. Therefore, it’s highly
recommended to include it in all procedures.

If we modify exa3.prg to:

I+

! Example 4, MIDAS procedure exa4.prg

'+

CROSSREF INFILE OUT_FILE METHOD ALPHA

DEFINE/PARAM P1 7 IMA "Enter name of input file: "
DEFINE/PARAM P2 7 IMA "Enter name of result file: "
DEFINE/PARAM P3 7 C ‘"Enter method: "

DEFINE/PARAM P4 999 NUM "Enter alpha value: " 22,1024
DEFINE/MAXPAR 4 ! max. 4 parameters expected
WRITE/KEYWORD INPUTI/I/7/1 {P4}

30-November-1995

3-26 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

then the following command lines will all be equivalent:

@@ exa4 in out FILTER 33
@@ exa4 P2=out Pl=in P4=33 P3=FILTER
Q0@ exad4 OUT FILE=out IN_FILE=in alpha=33 METHOD=FILTER

The labels may be truncated, so also

@0 exa4 0OUT=out IN F=in al=33 METH=FILTER

is o.k.

If you do not know a parameter value at the time you execute a MIDAS procedure,
e.g. the value depends on the execution inside the procedure itself, use the command
INQUIRE/KEYWORD in the procedure. The execution of the procedure is then interrupted
and the user is prompted for a value before continuing. For example,

I+

! Example 5, MIDAS procedure exab.prg

L+

CROSSREF IN_FILE OUTFILE

DEFINE/PARAM P1 7 IMA "Enter name of input file: "
DEFINE/PARAM P2 ? IMA "Enter name of result file: "

DEFINE/MAXPAR 2 ! max. 2 parameters expected
WRITE/KEYWORD INB " " all ! fill keyword IN_B with blanks
INQUIRE/KEYWORD IN B "Which filter, enter LOW or HIGH: "

IF AUXMODE(7) .EQ. 0 IN.B = "LOW" ! LOW is the default

The command @@ exa5 old new will stop with the message

Which filter, enter LOW or HIGH:

and wait for user input. The 7th element of keyword AUX_MODE will contain the number of
characters typed in response to the INQUIRE/KEYWORD command. AUX_MODE(7) is set to 0

if the user just types .

3.6.2 Symbol Substitution in Command Procedures

As mentioned before, the Monitor performs symbol substitutions on MIDAS command
lines in the first pass by replacing symbol names in the command line with their cur-
rent value. For character symbols just the string is put in; for symbols of other types
the binary data are converted to ASCII using the formats specified in the SET/FORMAT
command. This substitution is iterated until no more symbol substitutions are possible.
Keywords, descriptors, pixel values of an image or elements of a table are valid symbols
in the MIDAS command language.

30-November—1995

3.6.

MIDAS COMMAND LANGUAGE

3-27

The following syntax is used to distinguish among keywords, descriptors, pixel values
and table elements:

{star} refers to the value stored in the keyword star
{galaxy,disk} refers to the contents of descriptor disk
of frame galaxy.bdf

{galaxy[x,yl} refers to the value of the image pixel at coordinate x,y
of the 2-dimensional frame galaxy.bdf

{dust, :particles,7} refers to the element of the table dust.tbl
in column labeled :particles and row 7

{dust,#2,77} refers to the element of the table dust.tbl

in the second column and row 77

Elements of numerical keywords with more than one element are specified like elements in
a FORTRAN vector, e.g. INPUTR(7). Also substrings of character keywords are indicated
as in FORTRAN, e.g. INPUTC(2:5). These features are also implemented for descriptors
but not for table entries (yet).

Any algebraic expression using the operators +, —, %, / and parentheses (,) and
constants as well as any symbol above which defines MIDAS data is supported by the com-
mand COMPUTE/KEYWORD and its short form key = expression. This also applies to all
the other direct assignments of single values to MIDAS data structures we had described
above in section 3.3, e.g. image[x,y] = expression.

Let us look at an example of this:

I+

! Example 6, MIDAS procedure exa6.prg

'+

DEFINE/PARAM P1 7 N "Enter alpha value: " -88.5,912.4
DEFINE/PARAM P2 7 N "Enter loop.count: " 1,999

DEFINE/MAXPAR 2 ! max. 2 parameters expected
WRITE/KEYWORD VAR/R/1/1 0. I init key VAR
VAR = {P1} * 3.3 ! set VAR to 3.3 * (contents of P1)
WRITE/DESCR myframe rval/r/1/2 0.0,0.0 !

LOOP: ! declare label LOOP
VAR = 1.+VAR !'set VAR = 1.0 - VAR

myframe,rval(2) = var+12.99

WRITE/OUT {myframe,rval(2)}

myframe[@10,020] = 20.0-{myframe,rval(2)}

WRITE/OUT {myframe[@10,020]}

mytable, :DEC,@7 = {myframe[@10,@20] }*2.0

WRITE/OUT {mytable,:DEC,Q7}

WRITE/OUT " ™

IF VAR .LE. {P2} GOTO LOOP ! go to label LOOP, if VAR < contents of P2

30-November—1995

3-28 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

Then the command @@ exa6 1.0 5.2 will yield:

1.72900E+01
.7T1000E+00
5.42000E+00

N

1.82300E+01
1.71000E+00
3.42000E+00

Note

For character keywords COMPUTE/KEYWORD only supports character concatena-
tion (‘//7). If you want to write a character string into a character keyword,
use WRITE/KEYWORD instead. Therefore, if we had written VAR = P1 * 3.3
instead of VAR = {P1} * 3.3 in the procedure ezab.prg, MIDAS would have
protested because no multiplication is permitted for character keywords.

You may want to use symbol substitutions for sending the output of a MIDAS command
to an ASCII file or to the terminal depending upon the contents of e.g., the character
keyword mykey.

Setting keyword mykey once to " >outfile” or ” >terminal” if you want output to a file or
not together with the command line WRITE/TABLE mytab {mykey} in your procedure will
not work!

For, the check for the output redirection is done at the very first parsing of the command
line before any symbols in that line are replaced...

Instead, setting mykey to "outfile” or "terminal” and changing the command line to:
WRITE/TABLE mytab >{mykey}

will do the intended switching of output to a file or terminal.

Since symbols may be tested in conditional statements and thus change the control flow of
a MIDAS procedure, they provide the link between application programs and the MIDAS
command language.

The number of characters used in the ASCII representation of a numerical symbol may
be controlled via the command SET/FORMAT I-format for integer symbols and
SET/FORMAT x-format,y-format (where x or y can be E, G or F) for real (x-format) and
double (y-format) precision symbols. Integer symbols are then encoded via I-format (with
leading zeroes not suppressed) and real or double precision symbols as E—format, G-format
or F—format (used as in FORTRAN 77):

'+
! Example 7, MIDAS procedure exa7.prg

I+

WRITE/KEYWORD INPUTI 12 I'set INPUTI(1) to 12

30-November—1995

3.6. MIDAS COMMAND LANGUAGE 3-29

WRITE/KEYWORD INPUTR 12.345 ! set INPUTR(l) to 12.345
!'and set INPUTD(1) to 123456.98765432

WRITE/KEYWORD INPUTD 123456.98765432

WRITE/OUT {inputi(1)} {inputr(1)} {inputd(1)}

SET/FORMAT I2 ! use format [2.2 for integer symbols
! and use format E12.8 and (G22.8 for real and double symbols

SET/FORMAT E12.8,G22.8

WRITE/OUT {inputi(1)} {1nputr(i)} {inputd(1i)}

SET/FORMAT i5 ! use format 15.5 for integer symbols
! and use format F12.4 and E22.13 for real and double symbols

SET/FORMAT £12.4,e22.13

WRITE/OUT {inputi(1)} {inputr(1)} {inputd(1)}

The command @@ exa7 will yield:

0012 1.23450E+01 1.23457E+05 default is 14 and E15.5,E15.5
12 1.23450003E+01 1.23456988E+05 uses 12 and E12.8,(G22.8
00012 12.345 1.2345698765432E+05 uses 16 and F12.4,FE22.13

If you want to omit any leading zeroes for integer symbols use SET/FORMAT I1, then only
the necessary digits will be displayed.

Note

Until MIDAS version 94NOV the same format was used for real and double
symbols. This led to problems when real and double symbols in the same com-
mand line had to be substituted.

Use SET/FORMAT f-format to only change the format for real symbols and
SET/FORMAT , f=format to only change the format for double symbols.

Substitution begins inside the curly brackets, starting at the deepest nested level:
WRITE/OUT {IN_A}{INPUTC(1:3)}

will display SPIRALABC on the terminal, if key IN_A contains the string SPIRAL and key
INPUTC(1:3) the string ABC.
It is sometimes necessary to substitute symbols in a nested orde1

I+

! Example 8, MIDAS procedure exa8.prg

1+

DEFINE/PARAM P1 myframe IMA "Enter name for input frame:
SET/FORMAT F5.1

WRITE/OUT {{P1},STEP(1)}

the command @@ exa8 will force the Monitor to substitute the last command line in
exa8.prg first to: WRITE/OUT {myframe,STEP(1)} and then yield: 20.5

assuming that descriptor STEP of myframe.bdf contains 20.5 as first element. This ex-
ample also illustrates the concept of recursive substitution.

30-November—-1995

3-30 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

3.6.3 DO Loops

Loops are supported in MIDAS procedures like the DO loops in FORTRAN (but note that
loops are always executed at least once):

I+

! Example 9, MIDAS procedure exa9.prg

I+

WRITE/KEYWORD N/I/1/1 0O ! keywords serve as loop variables

DON =162 ! loop from N=1 until N<6 in steps of 2
WRITE/OUT N = {N}

ENDDO

A keyword of integer type (called N in our example) must be used to store the loop
variable. The parameters follow the standard FORTRAN conventions with start (=1 in
exa9.prg), end (=6) and in/decrement (=2) values given as shown above. DO loops may

be nested up to 8 levels deep in a procedure.

The command @@ exa9 will yield

N = 0001
N = 0003
N = 0005

Assume we have images imag0001.bdf to imag0100.bdf and want to add successive pairs
and store the results into images res0001.bdf to res0050.bdf:

1+

! Example 10, MIDAS procedure exal0O.prg

1+

DEFINE/PARAM P1 7 1IMA "Enter rootname for input frames:

DEFINE/PARAM P2 ? IMA "Enter root.name for output frames:
DEFINE/MAXPAR 2 ! max. 2 parameters expected
SET/FORMAT I4 ! we need 4 digits
WRITE/KEYWORD N/I/1/1 O

WRITE/KEYWORD NN/I/1/2 0,0

DO N =1 50 ! default increment is 1
NN(1) = 2%N
NN(2) = NN(1)-1
COMPUTE/IMAGE {P2}{N} = {P1}{NN(2)}+{P1}{NN(1)} ! sum up
LOAD/IMAGE {P2}{N} ! display the result frame
ENDDO

Then, the MIDAS command @@ exal0 imag res will do the required task.

30-November—1995

3.6. MIDAS COMMAND LANGUAGE 3-31

3.6.4 Local Keywords

Because keywords are implemented as a global data structure, different MIDAS procedures
can access the same keyword. This useful feature can cause problems, however, if these
keywords just serve as local, temporary variables like the DO variables. Consider the

procedures below:

T+
! Example 11, MIDAS procedure exall.prg
I+
WRITE/KEYWORD N/I/1/1 O
DON=1 10
0@ test
ENDDO
I+
! MIDAS procedure test.prg
'+
WRITE/KEYWORD N/I/1/1 0
DON=112
WRITE/KEYWORD INPUTI/I/12/1 {N}
ENDDO

Executing @@ exall will give some unexpected results, since both procedures access the
same integer keyword N as a common variable.

Therefore, procedures should use local keywords for DO loops and internal working storage.
Local keywords are defined inside a MIDAS procedure via the command DEFINE/LOCAL.
They are only known inside the procedure where they are defined (if the lower levels flag
is set, they are also defined in all procedures called from this procedure). Local keywords
may have the same name as an existing global keyword (except the system keyword names
as stored in MID MONIT:syskeys.dat) or local keyword of any other procedure, since local
keywords are searched before the global ones. The above example will work, if modified

as follows:

'+
! Example 12, MIDAS procedure exal2.prg
I+
DEFINE/LOCAL N/I/1/1 0
DON =110
0@ test
ENDDO

T+
! MIDAS procedure test.prg

30-November—1995

3-32 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

1+
DEFINE/LOCAL N/I/1/1 O
DON =1 12

WRITE/KEYWORD INPUTI/I/12/1 {N}
ENDDO

Local keywords are deleted when returning to the next higher level at the end of a proce-
dure.

3.6.5 Conditional Statements, Branching

As in FORTRAN 77 any of the following forms of the IF statement may be used:

IF log_exp command ' command = any MIDAS command
! with at most 4 params.

IF log_exp THEN ! xyz = any logical expression
EL-S.E.IF log_exp THEN 'uvw = any logical expression
ELSE

ENDTF

IF log_exp THEN

ENDIF
IF blocks may be nested up to 8 levels deep in a procedure.
The logical expression ‘log_exp’ is of the form:

argl op arg2

where arg{, arg? are either names of keywords (this includes also the names P1, ..., P8)
or constants, and op may be any of .EQ., .NE., .GT., .GE., .LT. or .LE. (with the same
meaning as in FORTRAN 77). As with symbol substitution, specify single elements of an
array and substrings via, e.g., OUTPUTI(7) and IN B(2:15).

If we do

WRITE/KEYWORD INPUTC beer
WRITE/KEYWORD OUTPUTC wine
WRITE/KEYWORD INPUTR/R/1/3 1.,2.,3.

Then,

30-November—1995

3.6. MIDAS COMMAND LANGUAGE 3-33

INPUTC .EQ. '"beer" is TRUE
INPUTC .EQ. "BEER" is also TRUE
INPUTC .EQ. OUTPUTC is FALSE
INPUTC(2:2) .EQ. OUTPUTC(4:4) is TRUE

is FALSE

INPUTR(2) .GT. 5.4

In string comparisons upper and lower case characters are not distinguished in order to

guarantee case insensitivity.
Character keywords can only be compared to character keywords or character constants

(which are enclosed by double quotes). This can become tricky in conjunction with symbol

substitution:

1+

! Example 13a, MIDAS procedure exal3a.prg

'+

DEFINE/PARAM P1 7 N "Enter number: "

DEFINE/MAXPAR 1 ! only one parameter expected

IF {P1} .EQ. 1 THEN
WRITE/OUT P1 = 1

ELSE

WRITE/OUT P1 is not = 1
ENDIF

Entering @@ exai3a 1 as well as @@ exal3a 001 will give the expected output message
P1 = 1 since the line IF {P1} .EQ. 1 THEN has been converted in the first pass by the

Monitor to
IF 1 .EQ. 1 THEN or IF 001 .EQ. 1 THEN
and the two integer constants are equal. Now, consider the almost identical procedure

exal3b.prg:
'+
! Example 13b, MIDAS procedure exal3b.prg
'+
DEFINE/PARAM P1 ? N "Enter number: "
DEFINE/MAXPAR 1 ! only one parameter expected

IF P1 .EQ. 1 THEN
WRITE/OUT P1 = 1

ELSE
WRITE/OUT P1 is not = 1
ENDIF
Entering @@ exa13b 1 will return the error message invalid IF statement... and

abort. Why?
Well, in the IF statement above the contents of the character keyword P1, which is the

character ‘1’, is compared to the integer constant 1, an invalid comparison.
We modify the procedure once more:

30-November—1995

3-34

CHAPTER 3. MONITOR AND COMMAND LANGUAGE

'+
! Example 13c, MIDAS procedure exal3c.prg
1+
DEFINE/PARAM P1 7 N "Enter number:
DEFINE/MAXPAR 1
IF P1 .EQ. "1" THEN
WRITE/OUT P1 = 1
ELSE
WRITE/OUT P1 is not = 1
ENDIF

n

! only one parameter expected

Now, entering @@ exa13c 1 will work and yield P1 = 1 but @@ exal3c 001 will output
P1 is mot = 1 since the string ”001” is not equal to ”1”.

As another example let us see, how we can check if a parameter has been entered at

all:

1+
! Example 14a, MIDAS procedure exaléda.prg

I+

DEFINE/PARAM P6 + NUMBER "Enter first input number:
IF pP6(1:1) .EQ. "+" THEN

WRITE/KEYWORD INPUTC NONE ! no P6 entered, set INPUTC accordingly

ELSE
WRITE/KEYWORD INPUTI/I/7/1 {P6} ! store contents of P6 in INPUTI(7)
WRITE/KEYWORD INPUTC YES lindicate, that INPUTI holds a valid number

ENDIF

However, if we also want to check the limits of the given number we have to use the
DEFINE/PARAMETER command again, because testing "+” against a numerical interval

would lead to an error:

I+
! Example 14b, MIDAS procedure exalédb.prg
1+
DEFINE/PARAM P6 + NUMBER "Enter first input number:
IF p6(1:1) .EQ. "+" THEN
WRITE/KEYWORD INPUTC NONE ! no P6 entered, set INPUTC accordingly
ELSE
DEFINE/PARAM P6 + NUMBER "Enter first input number: " 22,1024
WRITE/KEYWORD INPUTI/I/7/1 {P6} ! store contents of P6 in INPUTI(7)
WRITE/KEYWORD INPUTC YES lindicate, that INPUTI holds a valid number

ENDIF

Since, in the ELSE branch we know that parameter P6 is given, the default value 7+” itself

is never tested against the interval [22,1024].

30-November—1995

3.6. MIDAS COMMAND LANGUAGE 3-35

For testing multiple alternatives use the BRANCH command. It has the syntax:

BRANCH variable casea,caseb,...,casez labela,labelb,...,labelz.
'+
! Example 15, MIDAS procedure exalb.prg
'+
DEFINE/PARAMETER P1 ? C "Enter method: "
DEFINE/MAXPAR 1 ! only one parameter expected

|
! Use the first 2 characters of parameter P1 to distinguish the methods
BRANCH P1(1:2) AN,DI,HY ANALOG,DIGIT,HYBRID

i

! fall through if no match ...

WRITE/OUT Invalid option - please try again

RETURN

|

ANALOG:

RUN ANALO

RETURN

!

DIGIT:

RUN DIGI

RETURN

!

HYBRID:

RUN HYBRI

“Then, @@ exal5 ANALOG will execute the command RUN ANALO and @@ exalb digital or
@@ exald di will run the program digi.exe.

3.6.6 Special Functions

Special functions may be used with the command COMPUTE/KEYWORD. The currently sup-
ported functions are listed in the following table (on the next page). Note, that arg!, arg?
may either be the name of a keyword, the contents of which are used, or a constant. Char-
acter constants have to be enclosed in double quotes to distinguish them from a keyword
name. On-line help for these functions is available via HELP COMPUTE/KEYWORD.

As an example we want to to display the header of a FITS file stored on disk (without
converting the data), the FITS file name may be entered with or without the file extension
.mt; if not given we append the type inside the procedure:

1+
! Example 16, MIDAS procedure exal6.prg

30-November—1995

M$EXISTC(argl, arg2)

M$FILTYP(argl, arg2)

M$INDEX(argl,arg2)
M$INDEXB(argl, arg2)

M$LEN(arg1)
M$NINT (argl)
M$SYMBOL(arg1)

M$LOWER (arg1)
M$UPPER(arg1)
M$TSTNO(argl)
M$TIME()
M$SECS ()

M$AGL(argl)

M$LN (argl)

M$LOG(argl)
M$EXP (argl)
M$SIN(argl)
M$COS(argl)
M$TAN(argl)
M$ASIN(argl)
M$ACOS (argl)
M$ATAN (argl)
M$SQRT (argt)

3-36 CHAPTER 3. MONITOR AND COMMAND LANGUAGE
Command Description
M$ABS(argl) returns the absolute value of integer/real/double arg/ as
integer/real/double
M$EXIST(argl) returns 1 or 0, if file arg/ exists or not
M$EXISTD(argl,arg2) returns 1 or 0, if descriptor arg? of frame arg! exists or not
M$EXISTKCargl) returns 1 or 0, if keyword arg/ exists or not

returns the number of the column specified in arg? of the table
argl; returns -2 or -1, if table arg! or column arg?2 doesn’t exist
returns a type_no for file in argl, if the file name does not
include a file type, the type definition in arg2 is appended to
the file name

returns index of string arg? in string arg/ as integer value (same
as function INDEX of FORTRAN 77)

same as MJINDEX but search is done backwards, starting at the
end of the string

returns length of string arg/ (without trailing blanks)

returns nearest integer of real/double arg/

returns the translation of DCL symbol (VMS) or environment
variable (Unix) arg! as a character string

returns character string arg/ in lower case

returns character string arg/ in upper case

returns 1 or 0, if string arg/ is a number or not

returns current date and time as string of 24 characters
returns the current time as no. of seconds elapsed since 1st
Jan. 1970 (as an integer)

returns contents of AGL definitions file agldevices.dat re-
lated to arg! as an ASCII string

returns natural logarithm of real/double arg!

returns base-10 logarithm of real/double arg{

returns exponential of real/double arg! (base e)

returns sine of real/double angle arg! (angle in degrees)
returns cosine of real/double angle arg/ (angle in degrees)
returns tangent of real/double angle arg/ (angle in degrees)
returns arcsine of real/double arg! in degrees

returns arccosine of real/double arg! in degrees

returns arctangent of real/double arg/ in degrees

returns square root of real/double arg!/

Table 3.2: Special Functions available for operations on keywords

30-November-1995

3.6. MIDAS COMMAND LANGUAGE 3-37

1+

DEFINE/PARAM P1 ? 7?7 '"Enter FITS file name:"

!

DEFINE/LOCAL INA/C/1/80 " " all ! that fills all elements of INA with

blanks
DEFINE/LOCAL X/I/1/2 0,0

K = M$INDEX(P1,".mt") ! test, if type of FITS file entered
IF K .LT. 2 THEN

WRITE/KEYW INA {P1}.mt !'if not, append type
ELSE

WRITE/KEYW INA {P1} !'if yes, no need to append type
ENDIF

INTAPE/FITS 1 midd {ina} fnn | $more

The MIDAS commands @@ exal6 test as well as @@ exal6 test.mt will both display
the header of the FITS file test.mt. Note, that this procedure will display the header in
a user friendly way, i.e. one screen at a time (and only work for Unix).

One of the MIDAS verification procedures, verify3.prg shows the usage of all currently
available functions. Enter @ vericopy to copy this procedure into your current directory
(also the usage of verify3 will be shown then).

3.6.7 Interrupting Procedures

Sometimes, it may be necessary to interrupt the execution of procedures. One way to do
this is via the command INQUIRE/KEYWORD which was already discussed before; depending
upon the user input the procedure could continue or stop. But while the procedure is
waiting for input, MIDAS is blocked, no other command can be executed.

With the command PAUSE a procedure is stopped and saved; MIDAS returns to the inter-
active level and you can execute any other command. To resume the stopped procedure
at a later time, enter CONTINUE. Then, the procedure continues with the next command
after the PAUSE line. Only one procedure can be in the ‘PAUSEQ’ state at a time, in other
words it is not possible to stop and save several procedures together.

As an example, consider the case where after some tricky operations on an image you want
to get a grayscale copy of the result on a Postscript Laser printer. Since the grayscale plot
is quite a time consuming operation you want to make sure that the frame is really o.k.
before sending that job to the printer queue.

I+

! Example 17, MIDAS procedure exal7.prg

1+

DEFINE/PARAM P1 ? IMA "Enter input frame: "

DEFINE/PARAM P2 7 IMA "Enter ocutput frame: "

DEFINE/MAXPAR 2 ! max. 2 parameters expected
WRITE/KEYWORD IN_A {P1}

30~November—1995

3-38 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

DEFINE/LOCAL MYRESULT/C/1/80 {P2}
RUN tricky.exe

PAUSE
i

INQUIRE/KEYWORD INPUTC "Result frame o.k.? Enter YES or ND: "
IF INPUTC(1:1) .EQ. "Y" THEN

ASSIGN/DISPLAY LASER

LOAD/IMAGE {MYRESULT}
ENDIF

With @@ exal7 venus jupiter the procedure will start the program tricky to operate
on venus.bdf and produce the frame jupiter.bdf, and then it will stop. Now, you can
check the result by e.g. calculating the statistics of jupiter.bdf or simply displaying it.
Then, resume the procedure via CONTINUE and type YES if you are satisfied with the result
and want the hardcopy or NO if not.

Note also, that we used a local keyword to hold the name of the result frame and not the
usual keyword OUT_A. Thus, we are sure that the result name is not accidentally overwritten
by another command which also uses OUT_A.

3.6.8 Entry points

It is sometimes desirable to group several related procedures into a single file. In MIDAS,
the ENTRY command defines entry points for different procedures in the same file. These
individual procedures are executed by specifying also their entry point besides the file
name in the ‘@@’ command.

'+
! Example 18, MIDAS procedure exal8.prg

1+

DEFINE/PARAM P1 11 NUMBER "Enter input number: "

DEFINE/MAXPAR 1 ! only one parameter expected

WRITE/OUT "Parameter 1 = {P1}"

ENTRY 2

DEFINE/PARAM P1 new C "Enter input: "
DEFINE/MAXPAR 1 ! only one parameter expected

WRITE/OUT "Parameter i = {P1}"

}

ENTRY third

DEFINE/PARAM P1 spiral IMA "Enter input image: "

DEFINE/MAXPAR 1 ! only one parameter expected
WRITE/OUT “Parameter 1 = {P1}"

30-November—1995

3.6. MIDAS COMMAND LANGUAGE 3-39

The string following the ENTRY command (max. 8 characters) is used in the ‘@@’ command
to select the code segment in the file exal8.prg. Thus, @@ exal8,2 old will result in
the display of the line: ‘Parameter 1 = o0ld’; the following ENTRY statements indicates
the end of this code segment and acts like a RETURN statement. Entering @@ exa18,third
produces the output: ‘Parameter 1 = spiral’;and 8@ exal8 -12 will execute the lines
with no preceding ENTRY statement, i.e. write: ‘Parameter 1 = -12’. This example also
shows that parameter P1 is not global, that means it has to be defined in each ENTRY
segment of the procedure file.

Entries may also be used to structure the contents of a MIDAS procedure. In the following
example, the procedure exal8.prg executes different code segments according to its first
parameter.

Y+
! Example 19, MIDAS procedure exal9.prg
1+
DEFINE/PARAM P1 000 C "Enter control flags for entries: "
DEFINE/PARAM P2 sombrero IMA "Enter image to work with:
DEFINE/MAXPAR 2 ! max 2 parameters expected
]
DEFINE/LOCAL LOOP/I/1/1 O
DEFINE/LOCAL ccc/c/1/3 {P1(1:3)}
SET/FORMAT I1
DO LOOP =1 3
IF ccc({LOOP}:{LOOP}) .EQ. "1" @@ exal9,000{LOCP} {P2}
ENDDO
!
! here the different sub-procedures
1

ENTRY 0001
!

CREA/IMAGE {P1} 2,256,256 ? gauss 128.5,128,128.5,128
]

ENTRY 0002
!

READ/DESCR {P1}

ENTRY 0003
i

STATIST/IMAGE {P1}

Then, to read the standard descriptors of image frame luna.bdf we would enter the com-
mand @@ exal9 010 luna; to create the frame sol.bdf we enter @@ exal9 100 sol.

30-November—1995

3-40 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

Finally, in order to create a gaussian image estrella.spc, and read its standard descrip-
tors and do the statistics on the newly created image, we type the command
@Q exal9 111 estrella.spc.

3.7 Context Levels

Besides the fixed (general) MIDAS commands, the user may dynamically create new com-
mands any time during a MIDAS session. Context files provide a way to group commands
which relate to a specific reduction sequence or application package.

For example, the command SET/CONTEXT applicl will execute the MIDAS procedure
applicl.ctx, which would contain all the new command definitions for the application
package applicl as well as any new keyword definitions and default settings.

Each enabled context has a corresponding context no. which links new commands to the
context in which they were created. The command SHOW/COMMANDS displays all additional
MIDAS commands together with their context no. The context no. 0 is used for all com-
mands which are created outside a given context.

Once the user has finished his/her data reduction with applic1, he/she may want to work
with package applic2 on some of his/her data as well. One could either add all commands
of applic2 on top of the ones from applicl or first remove all the commands from the
currently enabled context, i.e. applicl, in one go via the command CLEAR/CONTEXT.
SET/CONTEXT applic2 will then create all the new commands of the package applic2.

Use SHOW/CONTEXTS to display all the currently enabled contexts.

Up to 8 different contexts may be enabled at any time (assuming that all enabled com-
mands fit in the MIDAS command table).

Some of the currently available contexts (application packages) are:

astromet Astrometric Package
ced Reduction of CCD data
cloud Model for absorption lines
daophot Object detection and classification, the DAOPHOT-2 package
do Data organizer for astronomical observations
echelle Reduction of echelle spectra
exsas (*) Analysis of X-ray data from the ROSAT satellite
geotest Utilities to create geometric test frames and other artificial images
imres Programs related to image restoration
invent Object detection and classification, the INVENTORY package
irac2 Reduction programs for the IRAC2 camera
irspec Reduction of IRSPEC spectra
iue (%) [UE-tape reader
long Reduction of long slit spectra

lyman Package for multiple-components fitting of interstellar absorption lines

30-November—1995

3.8. RUNNING A PROGRAM WITHIN MIDAS 3-41

mva Package for multivariate data analysis
optopus Package to prepare observations with the
Optopus facility at La Silla

pepsys Photometric planning and reductions (extinction
correction + transformation to std. system)

pisco Reduction package for data obtained with the PISCO
instrument at La Silla

romafot Photometric extraction package, the ROMAFOT software
spec Package for 1-dim spectra
statist Statistical tests on tables
surfphot Deconvolution and rebinning
tsa Package for analysis of astronomical time series
wavelet Image processing tools using the wavelet transform

For example, the command SET/CONTEXT invent will activate the commands related to
the INVENTORY photometric package.
HELP [CONTEXT] will display all currently available contexts at your site.

Note

The contexts ezsas and iue have been developed at the Maz Planck Institute for
Extraterrestrial Physics in Garching, Germany and ESA Vilspa, Villafranca
Satellite Tracking Station, Spain, respectively. They may be obtained on request
Jfrom these institutions.

3.8 Running a Program within MIDAS

To execute a user—written MIDAS application program (coded in FORTRAN or C), em-
ploy the command RUN. The command RUN MYPROG or RUN myprog will execute myprog.exe
in a subprocess like any other MIDAS command.

It is better practice to embed the command RUN MYPROG in a MIDAS command procedure.
Typical tasks of this procedure would be to provide default values for all parameters, to
check the validity of parameter values, and to store the parameters into the keywords your
program will use.

Let us assume you have written your special filter program and stored the executable
module as bestfilt.exe on disk. Program bestfilt just needs the names of the input
and output image which are obtained inside the program from the keywords IN_A and
OUT-A .

The following MIDAS procedure:

1+
! MIDAS procedure bestfilt.prg
I+

CROSSREF INPUT RESULT

30-November—1995

3-42 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

DEFINE/PARAMETER P1 7 IMA "Enter input frame: "
DEFINE/PARAMETER P2 7 IMA "Enter output frame: "

DEFINE/MAXPAR 2 ! max. 2 parameters expected
i

WRITE/KEYWORD IN_A {P1}

WRITE/KEYWORD OUT_A {P2}

RUN BESTFILT ! .exe is the default type

will check, that the two parameters are valid MIDAS file names and prompt for input if
any parameter is not given. Together with the MIDAS command

CREATE/COMMAND BESTFILT/IMAGE @@ bestfilt

your application will then be integrated smoothly into MIDAS.

Now, you can apply your own filtering algorithm to the image lobo.bdf by typing e.g.
BESTFILT/IMAGE res=perrito in=lobo.

As with data files you can specify a search path for executables via the command
SET/MIDAS_SYSTEM EPATH=directory which is then used by the RUN command. Further-
more, if your module is written in C you can pass parameters to the executable in the
usual way (arge, arv stuff) via, e.g.

RUN BESTFILT parl par2 ...

3.8.1 Debugging of Procedures and Modules

Normally, the command lines of a MIDAS procedure are not displayed on the terminal.
To control the display of the lines of a MIDAS procedure, use the command ECHO. With
ECHO/ON the lines of a MIDAS procedure are displayed on the terminal as they are read
from the file and executed. This way, it is possible to get an impression of how much time
various parts of a procedure need.

With ECHO/FULL the lines are displayed as they are read and if symbols have to be sub-
stituted, the lines are again displayed after substitution. To avoid echoing and return to
a stlent mode, enter ECHO/OFF.

The ECHO command has as parameter the procedure-level-interval where it should be ap-
plicable. Thus you can, e.g., display only the lines of a MIDAS procedure executing at
level 2, etc. Echoing each command line of a MIDAS procedure will identify most of the
syntax and other obvious errors. However, this may not be sufficient for long and compli-
cated procedures.

For these cases use the Midas Command Language Debugger:

DEBUG/PROCEDURE levla,levlb ON/OFF len/disable procedure debugging
DEBUG/MODULE levla,levlb ON/OFF len/disable module (F 77, C) debugging
SHOW/CODE comnd/qualif Idisplay the code of related procedure

30-November—1995

3.9. CATALOGS IN MIDAS 3-43

Once procedure debugging is switched on, e.g., via DEBUG/PROC 1,3 ON, all MIDAS pro-
cedures executing at level 1, 2 or 3 start up in stepwise debugging mode. The prompt
changes to Mdb and each command line is displayed on the terminal, and only executed
when you hit . Furthermore, a set of basic debugging commands may be exe-
cuted, e.g. listing the preprocessed procedure code, setting and clearing break points, and
switching from stepwise to continuous mode. Also the keywords may be inspected at any
moment. This is an important tool because local keywords cannot be checked otherwise;
once the procedure terminates, all local keywords disappear.

If you want to execute any other command, enter PAUSE to interrupt the procedure you're
debugging, execute any other command you want, and enter CONTINUE to continue debug-
ging the procedure.

When you are in the debugger (indicated via the Mdb prompt), use the command ‘h’ (for
HELP) to display all the available debug commands.

To switch the debugging mode for procedures off, use DEBUG/PROC 1,3 off.

If you must debug your application program, first compile and link that program with
the debugger of your host system. Make sure, that this is the same debugger as the one
stored in a system keyword of MIDAS (via the command SET/MIDAS_SYSTEM debug=...).
Enter the command DEBUG/MODULE to switch on the debugging mode for applications. Sub-
sequently, your application (as well as all other programs activated via the MIDAS RUN
command) will be started with the debugger of your system and you can debug it in the
usual way.

Note

Typing $dbz myprog.exe (e.g. on a SUN) would also start up program myprog. eze
in debug mode. But that would not tie the application into the MIDAS envi-
ronment, i.e. the keywords would not be set correctly.

If you just want to list the preprocessed code of a MIDAS procedure use the command
TRANSLATE/SHOW proc. TRANSLATE/SHOW proc X will also check all commands in the
procedure for completeness, so it’s a good idea to execute that command for all your
MIDAS procedures.

The command SHOW/CODE comnd/qualif will display the code of the procedure which is
actually executed when you enter comnd/qualif as a MIDAS command.

Note

For a detailed description of the integration of user applications into MIDAS as
well as complete examples (in FORTRAN and C) see the MIDAS Environment
Document.

3.9 Catalogs in MIDAS

MIDAS catalogs are best described as a list/collection of one of the supported data struc-
tures, e.g. lmages, Tables or Fit files. Catalogs are implemented as ASCII files with

30~November—1995

3-44 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

the file type .cat. A MIDAS catalog has entries either for images or tables or fit files
currently existing in MID_WORK and is then referred to as an Image, Table or FitFile
catalog, accordingly. If a catalog is enabled (via SET/ICAT, SET/TCAT, SET/FCAT), new
entries are added automatically whenever new frames are created, otherwise entries in a
catalog have to be explicitly created via ADD/ICAT, ADD/TCAT, etc.

Frames that are listed in a catalog may then be referenced by their name, as well as

via #n, if n is the entry_no. of the frame in the currently enabled catalog, or #n,cat name
if the entry is in catalog cat_name.cat (only one catalog of each type can be enabled at
any one time).

The following commands are related to the use of catalogs:

CREATE/xCAT cat_name dir_specs x = I, T, F for images, tables, fit files
create catalog cat_name for images/tables/fit files, using dir_specs,
which are the options of the host commands DIRECTORY (VMS) or 1s (Unix).

SET/xCAT cat-name; CLEAR/xCAT
enable/disable automatic addition of entries for images/ tables/fit files in MID_WORK
to catalog cat_name

READ/xCAT cat_name low,hi
display all entries of image/table/fit file catalog cat_name within given range [low,hi]

ADD/xCAT cat_-name frame_list
add image/table/fit file entry(ies) specified in frame_list to catalog cat_name

SUBTRACT/xCAT cat_name frame_list
remove entry (ies) from image/table/fit file catalog cat_name

EXECUTE/CATALOG proc Pl P2 ... P7
execute the MIDAS procedure proc which was written for a single frame
for all frames in a catalog (this command currently only implemented for image catalogs).

WRITE/SETUP CATALOG
setup the necessary keywords for an EXECUTE/CATALOG command

3.9.1 Using Catalogs in MIDAS Procedures

Assume we have written a specific application program, pearl, within the MIDAS envi-
ronment, that processes an input image and produces some numbers as a result. We would
like this program also to work on a sequence of images, not just on one input image:

T+
! Example 20, MIDAS procedure exa20.prg

30-November—1995

3.10. ADAPTING MIDAS TO YOUR PERSONAL NEEDS 3-45

1+

DEFINE/LOCAL CATAL/I/1/1 0O ! define local key CATAL
i

LOOP:

STORE/FRAME IN_A {P1} ! fill key IN_A with parameter 1
RUN pearl ! run our application
GOTC LOOP

If P1 contains the name of an image, the command STORE/FRAME works exactly

like WRITE/KEYWORD. The keyword CATAL is not modified.

However, if P1 contains the name of a catalog of the form file.cat, this catalog (which has
to contain images) is opened and the first entry in the catalog is stored into the keyword
IN_A.

The number of the next entry is saved in the keyword CATAL (so this name is fixed!). In
the loop, the entry number is taken from CATAL and the corresponding frame name put
into keyword IN_A (in our example). If there are no more entries in the catalog, control is
either transferred to a label which may be specified in the command line of STORE/FRAME
or if not given, the procedure is terminated.

So @@ exa20 myframe will work on the single frame myframe,

whereas @@ exa20 mycatal.cat works on all frames with entries in the image catalog
mycatal.cat.

If the program pearl produces also output frames, you should not have the catalog enabled
(cf. SET/ICAT command). Because each new frame gets added to the enabled catalog and
you would end up with an infinite loop!

Furthermore you may write your application and procedure just to work on single frames
and then execute this procedure on all framesin a catalog via the command EXECUTE/CATALOG.
Note, that you have to set up some special keywords in advance for that via WRITE/SETUP
CATALQG; for details see the HELP of EXECUTE/CATALOG.

3.10 Adapting MIDAS to your personal needs

There are commands in MIDAS which help you in tailoring MIDAS to your personal taste
and needs.

Maybe the most important one is CREATE/COMMAND with which you can add abbreviated
and alias command names. As a next step, try out CREATE/DEFAULTS in order to set
up your own defaults for frequently used commands, e.g. size and location of display
and graphics windows in an X11-environment. The command SET/MIDAS_SYSTEM has an
extended set of options to let you change internal MIDAS features, ranging from selecting
your preferred text editor (to be used e.g. in REPORT/PROBLEM) to choosing your own
MIDAS prompt. With the command SET/BUFFER you modify the size of the internal
command buffer.

If you have a MIDAS command procedure named ‘login.prg’ in the directory specified

30-November-1995

3-46 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

by MID.WORK, this procedure will be automatically executed whenever you get into
the MIDAS environment, i.e. when you type INMIDAS (inmidas) or GOMIDAS (gomidas).
Therefore, the procedure login.prg is the place where you should put all the commands
needed to adapt MIDAS.

1+
! MIDAS procedure login.prg

! personal set up file for A. S. Tronomer 940815

1+

CREATE/COMMAND RK READ/KEYWORD !define abbreviations

CREATE/COMMAND WK WRITE/KEYWORD

CREATE/COMMAND RD READ/DESCR

CREATE/COMMAND WD WRITE/DESCR

CREATE/COMMAND XH CREATE/GUI HELP

CREATE/COMMAND SMOOTH/SPECIAL @@ mysmooth !define a new command

CREATE/DEFAULT CREATE/GRAPH ? 400,800 !SﬁGfbrgraphh:dedow
CREATE/DEFAULT CREATE/DISP ? 600,600,400,400 !Sﬁe+iocfordhﬂﬂay
window

SET/MIDAS_SYS edit=vi user=user
SET/MIDAS_SYS prompt=Mid{mid$sess(11:12)}

Assuming you are working with MIDAS unit 22, this procedure will change the MIDAS
prompt to Mid22, use ‘vi’ as editor when you run the REPORT/PROBLEM command, define
the commands RK, WK, RD, WD, XH, SMOQOTH/SPECIAL, and override the preset defaults
for CREATE/GRAPHICS, CREATE/DISPLAY. Also, the user level is set to USER; cf. the fol-
lowing section.

3.11 MIDAS User Levels

Three different user-levels are maintained within the MIDAS system.

NOVICE (beginning MIDAS user)
USER (normal MIDAS user)
EXPERT (expert MIDAS user)

These user-levels are set via the command SET/MIDAS_SYS user=level,
e.g. SET/MIDAS_SYS us=EXPERT.
The level NOVICE is the default level assigned to you when getting into MIDAS.
The following functions of the MIDAS system are affected by the user-level:
HELP facility:
Help text for NOVICE- and USER- level MIDAS users is limited to the screen size of the
terminal, i.e. you have to hit o scroll through the help text, if it is longer than
single screen size.
For EXPERT users the help text is typed out completely.

30-November—1995

3.11. MIDAS USER LEVELS 3-47

ERROR reporting;:
For NOVICE- and USER- level MIDAS users the full error text is displayed.
For EXPERT users only one-line error messages are displayed.
CREATE/COMMAND command:
EXPERT users may create commands which override already existing MIDAS commands

(be careful ...).
All other users may only create new commands.

Note

Currently, there is no difference between the level NOVICE and USER, but
this may change in a future release of MIDAS.

30-November—1995

3-48 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

30-November—1995

Chapter 4

Data Struc_tures

This chapter will contain information on the data structures used in MIDAS such as keys
(keywords), descriptors, frames (bulk data frames), catalogs, and tables.

At the present moment we refer the reader to.the previous chapter 3 which gives a
basic description of data structures used.

CHAPTER 4. DATA STRUCTURES

15-January-1988

Chapter 5

Table File System

This Chapter describes the structure and use of tables in the MIDAS system. Section 5.1 is
a general introduction. The table structure is outlined in section 5.2. Different functional
aspects of the tables are described in sections 5.3 (Input/QOutput), 5.4 (Management)
and 5.5 (Operations). A review of the commands is given in section 5.6, a more detailed
explanation is included in appendix A. Section 5.7 describes format files to control in-
put/output operations. Finally, section 5.8 contains an example that can be run at a
terminal with graphic capabilities as TUTORIAL/TABLE.

5.1 Tables in Image Processing

The purpose of image processing systems is to extract information from image data. Sys-

tems which are designed to treat large numbers of images must also be able to analyse the

data extracted from the images. The standard Database Management Systems (DBMS)

provide many of the facilities needed; however, some of the desired interactive graphics,
statistics, and mathematics are not always available. Therefore, a dedicated table system

has been made to serve these purposes in MIDAS (Grosbgl and Ponz, 1985, Mem.S.A.It.,
56, 429).

The use of tables can be divided into three main categories: internal, external, and
user applications. One of the advantages of the MIDAS Table System (MTS) is that tables
for these different purposes have the same structure and can be treated with the same set
of routines. The three categories are discussed separately, although there is some overlap
in the applications.

Internal tables are mainly used by MIDAS to compute transformations which later will
be applied to images. Typical examples are dispersion relations, characteristic curves
and coordinate transformations.

External tables: During a reduction procedure, data from external catalogs or data base
may be needed. This information can be made available by transferring them to the
MTS format. Examples are given: catalogs of photometric data which can be used to

5-1

5-2 CHAPTER 5. TABLE FILE SYSTEM

establish transformations from internal magnitudes to a standard photometric system,
or astrometric catalogs for computations of accurate reference frames for images.

User tables are used for storage of values computed during the reduction (e.g. stellar
magnitudes, line intensities, or isophotal diameters of galaxies). This provides an easy
way to save such heterogeneous data in a computer readable format. Further, the
user can investigate the properties of the data (e.g. distributions and correlations of

different values, and so on).

5.2 Structure of Tables

Table data are arranged in columns and rows, and stored in MIDAS files with the extension
.tbl. The entry at a given row and column may be either a single value or an array. The
items in one row may describe different properties of the same object or feature. All
elements in a given column must be of the same type and thus be associated with the
same property. For instance, a table with stellar data could contain the following items
in each row: identification, right ascension, declination, magnitude, and spectral type.
The first column would then contain all the stellar identifications, the second the right
ascensions, etc.

The supported column data types are numerical data (8/16/32-bit integers or 32/64-bit
reals) and character strings.

Each column is tagged with a user-defined label, a display format and optional physical
units and can be referred to either by its absolute number or its label.

An item in a table is accessed by giving its column and row in addition to the table
name. The row number can either be given as an absolute value (i.e. the sequence number)
or indicated by the value in a previously defined reference column.

In addition to the normal columns all tables contain a SELECT and a SEQUENCE column:

e The SELECT column enables the user to define and work with a subset of his table
by flagging the rows that satisfy a selection criteria. The subtable will be used by
commands that do not modify the table information whereas the selection flag will
be reset by commands that modify table information and this before taking any
action. The values of this column can be accessed in the COMPUTE command by
using the name SELECT (short form SEL).

e The SEQUENCE column contains the sequence number of each row. The values of this
column can be accessed in the COMPUTE command by using the name SEQUENCE
(short form SEQ).

If an element is not defined it will be a NULL entry and will be listed as a ”*” for all
data types except for character strings. In that case it will be listed as an empty field.

The tables may be physically stored on disk in two formats: by records corresponding
to the natural way of storing sequentially the rows and transposed , where all the values of
a given column are stored together(default mode). A table can be always expanded in the
sense that its number of columns and rows is automatically increased when the allocated
space is exceeded.

1-November—1992

5.3. INPUT/OUTPUT OF TABLES ‘ 5-3

5.3 Input/Output of Tables

The exchange of table data to and from the MTS is mainly done through standard ASCII
files. This makes it easy for any program to get data from the MTS and to transfer data
into it. Thus, output files from text editors and Database systems containing table data
in a fixed format can directly be transferred into the MTS format.

Conversion between the ASCII data file and the table is defined by a format file (see
section 5.7). If the format file does not exist, the conversion is done automatically via
list-direct input in free format. In this case only REAL*4 and integer data, without NULL
values are allowed.

Command Description
CREATE/TABLE Convert from ASCII files to MTS format
PRINT/TABLE Transfer MTS information to the ASCII file assigned as output.

The printer is used by default.

Table 5.1: Conversion between ASCII Files and MIDAS Tables

Normally, table files should be copied to magnetic tape in the FITS format for tables
(Harten et al., 1985, Mem.S.A.It., 56, 437) to make it easy to read them again on other
computers. The conversion to FITS is done by the MIDAS command OUTTAPE; FITS
tables are loaded onto disk by the command INTAPE.

5.4 Management of Tables

The management of tables is divided into four tasks: defining, displaying, modifying and
interactive editing of tables. The commands that define or modify a table will update its
descriptor HISTORY. As the length of this descriptor is limited, if you are doing a lot of
operations on the same table, you may get a descriptor overflow. In that case you can
turn off the automatic addition of history.lines by adding an integer descriptor named
HISTORY_UPDA to the table and setting it to 0.

5.4.1 Definition of Tables

External tables are created as described in the previous section and the definition of their
content is taken from the format file specified. To create a user table one can also use the
CREATE/TABLE command by giving NULL as input. This will create a table of the specified
size where all elements are NULL. Columns in a table can be created or deleted by using the
commands CREATE/COLUMN and DELETE/COLUMN. The available commands are collected in
Table 5.2. Some commands use internal tables to store results. In such cases the tables
will be created and defined by the system according to defaults. Labels, display formats
and units in an existing column are modified by the NAME/COLUMN command.

1-November-1992

5-4 CHAPTER 5. TABLE FILE SYSTEM

Command Description

CREATE/TABLE Create a table with specified size.
CREATE/COLUMN Create a column.
DELETE/COLUMN Delete column(s).

Table 5.2: Commands to Define Tables

5.4.2 Displaying Tables

Both the table parameters and the elements values can be displayed. The former are shown
using the SHOW command Table values are listed out by the PRINT and READ commands,
the output formatting being done using the display format associated with each column.
Supported formats are Fortran-77 standard formats and special display formats to accom-
modate sexagesimal and time values. Finally table values can be plotted on a graphic
device or display unit using the PLOT or OVERPLOT and LOAD command respectively. A list
of these commands is given in Table 5.3.

Command Description

SHOW/TABLE Show table characteristics

PRINT/TABLE Print elements in table

READ/TABLE Read elements in table and display them on the terminal

PLOT/TABLE Plot table elements on graphic device

OVER/TABLE Plot table elements on top of a previous plot on the graphic
device

LOAD/TABLE Load table elements on the overlay plane of the display

Table 5.3: Commands to Display a Table

5.4.3 Modification of Tables

Elements in a table can be inserted, changed, and deleted. These functions are all per-
formed by the WRITE/TABLE or COPY commands (See Table 5.4). The element to be
modified must be defined by giving its column and row location. An element is deleted if
the value is set to NULL. A whole row is considered deleted if the element in the reference
column is NULL. The data type of a column cannot be changed once the column has been
created. However, the command COPY/TT can be used to copy and convert the values of a
column of a certain type into a column of an another type.

It is possible to define a “subset” of a table by the SELECT command. All commands
that do not change a table element will only use the subset selected. By selecting ALL the
whole table is selected.) .

1-November-1992

5.4. MANAGEMENT OF TABLES 5-5

Command Description

WRITE/TABLE Write value into a table element.

COPY/KT Copy a keyword into a table element.

COPY/TK Copy a table element into a keyword.

COPY/TT Copy columns values into another column.

COPY/TI Transform the format of the file from table into image.
COPY/IT Transform the format of the file from image into table.

Table 5.4: Commands to Modify a Table

It is also possible to transfer data from one table to another. The four commands
described in Table 5.5 can be used. Interactive identification of table entries is done with

Command Description

COPY/TT Copy all selected elements with identical reference values.
COPY/TABLE Copy all selected elements from one table into another.
MERGE/TABLE Merge common columns in several tables.
PROJECT/TABLE Copy a set of columns from one table into another.

Table 5.5: Commands to Transfer Table Data

the command IDENTIFY/xxx, where xxx is CURSOR for the image display and GCURSOR
for the graphic screen.

5.4.4 Interactive Editing of Tables

An interactive editing facilify EDIT/TABLE exists in MIDAS to create and modify tables.
The editor works in a “page-oriented” form, a “page” consisting of 20 rows and several
columns to fill the screen format, using a Keypad mode or a command mode to perform
the editing functions. The command mode is accessible by hitting CNTL-Z. Most of the
editing functions are implemented on the right keypad of the keyboard (Table 5.2) as well
as on the left keypad if it exists (e.g on Sun workstations). Some keys of the central
keyboard are also recognized (Table 5.7). The functions only available in command mode
are listed in Table 5.6

1-November-1992

5-6 CHAPTER 5. TABLE FILE SYSTEM

Command Description
EXIT to finish the editing session and produce the edited table
QUIT to finish the editing session without producing the output table

Table 5.6: Table Editor COMMAND Functions

Command Description

Tab put the cursor in the next column field.
Ret next row.
Delete delete previous character.

Backspace move the cursor to beginning of line.

T

Cursor Arrows move the cursor 1, }, +, or —.

Table 5.7: Layout of the Table Editor Central Keypad

1-November-1992

5.4. MANAGEMENT OF TABLES

Page Next
(L1) (L2)
Command Find
Advance Backup
(L3) (L4)
Bottom - Top
Right P Crea Col
(L5) (L6)
Left P Del Col
Word Change
(L7) (L8)
Show Sort
Line Row
(L9) (L10)
Screen Status

Gold
(F1)

H Functions
(F2)

H Keypad

Figure 5.1: Layout of the Table Editor Left Keypad

Page Section Right P
(KP 7) (KP 8) (KP 9)
Command . Léﬂ: P
Advance Backup . Crea Col
(KP 4) (KP 5) (KP 9)
Bottom Top Del Col
Word Eol - Change
(KP 1) (KP 2) (KP 3)
Show sort
Line Row
(KP 0) (KP.)
Screen Status

Gold
(F1)

(F2)

H Left Key

H right Key

Figure 5.2: Layout of the Table Editor Right Keypad

1-November-1992

5-8 CHAPTER 5. TABLE FILE SYSTEM

5.5 Operations on Tables

In this section we describe several of the mathematical operations that can be performed
on table data. More specialised topics are described in Chapter 8, ”Flttmg of Data”, and
in Chapter 11 Vol B, "Multivariate Analysis Methods”.

Arithmetic operations between columns in a table are done with the command
COMPUTE/TABLE. The selection flag is reset by this command. Special functions, named
according to the FORTRAN mathematical library, are also available.

Simple statistical descriptors are displayed with the command STATISTICS/ TABLE.
These descriptors are stored in output keywords for further usage in a procedure.

A set of histogram-related commands, with qualifier HISTOGRAM, allow the graphic
display of the histogram of a column (PLOT and OVERPLOT commands), the printout of
histogram values (READ and PRINT commands), or the generation of a 1D image with the
histogram of a column (command COMPUTE/HISTOGRAM).

Linear or polynomial fits in one or two dimensions can be performed on table columns
with the command REGRESSION, qualifiers LINEAR and POLY respectively. The coefficients
and error estimations are kept in output keywords that can be stored as table descriptors
with the command SAVE/REGRESSION. Fitted values are calculated with COMPUTE/REGRESSION.

A topic of special interest is the generation of table data from an image and vice versa.
A transformation was already described in section 5.4.3, and consists in copying the data
from one format to the other, using the commands COPY/IT and COPY/TI. Tabular data
can be converted into 1D or 2D image data with the command CONVERT/TABLE. This
command works in several modes controlled by a parameter. In all cases the sampling
domain of the result is defined by a reference image. The modes currently available are :
POLY (polynomial fit to table data), SPLINE (spline approximation), PLOT (scattergram
of the data in the table) and FREQ (2D histogram of the data in the table).

For more specific resampling and interpolating algorithms, the commands REBIN and
INTERPOLATE will provide full conversion between image and table formats (qualifiers TT,
TI, IT and II).

5.6 Command Overview

In this section we include a short description of the table commands in alphabetical order,
(see the Detailed Command Description in Volume C of the MIDAS User Guide for a
more detailed explanation).

Reference to tables is done by the filename. The extension .tbl must be appended to the
filename in commands which can work both on images and tables (e.g.: READ/DESCRIPTOR
table.tbl).

Reference to columns can be done either by “name” or by “number”. Columns are re-
ferred to by name as :1abel, where label is a character string (Note the starting colon
“" in front of ‘label’.) The string (max. 16 characters, case insensitive) should start
with a letter and may contain alpha-numeric characters and the underscore symbol.

1-November-1992

5.7. TABLE FORMAT FILES 5-9

Command Description

COMPUTE/TABLE Compute numeric expression of columns. _
COMPUTE/HISTOGRAM Compute column histogram, result in table or image format.
REBIN Resampling data in table/image formats.

INTERPOLATE Spline interpolation of data.

REGRESSION/LINEAR Compute linear regression.

REGRESSION/POLY Compute polynomial fit.

SAVE/REGRESSION Store regression coefficients as table descriptors.

COMPUTE/REGRESSION Compute fitted values using the regression coefficients.
STATISTICS/TABLE Simple statistics on a table column.

“Table 5.8: Operations on Table Data

Columns are referred by number as #n, where n is the integer defining the column
position.

Access to rows can be done in two modes, “sequential” or “direct”.
b

e Sequential access is defined by the row number as @n, where n is an integer
constant. '

e Direct access is done through the values in the reference column.

| 5.6.1 List of Commands

" Table 5.9 contains a list of table commands. _
Other table related commands are described in Chapter 8, “Fitting of Data”, and in
Chapter 11, Vol B,“Multivariate Analysis Methods”.

5.7 Table Format Files

The conversion of ASCII data into table data can be done automatically (default option)
for tables with REAL*4 columns. In the case of more complex tables, a format file has to

be provided to control this conversion. .

Format files are ASCII files with an extension .fmt, used optionally by the commands
CREATE/TABLE, READ/TABLE and PRINT/TABLE to control the input/output conversion.
They may contain first a FS statement, they must contain then one DEFINE/FIELD state-
ment for each column of the table and optional comment statements. DEFINE/FIELD
statements follow the syntax:

DEFINE/FIELD posi pos2 type [format] label [unit]

where:

1-November-1992

5-10) CHAPTER 5. TABLE FILE SYSTEM

COMPUTE/TABLE table column = expression

COMPUTE/REGRESSIOE table column = name[(ind-vars)]

- COMPUTE/HISTOGRAH image = table column

COMPUTE/HISTOGRAH table/TABLE = table column

COEVERT/TABLE image = table indv[,indv] depv refima method [par]
COPY/KT keyword table column row

COPY/TK table column row keyword

COPY/TI in-table out-image

COPY/IT in-image out-table

COPY/TT in-table column [out~table] column

COPY/TABLE in-table out-table

CREATE/COLUHE table column [unit] [format] [typel
CREATE/TABLE table ncol nrow filename [formatfile]
DELETE/COLUME table column [...]

EDIT/TABLE table [ncol nrow]

IDEETIFY/CURSOR table identifier x [y] [tolerance]
IDEETIFY/GCURSOR table identifier x [y] [tolerance]
IETERPOLATE/IT out-table i,d in+image 5 [degree]
IETERPOLATE/TI out-image in-table i,d refima 5 [degree]
IETERPOLATE/TT out-table i,d in-table i,d s [degreel
JOIE/TABLE tabl coli,col2 tab2 coll,col2 ocuttab toll,tol?2
LOAD/TABLE tablel columni column2 [column3] [p1 [p1] [p3]1]
MERGE/TABLE tablel [table2 ...] out-table

HAME/COLUMN table column [column] [unit] [format]
OVERPLOT/HISTOGRAM table column [bin [min [max [L0OG101]]]
OVERPLOT/TABLE table columni column2 [s-type]
PLOT/HISTOGRAH table column [sc-x,sc-y] [bin [min [max]]] [LDG10]
PLOT/TABLE table columni column2 [sc-x,sc-y]
PRIET/HISTOGRAH table column [bin [min [max]]]

PRIET/TABLE table [columni ...] [rowl [row2]] [file [format])
PROJECT/TABLE in-table out-table column [column ...]
READ/HISTOGRAK table column [bin [min [max]]]

READ/TABLE table [columni ...] [rowi [row2]] [format]
REBIE/IT out-table i,d[,b] in-image func parm intop
REBIN/TI out~image in-table i,d[,b] refima func parm intop
REBIE/TT out-tb i,d[,b] in-table i,d[,b] func parm intop
REGRES/LINEAR table dep-var ind-varl,ind-var?, ...
BEGRES/POLYH table dep-var ind-vari[,ind-var2] degreeil[,degree2]
RETRO/TAB table

SAVE/REGRESSIDE table name

SELECT/TABLE table logical-expression

SET/REFCOLUME table column

SHO¥/TABLE table

SORT/TABLE table column

STATISTICS/TABLE table column

YRITE/TABLE table column row value

Table 5.9: Table Commands

1-November-1992

5.7. TABLE FORMAT FILES 5-11

posl — INTEGER, is the optiona,l..starting‘ position of the field.
pos2 — INTEGER, is the optional last position of the field.
type — defines the type of information as:

R — REAL number, single precision,

D — real number, DOUBLE PRECISION,
I — INTEGER number,

C — CHARACTER string.

format — defines the format associated with that field and used for listing out its values.
Supported format are FORTRAN 77 standard format or special formats to accommo-
date sexagesimal values (Sww.dd) and time values (Tww.dd). These formats may be
defaulted, the defaults being defined as:

Aw — for CHARACTER string, where w = pos2-posl+1
I11 — for INTEGER
E12.6 — for REAL in single precision .
D24.17 — for REAL in double precision

label — defines the associated label, according to the rules in section 5.6.
unit — defines, optionally, -the associated units.

The statement FS defines the list of field separators used in the ASCII data file. It is
only used when posl and pos2 are not specified in the DEFINE/FIELD statement. This
statement should be written as follows: FS = "f1f2f3”. The number of field separators -
is not limited. If the blank is used as field separator and if the ascii data file contains
character strings, the strings have to be enclosed by double quotes. Per default,

FS = "\t”, i.e TABS and blanks are used as field separators.

The following format file

i+

{ Example format file testl.fmt

t+

DEFINE/FIELD 1 9 C :NAME "NGC"
DEFINE/FIELD 10 14 R F5.2 :RA "HOUR"
DEFINE/FIELD 16 20 R F5.2 :DEC "DEGREE"
DEFINE/FIELD 22 22 C :TYPE " "
DEFINE/FIELD 24 26 I :RV "KM.SEC-1"
END

corresponds to an ASCII file, testi.dat say, with the following record structure:

1-November-1992

5-12 CHAPTER 5. TABLE FILE SYSTEM

123456789012345678901234567890

NGC 3379 10.75 12.85 E 893

(The ruler, of course, is not part of the data file.)
The following format file, using FS statement,

1+

! Example format file test2.fmt

1+

FS = " DEFINE/FIELD C :NAME "NGC"

DEFINE/FIELD R F5.2 :RA "HOUR"

DEFINE/FIELD R F5.2 :DEC "DEGREE"

DEFINE/FIELD C :TYPE " "

DEFINE/FIELD I :RV "KM.SEC-1" i
END

can be used to create a table from the ASCII file test2.dat

NGC 3379<TAB>10.75<TAB>12.85<TAB>E<TAB>893

5.8 Example

As an example of use of the table file system, we here describe the tutorial procedure
executed via the TUTORIAL/TABLE command. This procedure uses a subset of the Uppsala
General Catalogue. The format of the catalogue is defined in the file ugc.fmt as follows:

DEFINE/FIELD 9 20 R Gi1i.6 :RA "HOUR"
DEFINE/FIELD 21 32 R G11.6 :DEC '"DEGREE"
DEFINE/FIELD 33 44 R G11.6 :DB "ARC.MIN."
DEFINE/FIELD 45 56 R Gi1.6 :DR “ARC.MIN."
DEFINE/FIELD 57 68 R G11.6 :BT "MAGNITUDE" ‘
DEFINE/FIELD 69 80 R G11.6 :RV "KM.SEC-1"
END
This file and the actual ASCII data in ugc.dat will be copied into your workspace.
The first four lines of the data file have the following layout:

123456789012345678901234667890123456788012345667890123456789012345678901234567890

0.0117 16.87 6.500 6.300 12.00 1047.
0.0233 20.47 4,000 3.800 12.70 *
0.2933 59.03 8.000 10.00 * *
0.3683 16.20 6.800 5.100 14.60 *

(The ruler, of course, is not part of the data file.)
This tutorial shows the usage of some of the basic table file commands to analyse and
display the data set. '

1-November—-1992

5.8. EXAMPLE

CREATE/TABLE ugc 10 700 ugc
NAME/COL ugc :RA Fi1.3
NAME/COL ugc :DEC G12.8
SHOW/TABLE ugc
READ/TABLE ugc @1 €30
!

PLOT/TABLE ugc :DR :DB
!

REGR/LINEAR ugc :DB :DR
READ/KEY OUTPUTD

!

READ/HIST ugc :BT
PLOT/HIST ugec :BT

1

SELECT/TAB ugc :BT.LT.13.5
!

STAT/TAB ugc :DR
READ/HIST ugc :DR

i

PLOT/TAB ugc :BT :RV
1

SELECT/TAB ugc :RV.GT.4000.0
!

PRINT/TAB ugc
]

COMPUTE/TAB ugc :MBT = :BT-25.-5.%LOG10(:RV/50) - ! compute abs.magnitude

create the table file (UGC.tbl)
change format

! change format

display structure
display a few entries

plot diameters in red and blue bands

linear regression on these variables
and display stored coefficients

display results on terminal
and plot device

select brightest objects

do statisticg.on the subset,
display the result

and plot the selected set

select new subset with largest rad.vel.

print them

NAME/COL ugc :MBT "ABS.B.MAG." ! include units

COMPUTE/TAB ugc :SIZE = :RV#SIN(0.000291%:DB)#20 ! diameter

NAME/COL uge :SIZE "KPC"
1

PLOT/TAB ugc :MBT :SIZE

! include units

! display result

1-November-1992

5-13

5-14 CHAPTER 5. TABLE FILE SYSTEM

1-November-1992

Chapter 6

Graphic and Image Display

6.1 Graphic Facilities

This section describes the facilities of the graphics package in MIDAS. The package makes
use of the Astronet Graphic Library (AGL) , which has been accepted as the standard
for maintenance and development of the MIDAS graphics software. An overview of the
graphic commands currently available in MIDAS is presented.

6.1.1 Introduction

In order to provide a device-independent graphics package, the Italian Astronet Graphic
Library has been adopted as the standard low level library for the plot package in MIDAS.
One of the main reasons for using the AGL package rather than one of the more evolved
and sophisticated packages (e.g. GKS) was the fact that the AGL package is simple;
meanwhile AGL is still capable of doing the things one needs for reasonably advanced
graphics, in particular with respect to interactive facilities. The AGL graphics library is
fully integrated within the MIDAS directory structure and is generated like every other
MIDAS subroutine library during installation. For an extensive description of the package
we refer to the AGL User’s and Installation Guides for Version 3.

The graphic facilities available in MIDAS can be divided into three main categories of
commands, based on their functionality:

e general plot commands that deal with the setup of graphic packages: the assignment
of the graphics device, routing a plot file to a graphic device, and general (over)plot
commands for text, line, symbols, etc.;

e main plot commands which do the actual plotting and overplotting of data (i.e.
images, tables, descriptors or keywords);

e cursor commands which use the graphics cursor.

Below, subsection 6.1.2 first describes how graphic display units (e.g. terminals, work-
stations) can be activated inside the MIDAS environment. Thereafter, in the subsec-

6-1

6-2 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

tions 6.1.3 to 6.1.5 the plot commands available in MIDAS will be discussed. In sub-
section 6.1.6 information can be found about how plot files can be manipulated. In sec-
tion 6.1.8 a number of examples are presented to illustrate the available commands and
their syntax. Finally, in subsection 6.1.9 an overview is given of all the available graphic
commands in MIDAS.

6.1.2 Graphic Devices

The characteristics of graphic devices differ from device to device. Therefore, in order to
obtain a useful plot, the characteristics of the graphics device in use have to be known in
~ advance. MIDAS can run on various combinations of alpha-numerical terminals, image
display systems and graphic devices. How to specify the graphic output device for these
possibilities is described below.

If you are using the standard MIDAS configuration (alpha—numerical and graphic ter-
minal together with an image display), the MIDAS start—up procedure MIDAS takes care
of the proper assignment. If you want to obtain graphic output on a workstation run-
ning under X-Windows you have to issue the command CREATE/GRAPHIC. This command
creates a window on the workstation where subsequent plot and overplot commands will
write. Up to 4 graphic windows can be created this way. Removal of a window can be
done with DELETE/GRAPHIC.

To get plot output on a graphics device (the graphic terminal included), a proper
assignment for that device has to be done in advance. Obviously, the assignment depends
on the type of device in use and hence may differ from system to system. If your institute
mainly uses graphic terminals of brand “abc”, life would be much simpler if this device
were the default one and therefore the assignment to be included in the MIDAS startup
procedure. You can ask your local MIDAS support to do so. The assignment to be made
is:

e for VAX/VMS systems: ASSIGN AGL_type AGL3DEV;
e for UNIX systems (C-Shell): setenv AGL3DEV AGL_type;
e for UNIX systems (Bourne-Shell): AGL3DEV=AGL_type.

Changing the assignment from the default device to another one can always been done in
the login.prg file (see Chapter 3). This of course would be useful if a particular device
is not assigned by the MIDAS startup procedure but is used regularly. Finally, if you run
MIDAS from a stand-alone (non-graphic) terminal, an assignment to the NULL device or
to the postscript device can be made. In the first case only a graphic meta file will be
created; in the later case a postscript file. In case of problems consult your local MIDAS
support or your system manager.

Table 6.1 contains the most commonly used graphics devices (the AGL- type ’s) currently
supported by MIDAS.

1-March-1995

6.1. GRAPHIC FACILITIES

Device Identification AGL.type
DEC VT125 terminal vt125
DEC VT240 terminal vt125
DEC VT125 terminal with Retrogr. | tkg.vt640
DEC VT100 terminal with Retrogr. | tkg.vt640
CIT101 with CIG 201 card tkg.cit101
GraphOn GO-250 tkg.vt640
HDS 2200 tkg.hds22
HPGL plotters hpgl
LNO03 plus laser printer tkg.In03
Tektronix 4010 tkg.t4010
Tektronix 4014 tkg.t4014
Tektronix 4100 series tkg.t4100
QMS laser printer tkg.qms
X-Windows idi

Apple Laser Writer pscript
Postscript printers pscript
Postscript file pscript
Versatec V-80 raster
Raster devices raster
Null device null

Table 6.1: Supported Devices

6.1.3 General Commands

6-3

The general commands in MIDAS mostly concern setting the plot characteristic, dispiaying
the setup, assigning the graphic output device, and sending an existing plot to a device.

These commands are:
reate a graphic window on the workstation

CREATE/GRAPHIC

DELETE/GRAPHIC delete a graphic window from the workstation

CLEAR/GRAPHIC

SET/GRAPHIC
SHOW/GRAPHIC

ASSIGN/GRAPHIC
COPY/GRAPHIC

clear the graphic screen or window

set the graphic characteristics
show the graphic characteristics

assign the graphic device

route the plot file to a graphic device

The first two commands in this table are meant for users with workstations running

1-March—-1995

6-4 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

the X-Window display software. With these commands one can create and delete graphics
window(s). The create command allows control over the size of the graphics window as
well as the position where it is to be put. CLEAR/GRAPHIC erases the graphics window or
graphics terminal screen.

SET/GRAPHIC and SHOW/GRAPHIC

SET/GRAPHIC plays an important role in the plot package. This command gives the
user control over the plot size, line types (LTYPE), line thickness (LWIDTH), symbol type
(STYPE) and size (SSIZE), etc. In Table 6.2 the various options that can be set with the
SET/GRAPH command are listed, together with the default settings. Below we briefly dis-
- cuss some of the options. More extended documentation can be found in the help file of
the SET/GRAPHIC command.

By default, all data points in frames, keywords and descriptors are connected with a
line; data points in tables are plotted individually. This setting can be changed with the
LTYPE and STYPE options in SET/GRAPH. Normally, when plotting data points in a frame,
descriptor, or keyword, the plot package first looks for the line type. If the line type is set
to 0 (LTYPE=0) it looks for the symbol (STYPE). If both LTYPE and STYPE are found to be
0 a fatal error occurs.

In case of table plotting the package first looks for the symbol type. When STYPE=0 a
line will be drawn corresponding to LTYPE. An error occurs if both LTYPE and STYPE are
0. For histogram plotting or when the bin mode @BINis on (BIN=0N), the package needs a
line type greater than zero; an error occurs when LTYPE=0. Table data can not be plotted
with BIN=0N. .

By default, before a PLOT command is executed the graphics window is erased. To
switch off the erase, you can use the option CLEARGRA=0FF. By doing so, subsequently
issued plot commands will run in overplot mode: the screen content is kept. Hence, by
issuing a number of PLOT commands you can easily produce several plots on one screen
(page). To help you more in designing the layout of your plot scales (and sizes) as well as
the position on the screen (paper) can be pre-defined by XSCALE and YSCALE, and XOFFSET
and YOFFSET.

The default font used by MIDAS is a simple one but is plotted fast. More fonts are
available to enable you to obtain publication quality graphics output. With the command
SET/GRAPHIC FONT=n, where n is larger than 0, you can use a different (nicer) font than
the default one. Currently, the following font sets are available:

0 Default built-in font

High quality roman font

Greek font

Script font

Old English font with astronomical symbols

O B W N e

Tiny roman font, simpler than 1

1-March-1995

6.1. GRAPHIC FACILITIES 6-5

To display these fonts and the associated character and symbol sets you can run the
tutorial TUTORIAL/GRAPH GENERAL.

If a colour postscript printer is at your disposal you may use the colour setting options
COLOUR=n and BCOLOUR=n.

In the SET/GRAPH command defaults for single parameters can be (re)set by: SET/GRAPH
par name=value. The reinitialization of all plot parameters can be done by: SET/GRAPHIC
or SET/GRAPHIC DEF. '

ASSIGN/GRAPHIC and COPY/GRAPHIC

Table 6.1 contains the graphic output devices on which MIDAS plots can be produced. The
user can specify one of these output devices in advance by the ASSIGN/GRAPHIC command.
In addition to the hardcopy devices available, the command can also be used to reassign
- the graphics window. For example, the user can indicate that the plot has to be produced
on a second graphics window, or on a display window of his/her workstation. After the
plot command has finished and a plot file is produced, this plot file can be sent to a device
by the COPY/GRAP command. This command accepts the same graphics devices as the
ASSIGN/GRAPH command. For workstations this offers the possibility to copy a graph from
one window to another. In section 6.1.6 more information can be found about how MIDAS
takes care of your plot files. N

Example:

assign/gra laser nospool

plot/tab example ? #1 -50,-70,10,90
overplot/tab example 7 #2 -50,-70,70,90
copy/graphic laser

copy/graphic g,0

assign/gra g,0

In this example we first assign the graphics output to become the output device. However,
the plot file is kept on disk and not spooled to the printer. After the plot is finished, it is
sent to the printer. Hereafter, we also send a copy to the graphics window (provided one
exists). Finally, we assign the graphics window as the output device.

6.1.4 Plot Commands

As described in Chapter 3, the MIDAS data structures include frames, masks, tables,
catalogues, descriptors, and keywords. With the exception of the masks and catalogues,
the plot package is able to plot the data stored in these structures. Data can be plotted
with PLOT/ as well as with OVERPLOT/ commands. In the first case, MIDAS will start
a complete new plot (e.g. a graphic terminal screen will be erased and old plotfiles will
be deleted); in the latter one MIDAS will extend the existing plot information without
erasing the results of previous plot commands.

In addition of the plot commands that enable the user to plot data command are avail-
able to produce coordinate box(es) within subsequently data can be overplotted, and com-

1-March—1995

6-6 'CHAPTER 6. GRAPHIC AND IMAGE DISPLAY
Option Value and meaning and defaults
DEFAULT no value; sets plot package in default mode
XAXIS= AUTO or xstart,xend,xbigtick,xsmall_tick in world coordinates;
when xsmall tick < 0 a logarithmic axis is plotted; the default is AUTO
YAXIS= AUTO or ystart,yend,ybig tick,ysmall tick in world coordinates;
when ysmall tick < 0 a logarithmic axis is plotted; default is AUTO
FRAME= RECT or SQUA; default is RECT
XSCALE= AUTO, scale in world units/per mm or size of plot
YSCALE= AUTO, scale in world units/per mm or size of plot
XOFFSET= | NONE or the offset of the left y axis to left device boundary
YOFFSET= | NONE or the offset of the lower x axis to lower device boundary
XFORMAT= | NONE, AUTO or format description (see below)
YFORMAT= | NONE, AUTO or format description (see below)
PMODE= 0 (plot without frame and legend), or
1 (plot with frame and some information}, or
2 (plot with frame and full legenda) which is default
FONT= font to be used to write text; default is 1; (see below)
LTYPE= 1 (solid line) to 6 (long dash - short dash); (see below)
default is 1; 0 corresponds with no line at all
LWIDTH= set line width; 0 or 1 for single width; 2, 3 and 4 for increasing thickness
STYPE= 1 (dot) to 21 (left arrow); default 4 (cross); 0 corresponds with no symbol at all
SSIZE= value; set the scaling factor of symbols; default is 1
TSIZE= value; set the scaling factor for text strings; default is 1
| TWIDTH= value; set the line width for text strings; default is 1 ~
BINMODE= | OFF or ON; default is OFF
COLOUR= number ranging from 0 to 7; the default is black (1)
The setting has only effect on graphic display devices supporting colour
BCOLOUR= | number ranging from 0 to 7; set the background colour; the default is black (1)
The setting has only effect on graphic display devices upporting colour
CLEARGRA= | ON or OFF. OFF will not clear graphic screen for a PLOT command;
default ON

Table 6.2: SET/GRAPHIC Options

1-March—1995

6.1. GRAPHIC FACILITIES 6-7

mands to add text, symbols, and (grid) lines. An overview of the commands is given below.

PLOT/AXES plot a box with tick marks, tick labels and axes labels

OVERPLOT/AXES overplot a box with tick marks, tick labels and axes labels
PLOT/CONTOUR plot contours of a two-dimensional image
OVERPLOT/CONTOUR overplot contours of a two-dimensional image
PLOT/COLUMN plot a column of an image

OVERPLOT/COLUMN overplot a column of an image

PLOT/DESCRIPTOR plot an entry in a descriptor

OVERPLOT/DESCRIPTOR overplot an entry in a descriptor

PLOT/GRAY plot gray scale map of a two-dimensional image
OVERPLOT/GRAY overplot gray scale map of a two-dimensional image
PLOT/HISTOGRAM plot a histogram of a table column or image
OVERPLOT/HISTOGRAM overplot a histogram of a table column or image
PLOT/KEYWORD plot the contents of a keyword

OVERPLOT/KEYWORD overplot the contents of a keyword

PLOT/PERSPECTIVE perspective plotting (3-dim.) of an image

PLOT/ROW plot a row (line) of an image

OVERPLOT/ROW overplot a row (line) of an image

PLOT/TABLE plot table data

OVERPLOT/TABLE overplot table data

OVERPLOT/ERROR ~ overplot table column containing errors

PLOT/VECTOR plot vector map from two 2-dim. images with smoothing option
OVERPLOT/VECTOR “overplot vector map from two 2-dim. images with smoothing option
LABEL/GRAPHIC plot text in an existing plot

OVERPLOT/LINE overplot a line in an existing plot

OVERPLOT/SYMBOL overplot a symbol in an existing plot

OVERPLOT/GRID overplot a grid, by connecting tickmarks

Plotting and overplotting axes

The command PLOT/AXES offers the users the possibility to draw a frame with certain
ranges in x and y. The command is very flexible, since it accepts both the ranges in x
and v and the scaling factors as input parameters. Also, the user has the freedom to
select the location where the frame is to be drawn. The actual data points can be plotted
with subsequent overplot commands (see example below). More coordinate boxes can
be plotted using the command OVERPLOT/AXES with the same parameter list as in the
PLOT/AXES command. In the example below a series of plots is produced with plot and

1-March—1995

6-8 'CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

overplot commands. First, we start with a PLOT/AXES and an OVERPLOT/TABLE command,
and then continue with three OVERPLOT/AXES and OVERPLOT/TABLE commands. The result
is four graphs in the graphics window.

Example:
assign/graph g,0 ! assign graphic window 0
plot/axes 0,10 -1,1 -50,-70,10,80 ! plot the first axes
overplot/tab example 7 #1 ! plot first coord. box
overplot/axes 0,10 -1,1 -50,-70,70,90 ! overplot second box
overplot/tab example 7 #2
overplot/axes 0,10 -1,1 -50,-70,130,90 ! overplot third box
overplot/tab example 7 #3
overplot/axes 0,10 -1,1 -50,-70,180,90 ! overplot fourth box

overplot/tab example 7 #4

Alternatively, the system also offers a more simplier way of doing the same thing:
instead of the PLOT/AXES and OVERPLOT/AXES commands we switch off the clearing of the
graphics window first and continue with simple PLOT/TABLE commands.

Example:

clear/graph set/graph clear=off 1 erase switched off
plot/tab example 7 #1 -50,-70,10,10 ! plot the fifth box
plot/tab example ? #2 -50,-70,70,10
plot/tab example 7 #3 -50,-70,130,10
plot/tab example 7 #4 -50,-70,190,10 ! plot the last box

For both the plot and overplot commands one can use the command SET/GRAPH
XFORMAT=none YFORMAT=none to switch off the tick mark labels along the axes. Of in-
terest, especially for overlays, is another syntax of the PLOT/AXES and OVERPLOT/AXES
command: it offers the possibility of drawing axes around (part of) an image displayed in
the display window.

PLOT and OVERPLOT commands for plotting data

In general all commands for plotting data, have a well defined syntax:

PLOT/QUALIFIER P1 P2 P3 P4 P5 P8 P7 P8,

where:

P1 = table, image, descriptor or keyword name

P2 = columns, area, or indices of P1

P3 = scales in world coordinates/mm or size of the plot; only for PLOT commands

The meanings of the remaining parameters on the command lines vary from command to
command; in most cases they are used for options. Obviously, in case of overplotting , the
parameter for the scales is absent.

1-March-1995

6.1. GRAPHIC FACILITIES 6-9

Plotting text, symbols, and lines

For overplotting of text one can use the command LABEL/GRAPHIC . The text will be
plotted in the font style set with the FONT keyword in the SET/GRAPHIC command. E.g.
with LABEL/GRAPHIC and running in FONT=1 text will be generated in the roman font type.
LABEL/GRAPHIC make use of the built-in features of AGL. These features allow to change
font, draw subscripts and superscripts, scale the text size, or draw various symbols, all
within the text string. All these possibility become available by including metacharacters
in the text string. Currently, AGL knows the metacharacter set listed in Table 6.3.

Metacharacter | Meaning

\{ begin grouping

\} end grouping

\" move the following part of the string up by half a character
\lu move the following part of the string up by half a character
_ move the following part of the string down by half a character
\1!d move the following part of the string down by half a character
\< backspace by a single character

\+ increase character size by 20%

\- decrease character size by 20%

\ ! force interpretation of the following part as a metasequence

(this is needed to allow metasequences starting with 'n’
not to be interpreted as newlines)

\0 select font 0 (Default font)

\1 select font 1 (Quality roman font)

\2 select font 2 (Greek font)

\3 select font 3 (Script font)

\4 ‘ select font 4 (Old English)

\& select font 5 (Tiny roman font)

\[' increase line width (bolding; optional)

\] decrease line width (bolding; optional)

\#<n> draw marker number < n > into the line

\n perform a ‘newline’

- draw a single =’ character (must be following by a blank)
\~ draw a single '\"’ character (must be following by a blank)
"\ draw a single ’\’ character (must be following by a blank)
\\ draw a single ’\’ character (must be following by a blank)

Table 6.3: Meta Character in AGL and MIDAS

~3

The character ‘=’ can also be used instead of ‘\’ as metacharacter flag. The ‘*’ is
more suited to C programs where ’\’ has a special meaning. All selections made by
metacharacters are valid from the point in the string where they are defined up either

1-March-1995

6-10 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

to the end of current group (the part of the string enclosed in \{...\}) or to the end of
the string. If the metacharacter sequence is more than one character long (escape not
included, of course), it must be followed by a blank space.

Example:

LABEL/GRAP "e\{\!'u(x\{\!u2\}+y\{\ tu2\})\}= -
(\alpha +\beta) sin\{\!'u2\}\theta "

This command will produce the label e@*+¥*) = (a +) sin® @ at a position which the user
should give via cursor input.

MIDAS/AGL also interprets a set of ‘“TEX-like’ keywords as listed in table 6.4. Due to
the fact that most of them represent special characters and symbols to be printed, only
the names are listed; the symbols can only be seen by LABEL/GRAPHIC or the command
TUTORIAL/GRAPH.

Besides overplotting of text strings, the user can also overplot lines (up to six different
line types, depending on the device), and symbols (more than twenty). Depending on the
device, up to four different line widths can be used. The selection of line properties and
of symbol type can be done with SET/GRAPH, or, at least for line and symbol type, on the
command line.

The command OVERPLOT/LINE offers the possibility to overplot a line. Similarly,
OVERPLOT/SYMBOL overplots symbols. Both commands can be used interactively using the
graphics cursor, or by giving the coordinates on the command line. Grid lines, connecting

the major and/or minor tick marks can be drawn with the command OVERPLOT/GRID.

6.1.5 Graphic Cursor Commands

In some of the analysis programs in MIDAS the graphic cursor is a powerful tool. For
example, using the cursor one can retrieve wavelengths and line intensities in a plotted
spectrum, integration of emission or absorption lines over a wavelength range selected by
the cursor, compute the line width and center, etc. With the general GET/GCURSOR com-
‘mand the user can retrieve information from plotted data and store this in a table. Listed
below are some of the core and application commands which use cursor interaction. Many
additional graphics commands, including those that use cursor interaction, are available
in the various contexts, e.g. SPEC and ECHELLE.

GET/GCURSOR read coordinates from graphics screen
CENTER/GAUSS computes center of a 1-dim. or 2-dim. feature
MODIFY/GCURSOR change data line of an image interactively
INTEGRATE/APERTURE compute flux inside an aperture
INTEGRATE/LINE integrate row of a frame using the cursor
INTEGRATE/STAR compute flux, radius and background of stars

1-March-1995

6.1.

GRAPHIC FACILITIES

\AA \Alpha \Aquarius \Aries
\Beta \Cancer \Capricorn \Chi
\Delta \Earth \Epsilon \Eta
\Gamma \Gemini \Iota \Jupiter
\Kappa \Lambda \Leo \Libra
\Mars \Mercury \Moon \Mu
\Neptune \Nu \Omega \Omicron
\PI \Phi \Pisces \Pluto
\Psi \Rho \Sagittarius \Saturn
\Scorpio \Sigma \Sqrt \Tau
\Taurus \Theta \Upsilon \Uranus
\Venus _\Virgo \X1i . \Zeta
\aleph \alpha \asteroid \beta
\bigcirc \black \blue \cent
\chi \circ \cyan \clover
\clubsuit \comet \dag \ddag
\default \delta \diamond \div
\downarro \epsilon \equinox \equiv
\eta \firtree \gamma \ge
\greek \green \hbar \heart
\infty \int \iota \italic
\kappa \lambda \larrow \le
\magenta \mp \mu \!nabla
\!ne \!nu \odot \oint
\old \omega \omicron \oplus
\otimes \palmtree \paragraph \parallel
\partial \perp \phi \pi

\pm \propto \psi \red
\rho \rightarrow \roman \script
\shield \sigma \snow \spade
\sqrt \sum \tau \theta
\times \tiny \uparrow \upsilon
\varepsilon \varphi \vartheta \white
\xi \yellow \zeta

1-March-1995

Table 6.4: TEX-like Characters for text strings in MIDAS Graphics

6-11

6-12 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

6.1.6 Handling of Plotfiles

Plotting in MIDAS will create a MIDAS plotfile which contains all essential plot informa-
tion. By default this plotfile (metafile) is always created by the execution of the main plot
commands. The plotfile will carry the name of the data structure that has been plotted:
the name of a frame, table, descriptor or keyword. The plotfile has the extension “.plt”.
MIDAS keeps track of what the user has plotted. The SHOW/GRAPH command shows the
user which is the last created plotfile. Subsequent overplot commands will append to this
plotfile. Names of plotfiles are a composition of the device names that is currently assigned
and the MIDAS session number. As an example, take the situation were the user runs
MIDAS under the unit number 04 and the graphics window 1 (graph_-wndl) is assigned.
In this case all plots created will be stored in the file graph wnd104.plt. If the device
“Ip” was assigned, plot files will go into the file 1p04.plt. Names of plot files are unique
and do not have version numbers. Hence, MIDAS will delete an old plotfile if a new one
with the same name is created. With the command SHOW/GRAPH you can display the name
of the plot file.

There are several ways to obtain a hardcopy of a plot. Below you will find a few
examples.

1. The user works with a graphic terminal or a workstation and has made this plot on
the graphic terminal first. He/she can now send the plot to a hardcopy device using
the COPY/GRA command.

Example:

MIDAS 001> PLOT/TABLE mytable :velocity :distance
MIDAS 002> COPY/GRAPH LASER

2. The user does not have a graphics terminal (or does not want to use it), and wants to
dump his plot directly onto a hardcopy device. In this case, the hardcopy device has
to be assigned first as the output device by the ASSIGN/GRAPH command. Now all
the plot(s). (including the overplot !!!) will be sent directly to the hardcopy device.
Example: ‘

MIDAS 003> ASSIGN/GRAPH LASER ! assign LASER as output device
MIDAS 004> PLOT/TABLE mytable :velocity :distance ! make plot

3. In a MIDAS plot command sequence (with many e.g. OVERPLOT and LABEL com-
mands) intermediate output is not always wanted, in some cases even undesirable. In
order to switch off the direct routing of plots to a device users can specify the extra
switch NOSPOOL in the ASSIGN/GRAPH command. Using this switch the plotfile(s) will
be stored on disk first. Once the user has finished his sequence of plot commands,
he/she can create the complete plot on the hardcopy device using the command
COPY/GRAPH. Intermediate results can be obtained using the same command.
Example:

MIDAS 005> ASSIGN/GRAP LASER NOSPOOL ! plot file, don’t send
MIDAS 006> PLOT/ROW frame [@100,0@150:@150,0250] 20.0,20.0

1-March-1995

6.1. GRAPHIC FACILITIES _ 6-13

MIDAS 007> OVERPLOT/TABLE table #1 I overplot
MIDAS 008> LABEL/GRAPHIC "THIS IS AN EXAMPLE" 90 4 400,300
MIDAS 009> COPY/GRAPH LASER ! send the plot file

4. The user wants to send a previously created MIDAS plotfile (e.g. “midas.plt”, and
different from the last created plotfile) to a device.
Example:

MIDAS 010> COPY/GRAPH LASER frame.plt ! send plotfile to LASER

As can be seen in section 6.1.9, in most cases the user can produce a plot with certain
scales of the x— and y—axis. In the current version routing the plot file (with COPY/GRAPH)
to a device different from the one pre-specified (with the ASSIGN/GRAP command) may
lead to incorrect scales. In case the pre-specified device is the same as the device to which
the plot is sent the scales will be correct.

Example:

MIDAS 005> ASSIGN/GRAPH VERSA NOSPOOL

MIDAS 006> PLOT/ROW image [@100,@150:@150,@250] 20.0,20.0

MIDAS 007> OVERPLOT/TABLE table #1

MIDAS 008> LABEL/GRAPHIC "THIS IS A EXAMPLE" 90 4 400,300

MIDAS 009> COPY/GRAPH LASER ! plot will have incorrect scales
MIDAS 010> COPY/GRAP VERSA ! with correct scales

6.1.7 Encapsulated PostScript Files

For any PostScript hardcopy printer that has been assigned by ASSIGN/GRAPH, MIDAS
produces a so-called encapsulated PostScript file. Using a public domain macro package
(e.g. Psfig/TEX) this PostScript plot file can, with a minimum of effort, be included in
TEX or IATEX documents. To do so, in the TEX or IATEX document one should refer to
the (possibly renamed) MIDAS PostScript file (normally pscrplot.ps). Below, follows a
simple ATpXexample that shows how it works.

Example:

MIDAS 005> ASSIGN/GRAPH postscript
MIDAS 006> PLOT/ROW image [@100,@150:@150,@250] 20.0,20.0
MIDAS 007> OVERPLOT/TABLE table i#1

In your directory we now have a PostScript file postscript.ps, containing the complete
plot information written by the commands 006 and 007. Now, you can include this MIDAS
PostScript file in our IATEX document, in this case using psfig, developed by Trevor Darrell
(trevor@media.mit.edu). Here is how the IATRX text file with the included MIDAS plot
then looks like.

Example:

1-March—1995

6-14 'CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

\documentstyle[1ipt,psfig]l{article}
\begin{document}
\section*{Abstract}
We show a simple example of how one can include a PostScript figure,

generated by MIDAS, into a existing \LaTeX document.
\nopagebreak

\begin{figure} [h]
\centering{
\hspace*{-1.cm}
\vbox{\psfig{figure=postscript.ps,width=10cm,height=5cm}}\par
} .
\end{figure}
\end{document}

6.1.8 Examples

To show the usage and the possibilities of the plot package, a number of examples are built
are available below. These examples are available via the TUTORIAL/PLOT P1 command,

where P1 can be:

e GENERAL to show an example for the graphics utilities, like drawing lines, symbols,
text, changing fonts, etc ...

e AXES to show an example of plotting several axes in one graphics window and using
different axes;

TABLE to show an example of table plotting using different symbols and axes;

1DIM to show an example of (spectral) line plotting;

e 2DIM to show two—dimensional gray scale and contour plotting.

6.1.9 Command Summary

Table 6.5 on the next page shows an overview of the graphic commands in MIDAS, listed
in alphabetical order.

1-March—1995

6.1. GRAPHIC FACILITIES 6-15

ASSIGN/GRAPH [devicemname] [spool.option]

CENTER/GAUSS in_specs out_specs [out_opt]

CLEAR/GRAPHIC

COPY/GRAPHIC [devicename] [plot_filel

CREATE/GRAPHIC [graph_id] [graph.spec]

DELETE/GRAPHIC [graph_id]l

GET/GCURSOR [out_specs] [app.flag] [max]

INTEGRATE/LINE frame [y_coord] [x.start,xend] [no_curs,degree] [batch.specs]
LABEL/GRAPHIC label [x_pos,ypos[,mm]] [angle] [size] [centering]

MODIFY/GCURSOR frame [y_coord] [x_start,x.end] [no_curs,degree]

OVERPL/AXES [x_axis.spec] [y axis_spec] [x.scale,yscale] [xlabel] [y labell] [x off,y off]
OVERPLOT/AXES [coordstr]

OVERPLOT/COLUMN frame [x.coord] [x_sta,x.end] [offset] [l-typel

OVERPLOT/CONTOUR frame coordstr [contours] [sm_par]

OVERPLOT/DESCRIPTOR frame [descriptor] [start,end] [offset]

OVERPLOT/ERROR table columni [column2] column-err [orient]

OVERPLOT/GRAY frame [coordstrl [graylev] [smpar] [grayness] [options]
OVERPLOT/GRID [tick_opt] '

OVERPLOT/HISTOGRAM table column [bin [min [wax]]] [offset] [log-flag]
OVERPLOT/HISTOGRAM frame [offset] [log flag]

OVERPLOT/KEY [key.word] [start,end] [offset]

OVERPLOT/LINE [line type] [x.sta,ysta [x_end,y-end]]

OVERPLOT/ROVW frame [y-coord] [x_sta,x.end] [offset] [1.type]

OVERPLOT/SYMBOL [x _coord,y-coord] [s-typel [s-size]

OVERPLOT/TABLE table [columni] [column2] [s-typel

OVERPLOT/VECTOR frame.a frameb [coordstr] [scx,scy] [scaler] [posrange] [smpar] [head]
PLOT/AXES [x-axisspec] [y.axis.spec] [sc.x,scy] [xlabel] [y-label] [x_off,y.off]
PLOT/AXES [coordstr] v

PLOT/COLUMN frame [x_coord] [x-sta,x-end] [scx,sc.y]

PLOT/CONTOUR frame [coord str] [x_scale,y.scale]l [contours] [sm.par]
PLOT/DESCRIPTOR frame [descriptor] [start,end] [x.scale,y.scalel

PLOT/GRAY frame [coordstr] [x_scle,yscale] [graylev] [smpar] [graymness] [options]
PLOT/HISTOGRAM frame [x.scale,y.scale] [logflag]

PLOT/HISTOGRAM table column [x_scale,yscale] [bin [min [max]]] [log-flag]
PLOT/VECTOR frame._a frameb [coord.str] [scx,scy] [scalex] [posrange] [smpar] [head]
PLOT/KEY [keyword] [start,end] [x.scale,yscale]

PLOT/PERSPECTIVE frame [coordstr] [azi.angle,alt.angle] [sm_par] [xy_'flag]
PLOT/ROW frame [y_coord] [x-sta,xend] [scx,scy]

PLOT/TABLE table [columnl] [column2] [x.scale,y.scalel

SET/GRAPHIC optioni[=valuel] [option2[=value2] ...]

SHOW/GRAPHIC

Table 6.5: Graphic Commands

1-March—1995

6-16 'CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

6.2 Image Displays

This section describes the setup of the image displays used by MIDAS and the functionality
provided by MIDAS to interact with these displays. For a description of the conceptual
model for an image display device see the definition document for the IDI-routines.
MIDAS supports peripheral displays like e.g. the Gould IP8000 (former DeAnza) series
and XWindow displays. We describe here the IP8500 display specifically and a generic
XWindow display.

Note

The Gould image display systems are not manufactured anymore and hardly in
use nowadays. Therefore, the 94NOV release of MIDAS will be the last release
where we support these devices.

6.2.1 1IP8500 display

Each image memory or “channel” has independent scroll and zoom capabilities as well as
an intensity transformation table which can be used like a colour look—up table and can
also be used to change the output values that are fed to the look—up tables in the video
output controller. This allows fast displays of log or histogram equalized images without
having to reload the entire image.

One image channel is designated as the graphics (or overlay) channel. This also has
its own zoom and scroll capabilities. In addition, the colour of the overlay can be selected.
In MIDAS the last available channel is always used as the graphics channel. Also an
alphanumeric memory is associated with the image display station.

The video output controller (VOC) selects which image memory is to be displayed on
which colour channel as well as performing the task of overlaying the graphics plane. It
also takes care of integrating the cursor and alphanumeric data into the video output.
Finally, the VOC supports Split Screen mode where parts of 2 or 4 image channels are
displayed together on the screen. '

Using Image Memories

Several image memories are associated with each image display station. Thus it is possible
to have several images loaded in the image display at the same time and to switch quickly
from one channel to the other. Images can be loaded into any of the image memories.
They are referenced by numbers 0, 1, 2, or 3. A typical command sequence would be:

LOAD/IMAGE galaxy O ! load an image in channel 0
DISPLAY/CHANNEL 0 ! display memory channel 0

1-March—1995

6.2. IMAGE DISPLAYS _ 6-17

The most important commands associated with handling the image memories are:

LOAD/IMAGE - load an image into image memory
GET/IMAGE - read an image from the image memory
GET/CURSOR - read pizel values of displayed image
DISPLAY/CHANNEL - display the image in the selected channel
CLEAR/CHANNEL - erase contents of an image channel
SET/SPLIT - enable split screen

CLEAR/SPLIT - disable split screen

ZOOM/CHANNEL - zoom in integer steps 1 to 8
SCROLL/CHANNEL - scroll the image

BLINK - blink between two different image memories
SHOW/CHANNEL - show status of image channel

Look—Up Tables

Look—up tables or LUTs are the tables that map the data in the image memory into
colours on the display when the system is used in pseudo—colour mode. Commands exist
to load LUTs into the image display, to modify LUT's interactively and to read back LUTSs
from the image display. Interactive modification is done via the joystick or trackball device.

Some of the existing LUTs are:

backgr

color

heat

light

pastel

-pseudol, pseudo2

rainbow, rainbowl ... rainbowd
random, randomi ... randomé4
smooth

staircase

stairs8

Use the command TUTORIAL/LUT to see what some of the available LUTs actually look

like and how to modify the LUTSs interactively.
The main commands available for handling LUTs are:

LOAD/LUT - load a look—up table

GET/LUT - read back a look-up table

MODIFY/LUT - interactively modify a look-up table
CLEAR/LUT - bypass the look-up table

SET/LUT - pass through a look—up table

1-March—1995

6-18 'CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

DISPLAY/LUT - show the look-up table as a colour bar
CREATE/LUT - create a look—up table using the HSI colour model

Intensity Transformation Tables

The intensity transformation tables (ITTs) come between the image memories and the
look—up tables. Using ITTs in the display mode allows special modifications to be ap-
plied to the displayed data without modifying the look—up tables or the data in the image
memories. Interactive modification is done via the joystick or trackball device.

The main commands which control the ITT functions are:

LOAD/ITT - load an ITT

CLEAR/ITT - bypass the ITT

SET/ITT - pass through an ITT

GET/ITT - read back an ITT

MODIFY/ITT - modify the ITT interactively

To display the ITT, use DISPLAY/LUT which shows the combined effect of LUT and ITT.
Some of the currently available ITT tables are:

ramp
neg
expo
log
neglog
jigsaw
staircase
With the command TUTORIAL/ITT you can see the effect of ITTs and modify the ITTs
interactively.

Using the Cursors

Each image display has two independent cursors available. In addition each cursor shape
can be defined. The variety of possibilities available for various cursor forms and types
defies a simple explanation here that would make much sense. The interested user is
referred to the command TUTORIAL/CURSOR which gives a demonstration of the possible
cursor shapes.

The cursor(s) are controlled interactively by a special device e.g. tracker ball, joystick or
mouse. Detailed information on how to operate the cursors can be found in Appendix C.
In general there is a switch for each cursor to define its status ON/OFF. When a cursor
is active (ON) its position can be read by pressing the key. To exit an interactive
cursor command one normally has to switch the cursors off and press the key.
The commands associated with cursor control operations are:

1-March-1995

6.2. IMAGE DISPLAYS 6-19

SET/CURSOR - enable selected cursor
LOAD/CURSOR - load a programmable cursor
GET/CURSOR - read cursor positions
CLEAR/CURSOR - disable cursors

Graphics

Each user has a graphics (or overlay) channel associated with the image display. The
currently available commands associated with the use of the overlay channel are listed
below:

SET/OVERLAY - enable the overlay of graphics on top of the image

CLEAR/OVERLAY - disable the overlay memory

LOAD/OVERLAY - load a LUT for the graphic channel (for ezperts only!!)
SCROLL/OVERLAY - scroll the graphics channel with the image channel
Z0OM/OVERLAY - zoom the overlay with the image channel

DRAW/... - draw a geometric shape like CIRCLE, RECTANGLE, etc. in the overlay plane
SET/CHANNEL - designate a channel as image or graphics

Turning off the overlay/graphics via CLEAR/OVERLAY only disables the overlaying of the
graphics. To really get rid of what is in the overlay channel you must use CLEAR/CHANNEL
OVERLAY.

Furthermore, due to the internal hardware of the IP8500, disabling the overlay will also
turn off the visibility of the cursors!

Alphanumerics

The alphanumerics memory is divided up into 22 lines of 80 characters. (see Appendix C).
The alphanumeric characters that are available are alphabetical upper case and numbers
plus several special characters. Options exist to choose the colour and priority of the
alphanumeric display.

Commands associated with alphanumeric display are:

LABEL/DISPLAY - load a string into the alphanumeric memory
CLEAR/ALPHA - clear the alphanumeric display

There is also an option in the LABEL/DISPLAY command to use the overlay channel for
text (with higher resolution) instead of the alphanumeric memory.

True Colour or RGB Operations

The IP8500 allows pictures to be displayed in true colour using three image memories
(channel 0, 1 and 2) simultaneously for the red, green and blue images needed to make up
a true colour image. Channel 0, 1 and 2 may also be referred to as Red, Green and Blue.
To start using the RGB mode of the display, execute the command:

1-March—1995

6-20 'CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

SET/DISPLAY RGB

The CUTS used for mapping the image into the range of image memory need to be set indi-
vidually for each of the images to be used. Next, each channel must be loaded individually
with the appropriate image. This is done as follows:

LOAD/IMA rpict R ! load the red picture in channel 0
LOAD/IMA gpict G ! load the green picture in channel 1
LOAD/IMA bpict B ! load the blue picture in channel 2

It is now possible to use several of the other commands that control the image display, but
they may perform in slightly different ways than when the system is used for pseudo—colour
displays. The following comments are intended to give some guidelines.

Z0OM — This command will zoom all three channels together.

SCROLL — This scrolls only one channel at a time. The choice is governed by the input
parameter which can be R, G, or B.

SET/SPLIT — This will show the three channels in their native colours.

GET/CURSOR — (Generally cursor operations will not perform the operation you expect
in RGB mode. Nevertheless, cursor values can be extracted. They will come from the
last accessed image channel.

LOAD/LUT — This command should be avoided since LUTSs are handled in a very special
way in RGB mode. :

To exit from the RGB mode, execute the command SET/DISPLAY PSEUDO.

1-March—-1995

6.2. IMAGE DISPLAYS 6-21

6.2.2 XWindow display

With the term XWindow display we refer to a bitmapped screen supporting the X Win-
dow environment. These displays have less functionality provided in hardware than the
“classical” peripheral image displays. On the other hand they offer much more flexibility
via software. For example, display screens of different sizes may be created and different
number of image channels may be connected to any one display.

Another important difference results from the way XWindows works: when an X ap-
plication program terminates, all the connected windows and data structures disappear.
Therefore, MIDAS starts up an independent server process, the display server, which owns
all X11 related data structures. The MIDAS applications do not interact directly with the
windows but send messages to the server which then performs the actual task. Like this we
can keep the windows alive while the different applications are executed and terminated,
one by one. »
Also, keep in mind that all interaction with the display will only work while the input
focus is in the display window (either enforced by clicking the mouse in that window or
just moving the cursor into it — that depends on how your window manager is set up).
Image displays are created on the screen via the CREATE/DISPLAY command. An “image
display” is then represented by a window on the bitmapped screen. It may have one or
several image channels associated with it. The image channels may have the same size as
the display window or could be larger. These channels are not realised in hardware (e.g.
video memory) like the peripheral image displays, but exist as data structures in main
memory. Also an overlay channel and an alphanumerics memory are emulated for each
image display. Initially each display is provided with a grayscale LUT.

You may create several image displays at the same time on your bitmapped screen even
though only one display can be the current active display at any time. With the command
ASSIGN/DISPLAY you switch from one display to the next.

Each image channel has independent scroll (also emulated in software) but no zoom ca-
pabilities. There are special commands like GET/CURSOR and VIEW/IMAGE which provide
zoom in a special zoom window. Also available is an intensity transformation table but
only one per image display and not one per image memory since the ITTs are emulated
by convolving the ITT values with the current LUT.

Using Image Memories

Several image memories may be associated with each image display. However, at the
moment the blinking between different image memories is so slow that is it not very useful
to create image displays with many image channels. Images can be loaded into any of the

image memories. They are referenced by numbers 0, 1, A typical command sequence
would be:
LOAD/IMAGE galaxy O ! load an image in channel 0
LOAD/LUT heat ! load a colour look—up table
DISPLAY/CHANNEL 0O ! display memory channel 0

1-March—1995

6-22 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

The most important commands associated with handling the image memories are:

CREATE/DISPLAY - create an image display with image channels(s)
VIEW/IMAGE - explore an image ...

LOAD/IMAGE - load an image into image memory

GET/IMAGE - read an image from the image memory

GET/CURSOR P5=w - read pizel values of displayed image using a zoom window
DISPLAY/CHANNEL - display the image in the selected channel
CLEAR/CHANNEL - erase data in an image channel

SCROLL/CHANNEL - scroll the image

SHOW/CHANNEL - show status of image channel

DELETE/DISPLAY - delete display window

Using the Cursors

Each image display has two independent cursors available. The first cursor (cursor 0) is
moved via the mouse, the second cursor (cursor 1) is moved via the Arrow keys on the
keyboard.

Using both cursors a region of interest (ROI) is supported. The ROI can have rect-
angular or circular shape and is moved via the mouse, its size is adjusted via the Arrow
keys. The resizing of the ROI may be done in small or large increments. This is controlled
via the number keys 0, 1, 2, ..., 9 on the keyboard. Pressing the 0-key corresponds to an
increment of a single screen pixel, whereas 1, 2, ..., 9 lead to larger increments.

The cursor position can be read by pressing the ENTER button which is the leftmost
button on the mouse. To exit from a command which uses interactive cursor input, press
the EXIT button which is the rightmost button on the mouse. The middle button is
currently not used in MIDAS (it behaves like the EXIT button), but may be employed in
the future. The RETURN key on the keyboard serves as an EXECUTE button. The EXECUTE
button works usually like the ENTER button, only in some very special cases its functionality
is different from the ENTER button. If so, it is explained in the relevant help info, an example
are the MAGNITUDE/. .. commands.

Pressing the ENTER button on the mouse requires a stable hand. If you press the ENTER
button and only slightly move the mouse by doing so, this will be interpreted by the dis-
play server as a Cursor Move instead. Therefore, it may be safer to move the cursor via
the mouse but get the cursor input with the EXECUTE button.

The commands associated with cursor control operations are:

GET/CURSOR - read cursor positions
SET/CURSOR - define specific cursor shape

1-March—-1995

6.2. IMAGE DISPLAYS 6-23

Look-Up Tables

Look—up tables or LUTs are the tables that map the data in the image memory into
colours on the display when the system is used in pseudo—colour mode. In contrast to
hardware display systems, the size of the LUT is not constant but depends upon how
many colours are already used by other X applications running already. Commands exist
to load LUTs into the image display, to modify the LUTs interactively and to read back
LUTs from the image display.

Some of the existing LUTs are:

backgr

color

heat

light

pastel

pseudol, pseudo2

rainbow, rainbowl ... rainbow4
random, randoml ... random4
smooth

staircase

stairs8

Use the command TUTORIAL/LUT to see how some of the available LUTs actually look like
and how to modify a LUT interactively.

The main commands available for handling LUTs are:

LOAD/LUT - load a look—up table

GET/LUT - read back a look—up table

MODIFY/LUT - interactively modify a look—up table

CLEAR/LUT - bypass the look-up table

SET/LUT - pass through a look—up table

DISPLAY/LUT - show the look-up table as a colour bar
CREATE/LUT - create a look—up table using the HSI colour model

Commands like MODIFY/LUT need a displacement. Use the Arrow keys to move left, right
and down (to thin) or up (to thicken) a colour bar. Again the speed of the movements is
controlled via the keys 0, 1, ..., 9.

Intensity Transformation Tables

The intensity transformation tables (ITTs) come between the image memories and the
LUT and are emulated in the XWindow environment by convolving the ITT values with
the current LUT. Interactive modification is done via the arrow keys.

The main commands which control the ITT functions are:

_ 1-March—1995

6-24 'CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

LOAD/ITT - load an ITT

CLEAR/ITT - bypass the ITT

SET/ITT - pass through an ITT

GET/ITT - read back an ITT

MODIFY/ITT - modify the ITT interactively

To display the ITT, use DISPLAY/LUT which shows the combined effect of LUT and ITT.
Some of the currently available ITT tables are:

ramp
neg

expo

log
neglog
jigsaw
staircase

With the command TUTORIAL/ITT you can see the effect of ITTs and modify the ITTs
interactively.

Graphics

A graphics (overlay) channel is provided with the image display. However, it is not im-
plemented like an image channel but emulated in software. Only drawing functions are
supported (i.e. you cannot load an image into the overlay channel).

Three different font sizes are supported for writing text. Fonts can be chosen via the
INITIALIZE/DISPLAY command.

The currently available commands associated with the use of the overlay channel are:

SET/OVERLAY - enable the overlay of graphics on top of the image

CLEAR/OVERLAY - disable the overlay

CLEAR/CHANNEL overlay - clear the overlay channel

DRAW/... - draw a geometric shape like CIRCLE, RECTANGLE, etc. in the overlay plane
LABEL/DISPLAY - write a string into the overlay channel

Alphanumerics

Each display window may or may not have an associated alphanumerics memory depend-
ing on the options of the CREATE/DISPLAY command.

The alphanumerics memory is attached to the bottom of the display window and consists
of 3 lines, the number of characters per line depends on the width of the image display.
The same three different fonts which are used for the overlay channel can be used for
alphanumeric characters. 4

Commands associated with the alphanumeric memory are:

1-March-1995

6.2. IMAGE DISPLAYS 6-25

LABEL/DISPLAY - write a string into the alphanumeric memory
CLEAR/ALPHA - clear the alphanumeric display

Command Interruption

MIDAS commands are usually aborted by entering , but be careful when aborting
commands which interact with a display/graphics window, e.g. GET/CURSOR. For you run
the risk of losing the synchronisation with the MIDAS display server, which must then be
re—initialized via the RESET/DISPLAY command.

Graphical User Interface — XDisplay

There exists a graphical user interface (GUI), XDisplay for interaction with a MIDAS
display window which is activated via the command CREATE/GUI display. This GUI is
aimed at the casual MIDAS user who is not very familiar with the commands which provide
specific display—related functions. It supports most of the display related commands of
MIDAS and also lists all available LUTs and ITTS.

6.2.3 Image Hardcopy

A hardcopy of a frame shown on the image display or stored on disk can be made only if
the site has appropriate devices (see Appendix C which gives the detailed description of
the available options).

Grayscale and colour hardcopies can be produced only on Laser printers which support
PostScript. Typical command sequences for getting an image hardcopy are:

LOAD/IMAGE frame - ! load image into image display-

COPY/DISPLAY ! make hardcopy of screen
or

ASSIGN/DISPLAY device ! assign hardcopy device as display

LOAD/IMAGE frame ! load image to hardcopy

where available devices and special parameters are described in Appendix C. In addition,
a set of device specific commands are normally defined to set it up and to get status
information (see Appendix C).

1-March—1995

6-26 'CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

1-March-1995

Chapter 7

Data Exchange Format

This chapter describes how to exchange data between MIDAS and other systems. MIDAS
supports the Flexible Image Transport System (FITS) as the official format for data
interchange and long term storage. The FITS format is recommended by the IAU for
exchange of digital information between astronomical institutes and provides a computer
independent description of the data.

It is important to recognise that MIDAS officially only supports the FITS format for
data exchange. For backwards compatibility, MIDAS can also read the IHAP format which
was used by the old ESO image processing system and some data acquisition systems at
La Silla. Other formats are not supported officially and no help will be provided to access
such data.

Note

The data representation of internal MIDAS files is machine dependent in order
to optimise performance. Further, their layout may change with time. The use
of the FITS format for storage and ezchange will always ensure that proper
conversions are made. This is not the case with other formats. It is safer for
you to save your data in FITS format especially if you intend keeping them
for a longer time. :

For standard text files such as programs, procedures and ASCII data files, operating
systems utilities can be used (e.g. tar). Text files can also be saved as FITS headers using
ASCll-catalogues in MIDAS, however, such files can only be decoded by the MIDAS FITS
reader.

The MIDAS commands for data exchange (INTAPE, OUTTAPE) can convert the FITS
files directly to/from either sequence tape devices or disks. It is therefore also possible to
convert to/from FITS on disk and afterward use general utilities (e.g. tar or ftp) to do
the actual transfer. In that case, proper options must be used to ensure that the files are
transferred in binary mode and with correct blocking factors.

7-1

7-2 CHAPTER 7. DATA EXCHANGE FORMAT

7.1 FITS Format

The FITS format provides a general way to encode both a definition of data and the
data themselves in a machine independent form. The original definition is published in a
number of articles, see Wells et al. [1], Greisen et al. [2], Grosbgl et al. [3] and Harten et
al. [4]. A good general introduction to FITS can be found in [5] while a concise description
is given in [6] both available through the NASA FITS Support Office and its anonymous
ftp archive at Internet node nssdca.gsfc.nasa.gov.

7.1.1 Structure of FITS files

A FITS file contains a sequence of logical header/data units (HDU) which all start with
a set of header records describing the following data records. The logical record length
of a FITS file is always 2880 bytes of 8 bits. Both header and data sections start in
a new logical record. FITS headers are encoded in ASCII as 80 character card images
each starting with an 8 character keyword defining the type of information contained on
the card. The card images follow each other directly without any end-of-line character
which means that many standard text processing tools may have problems. Values of
parameters are decoded using standard FORTRAN-77 rules. They describe in detail the
data following the header records. Since a single FITS file may have many HDU’s each
corresponding to a data set (e.g. an image or a table), the translation of it may produce
several result frames. After the last HDU in the file additional records may exist.

The basic FITS paper [1] specified both a logical and physical record length of 2880
bytes. The increasing volume of data and higher recording densities made this physical
record size inefficient. To increase storage efficiency and make use of new recording media
such as optical disks and helical scan devices, the FITS standard was extended to allow
physical blocking factors different from one [3]. The allowed range of blocking factors is
explicitly defined for a given media. For most tape media, factors between 1 and 10 are
allowed giving a maximum physical block length of 28800 bytes. Each file terminates with
a tape-mark, and the last file on tape terminates with a double tape-mark i.e. end of -
information.

7.1.2 FITS data-types and extensions

The FITS header specifies both the format and size of the data records following. The
data representation is defined by the value of the BITPIX keyword and can have the values
given in Table 7.1.2. The MIDAS data format closest matching it is chosen by default.
Single precision real values are used when the explicit scaling is given in the FITS file (i.e.
by the keywords BSCALE and BZERD).

When writing FITS files, their data type will also be the one closest to the internal
representation except if basic FITS formats are explicitly requested by an option. In that
case, BITPIX will be one of the originally allowed values (i.e. 8, 16 or 32) or for tables the
ASCII format.

Each HDU in a FITS file will normally correspond to a single MIDAS file. HDU’s
with no associated data are not stored. Besides the prime HDU which either is a simple

1-November-1993

7.1. FITS FORMAT 7-3

BITPIX value | Data representation Scaling [MIDAS data type

8 8-bit unsigned integer (ASCII) No D_I1_FORMAT

Yes D_R4_FORMAT

16 16-bit twos-complement integer | No D_I2_FORMAT

Yes D_R4_FORMAT

32 32-bit twos-complement integer No D_I4_FORMAT

Yes D_R4_FORMAT

-32 32-bit IEEE floating point - D_R4_FORMAT

-64 64-bit IEEE floating point - D_R8_FORMAT

Table 7.1: Relation between FITS and MIDAS data types

data matrix or a random group structure a number of extension are defined. Currently,
the extensions listed in Table 7.1.2 are translated by MIDAS whereas other 'unknown’
extensions are skipped. Text and MIDAS-fit files can also be stored in FITS. The content
of these file types is stored as FITS headers using a special MIDAS conversion. Thus, other
FITS readers may not be able to retrieve the full information.

' 7.1.3 FITS keywords

Keywords in the FITS headers are stored in MIDAS files as descriptors. The naming
conventions are not identical. It is therefore necessary to perform a mapping between
- them. In general, the MIDAS descriptors will get the same name as the FITS keyword
except that illegal characters for descriptors (e.g. ’-’) will be substituted by underscore
(’-’). Keywords which describe the data structures are handled in a special way. Special
name mapping is given in the following sections.

It is simple to map FITS keywords into MIDAS descriptors because the latter can
have longer names and store arrays of values. The other way the translation is non-
unique. Thus, general MIDAS descriptors are encoded in a special section of the header
as HISTORY cards. The format used preserves all the descriptor information but is only

FITS Extension type — MIDAS frame

prime image (.bdf)

random groups image (.bdf) + table (.tbl)
TABLE table (.tbl)

BINTABLE table (.tbl)

IMAGE image (.bdf)

Table 7.2: Relation between FITS Extensions and MIDAS frame types

1-November-1993

7-4 CHAPTER 7. DATA EXCHANGE FORMAT
FITS keyword | MIDAS descriptor || FITS keyword | MIDAS descriptor
NAXIS NAXIS OBJECT IDENT
NAXISn NPIX(n) DATE-0BS D_TIME(1)

CRPIXn REFPIX(n) DATAMIN LHCUTS(3)
CRVALn START(n)* DATAMAX LHCUTS(4)
CDELTn STEP(n) EPOCH 0_POS(3)
CTYPEn CTYPE(n) EQUINOX 0_P0S(3)
CROTAn ROTA(n)

CUNITn CUNIT(n+1)

BUNIT CUNIT(1)

Table 7.3: Name translation between standard FITS keywords and MIDAS descriptors.
Asterisk indicates that data value is transformed (see text).

known to MIDAS and therefore cannot be decoded by other readers.

Standard keywords

The FITS format specifies a number of “standard” keywords with well defined meaning.
They can be classified in two groups namely: a) data structure definition, and b) general
description. The first group is translated into special MIDAS descriptors for the data
structure in question. The conversion for image files is given in Table 7.1.3. The START
descriptor of a MIDAS image refers to the first pixel and is computed from the values CRVAL
and CRPIX for the reference pixel as given in the FITS header. The actual reference pixel
is saved in the descriptor REFPIX which is necessary for non-linear coordinate systems.

Tables have more complicated structures which make the translation less direct. With
respect to other keywords, images and tables are treated in the same way. The data types
of these descriptors are checked and must correspond to the FITS standard. ‘

Non-standard keywords

Besides the standard FITS keywords defined in the FITS documents, it is possible to use
other, non-standard keywords. Such non-standard keywords have no global definition and
may be interpreted differently by different FITS readers.

A number of non-standard keywords has been used by ESO e.g. for definition of frames
acquired at the La Silla observatory. They are given in Table 7.1.3 and should not be used
with other definitions.

Due to the freedom to use non-standard keywords it is important to know their excact
definitions when transfering data between different systems.-

1-November-1993

7.1. FITS FORMAT

-5

FITS keyword | Data type | MIDAS descriptor | Remarks

MJID-0BJ Real 0_TIME(4) Modified Julian Date of start
of exposure

TM-START Real 0_TIME(5) UT of start of exposure, in
sec. after midnight

TM-END Real - UT of end of exposure

EXPTIME Real 0_TIME(7) Exposure time in sec.

RA Real 0_POS(1) Right Ascension in degrees

DEC Real 0-POS(2) Declination in degrees

POSTN-RA Real 0-P0sS(1) Right Ascension in degrees

POSTN-DE Real 0-P0S(2) Declination in degrees

ATRMASS Real D_AIRM Mean airmass of exposure

FILENAME String FILENAME Original file name

ESO-LOG String ES0.L0G Observing log

Table 7.4: Name translation between special non-standard FITS keywords and MIDAS
descriptors.

Hierarchical keywords

To avoid possible misinterpretations and naming conflicts for keywords describing acqui-
sition parameters, ESO has adopted a hierarchical keyword convention for this purpose
using the keyword HIERARCH. Such keywords have the following syntax:

HIERARCH domain level-1 ... level-n keyword = v:lue / comment

where the domain always is ESQ. Several hierarchical levels may exsist with a keyword and
associated value at the lowest level. Naming and parameter follow the general FITS rules
when applicable (e.g. max. 8 characters). The levels defined for the ESO domain are given
in Table 7.1.3 where also an abbreviation character is specified. FITS readers which do not
know this convension should save the HIERARCH-keywords as comments following standard
FITS rules. The standard specification of the FITS Acquisition and Archive format used
by ESO can be found in [7]. This document also gives a full definition of all hierarchical
keywords in the ESO-domain. ,

The hierarchical structure provides a convenient and clear way to separate information
concerning different subsystems. The full concatenated name can however be much longer
than the 15 character limit for MIDAS descriptors making it necessary to use a name
translation scheme.

Descriptor names of hierarchical keywords start with- an underscore character ’_’. Do-
main and level names are abbreviated to single characters where E is used for the ESO-
domain. Other abbreviations are listed in Table 7.1.3. Some levels may also have an
associated index which is maintained in the translation. The domain and level part is

1-November-1993

7-6 CHAPTER 7. DATA EXCHANGE FORMAT

ESO hierarchical keyword levels
Level-1 Abbr. | Level-2 Abbr. | Remarks

GEN G General
PROJ P Project
TARG T Target
EXPO E Exposure
CAT c Catalogue
WIND L} Wind

TEL T Telescope
FOCU F Focus
TRAC T Tracking
DOME D Dome
PARANG P Parallactic Angle
AIRM A Airmass

ADA A Adaptor

LAMP-# L# Lamp no.
GUID-# G# | Guide probe no.

INS I Instrument
FOCU F Focus
COMP c Computer

MIRR-# M# Mirror no.
GRAT-# G# | Grating wheel no.
SLIT-# S& | Slit wheel no.
OPTI-# 0% | Optical wheel no.

DET D Detector
FRAM . F Frame
SHUT S Shutter
COMP c Computer
ouT-# o# | Output no.

ARC C Archive

Table 7.5: Levels defined for ESO hierarchical FITS keywords and the abbreviations used
for the translations to MIDAS descriptor names

1-November-1993

7.2. IHAP FORMAT | -7

separated with an underscore character from the keyword which follows the rules for non-
standard keywords. The hierarchical keyword:

HIERARCH ESO TEL FOCU SCALE = 1.489 / Focus length (deg/m) = 5.36"/mm
will yield the MIDAS descriptor name _ETF_SCALE while
HIERARCH ESO INS OPTI-3 ID = ’ESO#427 ’ / Optical element identifier

will become the descriptor .EI03_ID. When writing such descriptors out again, the reverse
translation is applied.

7.1.4 Restrictions

The MIDAS reader of FITS tapes accepts most of the FITS formats including standard
extensions. The MIDAS implementation has the following restrictions:

e the maximum number of axes in images is 16,
e maximally 512 columns are allowed for tables

matrix and variable size array conventions for BINTABLE are not available,

e information in headers without associated data is not stored to avoid creation of
empty data files (e.g. for simple table files).

7.2 ITHAP Format

The IHAP format is defined in the IHAP manual (see version April 1990, Appendix A).
It is the internal format of the IHAP system and may also be used by some old data
acquisition systems at the La Silla observatory.

7.2.1 Translation of IHAP headef

The IHAP header contains the description of the data in a fixed, binary format. With
reference to the [IHAP manual, the translation of this information into MIDAS descriptors
are given in Table 7.2.1. IHAP defines the end of exposure which is converted to exposure
time. Also, start and end are given for image axes instead of start and number of pixels
In addition to the main header, keywords and comments may exsist. They are saved in
the descriptor 0_COM in ASCII format.

7.2.2 Restrictions

The main limitations of the MIDAS reader of IHAP formats are the following:

e only standard image formats are decoded,

e only tapes written with code 1 specifications are decoded.

Other formats such as tables and special data acquisition, can only be read by an IHAP
system after which they can be converted to FITS by THAP itself.

1-November-1993

7-8 CHAPTER 7. DATA EXCHANGE FORMAT

IHAP header | MIDAS descriptor || IHAP header | MIDAS descriptor
DRASC 0_POS(1) JUSR1 THAPUSER(1)
DECLN 0_P0OS(2) JUSR2 IHAPUSER(2)
JYEAR/JDAT | O_TIME(1) DUSR1 THAPUSER(3)
DCRAT 0_TIME(5) DUSR2 THAPUSER(4)
DSTTHM O_TIME(6) AHGC LHCUTS(2)
DENTM O_TIME(7)* ALHC LHCUTS(1)
JDENT IDENT DAIRM O_AIRM
DXSTR/DYSTR | START

DXSTP/DYSTP | STEP

DXEND/DYEND | NPIX*

Table 7.6: Name translation between THAP header and MIDAS descriptors. Asterisk
indicates that the value is transformed (see text).

7.3 Conversion between FITS and internal format

The FITS conversion commands INTAPE and OUTTAPE can both access FITS files on disk
or directly on tape devices. Thus, it is in principle possible to use general system utilities
to transfer the FITS files between disk and tape. When using operating system utilities
special care must be taken to ensure that the files on the tape conform to FITS blocking
specification - it is by no means obvious! '

The syntax of FITS conversion commands is as follows:

INTAPE file_ list id device [flag]
OUTTAPE cat[,list] device [flag] [dens,block] [typel

These are described in more detail in the following sections.

In order to save disk space, it may be desirable to compress the files. For this purpose,
operating system utilities may be used (e.g. compress for UNIX). The steps to achieve
this are as follows:

e Use QUTTAPE to write file to disk in FITS format.
e Compress FITS file on disk e.g. compress.

e Use system utility to save compressed file on tape e.g. tar.

To retrieve files execute the above process in reverse order.

7.3.1 Devices

The device in the INTAPE/OUTTAPE commands may either refer to a tape device, a disk file
or a disk file prefix (possibly including the full path name). If the first 4 characters of the

1-November-1993

7.3. CONVERSION BETWEEN FITS AND INTERNAL FORMAT 7-9

device name are the string "tape’ (case independent), it will be assumend to be a logical
tape name. The environment variable of the same name will then be used for the logical
to physical name translation. Otherwise, the name will be assumed to be a physical name.

The name of a tape device may contain the host name in which case a remote device
will be accessed. This will work only if the MIDAS tape-server has been installed. The
full name is then given as 'host:device’ e.g. for a device on a UNIX system ws1 it could
be 'wsl:/dev/nret8’. For access to local devices the physical device name can be given
directly. When writing on a tape device, it must be set to write enable either by inserting
a write ring or changing a switch on the cartridge.

A single file can be specified by including its extension otherwise a name is assumed
to be a file prefix. When a file prefix is used the full file is made up of the prefix, the four
digit sequence number and the file extension ’.mt’.

7.3.2 File naming

The file name is generated from the prefix and the sequence number. A FITS file may
contain several extensions each of which may result in a MIDAS file. If more than one file
of the same type (e.g. image or table) is associated to the same FITS file, an additional
letter is appended to the name. The fourth table file in the FITS file 'obs0023.mt’ would
get the name ’obs0023c.tbl’.

The original file name is normally available in the descriptor FILENAME which can be
used for renaming it (see RENAME/FILE). This is not done by default because it could
overwrite exsisting files.

7.3.3 Reading FITS

The INTAPE-command is used to convert FITS (or IHAP) files to the internal MIDAS |
format:

INTAPE file list id device [flag]

where file 1list is a list of absolute position numbers of files (if input is from tape) to
be read with 1 being the first file (e.g. 1, 3, 5, 50-60 would read from the 1st, 3rd, 5th file
plus files 50 through 60 included), and id is an identification prefix of the names of the
files created. Tape devices will be rewound if the driver does not maintain the absolute
position of the tape. This may take a significant amount of time on some devices. It
is easier to read many files from disk (with INTAPE) if their names are constructed with
the given prefix, a four digit number and the extension ‘.mt’. It is also possible to read
a single file from disk by specifying its full name including extension in which case any
extension may be given.

The flag is a list of three one character flags which specifies the amount of information
listed on the senior terminal and in the log file and the storage format of the data (see
help file for full description).

1-November-1993

7-10 CHAPTER 7. DATA EXCHANGE FORMAT

7.83.4 Writing FITS
Translation of MIDAS files to FITS format is done by the OUTTAPE command:

OUTTAPE cat[,list] device [flag] [dens,block] [typel

where the cat[,1ist] is a catalogue of files to be written with an optional list of numbers
(see CREATE/xCAT for creation of catalogues). It can be defaulted by giving either ‘¢’ or
‘2’ in which case all files in catalogues set by the SET/xCAT command are written out.
A single file can be written by specifying it with its full name including extension. The
device may specify an actual tape device, a prefix for disk files or an explicit file name
for a single file.

The flag is an optional list of three one-character flags specifying the append mode,
the amount of information listed on the senior terminal and in the log file and if the LHCUTS
descriptor in the file should be used for scaling (see help file for full description).

Note

The default options of the OUTTAPE command will start at the current tape
position. This may over-write previous data on the tape. Be sure to use the
append flag if files have to be added to the tape. Or position the tape at end- -
of-information using operating system utilities before writing new files.

The dens,block parameter can specify the tape density (e.g. 1600 or 6250bpi) and
a physical blocking factor in the range 1-10. By default, a blocking factor of 10 is used.
Note that some old FITS readers may not be able to read blocked FITS files (e.g. IHAP)
in which case a blocking on 1 must be given explicitly. The tape density is used only
for 9-track 1/2-inch tapes. Some 1/2-mch tape devices requlre the density also to be set
manually on the drive.

The type flag is used to specify the type of FITS format to write where ‘B’ indicates
basic FITS i.e. with integer format only. The default is ‘0’ for ongmal including floating
point representation.

1-November-1993

Bibliography

[1] D.C. Wells, E.W. Greisen and R.H. Harten, 1981: Astron. Astrophys. Suppl. Ser., 44,
p- 363

[2] E.W. Greisen and R.H. Harten, 1981: Astron. Astrophys. Suppl. Ser., 44, p. 371

[3] P. Grosbgl, R.H. Harten, E.W. Greisen and D.C. Wells, 1988: Astron. Astrophys.
Suppl. Ser., 73, p. 359

[4] R.H. Harten, P. Grosbgl, E.-W. Greisen and D.C. Wells, 1988: Astron. Astrophys.
Suppl. Ser., 73, p. 365

[5] NOST 1992: ’A User’s Guide for the Flexible Image Transport System (FITS)’,
NASA /Science Office of Standards and Technology, Code 633.2, NASA Goddard Space
Flight Center.

[6] NOST 100-1.0, 1993: ’'Definition of the Flexible Imagé Transport System (FITS)’,
NASA /Science Office of Standards and Technology, Code 633.2, NASA Goddard Space
Flight Center.

[7] ESO Archive Data Interface Requirements, 1993: ARC-SPE-ES0-00000-0001/1.3,
ESO Garching. '

7-11

7-12 CHAPTER 7. DATA EXCHANGE FORMAT

1-November-1993

Chapter 8

Fitting of Data

This chapter deals with the modelling and the analysis of image and table data by fitting
non-linear functions, using least squares approximation. The different non-linear least
squares methods implemented in MIDAS are first shortly described and discussed. The
MIDAS commands dealing with functions or lmear combination of functions and with the
modelling process are then presented.

The basic scheme under these commands is to provide the necessary tools to define the
functions entering in the fit, to give initial guesses for the parameters and, in iterations
controlled by the user, find the optimal parameters of the functions. These parameters
can be used to generate fitted data either as images or as columns in tabular form.

Due to the nature of the methods, it is recommended to use these commands in fitting
problems involving small amounts of data. For analysis involving large amounts of data,
like full CCD images, there are algorithms, in the context of 2D-photometry, optimized -
for special purpose analyses. A tutorial command (TUTDRIAL/FIT) has been introduced
in order to show the capabilities of the package.

A brief description of the implemented methods is included in section 8.1. Section 8.2
describes how to specify functions in the fit. Section 8.3 describes how to include external
functions. The usage of the commands is illustrated in section 8.4. The output of the
programs and their possible interpretation are discussed in section 8.5. An example is
presented in section 8.6, it may be convenient for first time users to run the command
TUTORIAL/FIT while reading this section. Section 8.7 contains a summary of the com-
mands. Finally, the functions supported in the current version are listed in section 8.8.
References can be found in section 8.9.

8.1 OQOutline of the Available Methods

Let y(z,a) be a function where z = (z,,...,2,) € IR" are the independent variables and
a € A C IR? are the p parameters lying in the domain A. If A is not the whole space IR?,
the problem is said to be constrained.

If a situation can be observed by a set of events (y),z())i = 1,...,m, i.e. a set of
couples representing the measured dependant and variables, it is possible to deduce the

8-1

8-2 CHAPTER 8. FITTING OF DATA

value of the parameters of your model y(z,a) corresponding to that situation. As the
measurements are generally given with some error, it is impossible to get the exact value
of the parameters but only an estimation of them. Estimating is in some sense finding the
most likely value of the parameters. Much more events than parameters are in general

necessary.
In a linear problem, if the errors on the observations have a gaussian distribution, the

“Maximum Likelihood Principle” gives you the “best estimate” of the parameters as the
solution of the so-called “Least Squares Minimization” that follows:

. 2
min x* (a)

with
X (@) = Y v [y -y, a) P

The expected variance of the so-computed estimator is minimum among all approximation
methods and is therefore called in statistics an “efficient estimator”.

The quantities

ri(a) = Vu® [y® — y(20,q)]

are named the residuals and w®) the weight of the i** observation that can be, for instance,
the inverse of the computed variance of the observation.

If y(z, a) depends linearly on each parameter e;, the problem is also known as a Linear
Regression and is solved in MIDAS by the command REGRESSION. This chapter deals with

y(z,a) which have a non-linear dependance in a.
Let us now introduce some mathematical notations. Let g(a) and H (a) be respectively
the gradient and the Hessian matrix of the function x?(a). They can be expressed by

g(a) = 2J(a)T r(a) and
H(a) = 2(J(a)" J(a) + B(a))
where r(a) is the residuals vector
r(a) = (rM(a),...,r™(a)) ,
J(a) the Jacobiaﬁ matrix of r(a) i.e.

or®

J(a)".i = Ja.
J

and B(a) is
B(a) = }_ r¥a) Hi(a)

i

with H;(a), the Hessian matrix of r(*)(a).
In the rest of the chapter, all the functions are supposed to be dlfferentlable if they
are applied the derivation operator even when this condition is not necessary for the

convergence of the algorithm.

15-January-1988

8.1. OUTLINE OF THE AVAILABLE METHODS 8-3

A certain number of numerical methods have been developed to solve the non-linear
least squares problem, four have so far been implemented in MIDAS. A complete descrip-
tion of these algorithms can be found in [1] and [3], the present document will only give a
basic introduction.

8.1.1 The Newton—Raphson Method.

This is the simplest one. The necessary condition for the function x%(e) to have an
extremum is that the partial derivatives vanish i.e.

. Or®
® = i=1,...
or pa; =0 G=1L.p)

or, equivalently,

J(a)T r(a) =0

This is usually a system of non-linear equations that, numerically, can be solved using the
Newton—-Raphson’s method also called in the one-dimensional case the tangents method.
The Taylor development of the function limited to the first order is taken around some
initial guesses of the parameters. The resulting linear system

J(@*)T J(a®) Aa®) = —J(a®)) r(a®)
gives thus a correction to the solution and

is taken as the new approximation of the optimum. The relaxation factor v is a parameter
of the method. The convergence of the process towards the solution of the non-linear
minimization problem has been proven for locally convex x2(a) or under other assumptions
impossible to detail here. These conditions are not generally fulfilled in real problems. -
Moreover, the algorithm ignores the second order conditions and therefore, may end on
- a saddle point or never converge. Two different relaxation factors may lead to different
solutions or one may give convergence and the other one not. No general rule can be given
for the choice of a good relaxation factor.

8.1.2 The Modified Gauss—Newton Method.

From a first guess of the parameters a(!), a sequence a(®,a®),... is generated and is
intended to converge to a local minimum of x2(a). At each iteration, one computes

where d*) is a certain descent direction and o®) is a real coefficient which is chosen
such that x?(a*) + o(¥) d*)) is approximately minimum. The direction d*) is ideally the
solution of the Newton equation

H(a®) d*% = —g(a®)

15-January-1988

8-4 CHAPTER 8. FITTING OF DATA

which can also be rewritten
[J(@®)T J(@®) + B(@®)]d® = —J(@a®) r(a®) .

Neglecting the second derivatives matrix B(a*)), we obtain the “normal equations” and
the Gauss—Newton direction

J(@®T J(a®) d® = —J(@®) r(a®)

This so—called Gauss-Newton method is intended for problems where ||B(a)|| is small.
If the Jacobian J(a) is singular or near singular or if ||r(a)]| is very large (the so—called
large residuals problem), the Gauss—Newton equation is not a good approximation of the
normal equations and the convergence is not guaranteed.

The algorithm implemented here is a modification of that Gauss—Newton method,
that allows convergence even for rank deficient Jacobians or for large residuals. The
Gauss-Newton direction is computed in V; = Sm [J(a®)T J(al¥))], the invariant space
corresponding to the non—null eigenvalues. A correction is taken in V,, the orthogonal of
Vi, according to the second derivatives if the decrease of the objective function at the last
iteration is considered too small. The Hessian matrix is estimated using finite differences
of the gradient. '

This method requires the availability of the derivatives and as the number of gradient
evaluations is almost p at each iteration, it is recommended for problems with a small

number of parameters, let us say p < 10

8.1.3 The Quasi-Newton Method.

This is identical to the modified Gauss—Newton method, except in the way that the Hessian

matrix is approximated.
This matrix is first initiated to zero. At each iteration, a new estimation of the Hessian

is obtained by adding a rank one or two correction matrix to the last estimate such that
H*+)| the estimate of the Hessian matrix at the k + 1% iteration, satisfies

(J(a(k+1))T J(a(k+1)) + H("‘“)) (m(k+1)_z(k)) = J(a("+1)) r(a®t)) — J(a®) ,-(a(k))
The so-called BFGS updating formulas are applied in this algorithm
HO® = o H&) = gk 4 ok

1 1
B ot R T L () g(e) gT (k)
C = Zogmrgm? ¥V~ gwErwmmgm ¢ d W
where
W = J(a(k+1))7‘ J(a(k+1))+H(k)
and

yF) =J(a(k+1)),.(a(k+1)) - J(@®)r(a®))

please see Gill, Murray and Pitfield (1972) for more details. After some iterations and
around the optimum, H*) converges to the Hessian.

15-January-1988

8.2. FUNCTION SPECIFICATION ' 8-5

This method requires the knowledge of the derivatives and, as the gradients are only
computed once per iteration and consequently, the Hessian is more roughly approximated
than with the modified Gauss—Newton method, this is better designed for a great number
of parameters i.e. p > 10. ‘

8.1.4 The Corrected Gauss—Newton No Derivatives.

This method is identical to the Gauss—Newton method where the Jacobian is estimated
by finite differences and the Hessian by second order differences.

It does not require the programming of the derivatives but makes a lot of function
computations. Its use has to be restricted to problems where the derivatives are really too
difficult to write. It is slower and less precise than the two last algorithms.

8.2 Function Specification

The functions to be fitted to data are linear combinations of a set of, so called, “basic”
functions. Basic functions are either defined in the system or defined by the user as
external FORTRAN routines. The actual combination of basic functions is defined via an
interactive editor, (MIDAS command EDIT/FIT)

Basic functions are specified by the name, the independent variable(s) and parame-
ter(s), with optional guesses for the parameters, following the syntax:

name(varif[,..] ;pari]) [pari=value] ...

The function name name defines the basic function used, it can be a system function, as
defined in the table 8.1, or a external function with name USEROQ, ..., USER09. In this
case, the corresponding file(s) USER0OO.FOR, ..., USER09.FOR will exist in the working area
and will contain the definition of the routines following the syntax described in the next
section. ' .

The number of independent variables of the function is determined by the string
vari[,...]. The actual names of the independent variables are considered as dummy
names but their number has to coincide with the actual number of parameters of the func-
tion. All the functions defined in a given fit must have the same number of independent
variables.

Parameters are defined by unique names after the semicolon in the function spec-
ification. Parameters are interpreted according to the position and to the number of
independent variables in the function.

A parameter is generally given a first guess on the same line, as pari=value, it can also
be fixed to a given value or kept proportional to another parameter. The parameter is de-
fined as fixed with the symbol @ immediately following the value as pari=value@. Linear
constrains between parameters are defined as pari=parj*value or pari=parj/value.

According to these rules, a one dimensional gaussian function is specified with the
EDIT/FIT command as

1 GAUSS(X;A,B,C) A=10. B=3200.@ C=1.

15-January-1988

8-6 CHAPTER 8. FITTING OF DATA

where X is the dummy name of the only independent variable, the first parameter, defining
the maximum of the function, is called A, initialized to 10, the second parameter, defining
the position of the gaussian, is called B, and its fixed value is 3200 in world coordinates,
and the FWHM is the parameter C, with initial value 1.

A linear combination of a gaussian and a Cauchy distribution, centered at the same
position is specified as

B1=3200. Ci=1.
B2=B1 C2=4,

1 GAUSS(X;A1,B1,C1) A1=10.
2 CAUCHY(X;A2,B2,C2) A2=A1/10.

in this case, the maximum of the Cauchy distribution is determined by the corresponding

parameter of the Gaussian.
We include in table 8.1 a summary of the system basic functions; the actual mathe-

matical expressions, with the meaning of the function parameters are given in section 8.8.

polynomial (1D, 2D)
natural logarithm

POLY(X;A,B,...)
LOG(X;A,B,C)

EXP(X;A,B,0) exponential
SIN(X;A,B,C) sinus
TAN(X;A,B,C) tangent
SINC(X;A,B,C) sinc
SINCS(X;A,B,C) sinc square

GAUSS(X;A,B,C)
GAUSS(X,Y;A,B,C,D,E,F)
GAUSSA(X;A,B,C)

(FWHM) Gaussian distribution (1D)
(FWHM) Gaussian distribution (2D)
(Standard) Gaussian distribution (1D)

CAUCHY (X;A,B,C)
CAUCHY(X,Y;4,B,C,D,E,F)
LORENTZ(X,Y;A,B,C,D,E,F)
LAPLACE(X;A,B,C)
TRIANG(X;A,B,C)
POISSON(X;A,B,C)
IGAUSS(X;4,B,C)
IGAUSSA (X;A,B,C)

Cauchy distribution (1D)

Cauchy distribution (2D)

Modified Cauchy (Lorentz) distribution

Laplace distribution

Triangular distribution

Poisson distribution

Integrated (FWHM) Gaussian distribution (1D)
Integrated (Standard) Gaussian distribution (1D)

Table 8.1: Basic Fit Functions

8.3 External Functions

If the set of basic functions provided by the system as listed below is not sufficient for
your own purpose, it is possible to define user functions. To do this, the user has to
provide the code of the function(s) as a FORTRAN routine, in his own area, in files
named USEROO.FOR,... USER0OS.FOR. The command CREATE/FUNCTION will compile the
routine(s) and link them with the corresponding system programs (primitives). A library
with the local definitions of the routines USER0O,...,USER09 and the executable code will

15-January-1988

8.3. EXTERNAL FUNCTIONS 8-7

be created in the user area. With this scheme, it is possible to fit the external functions
USEROi as if they where basic functions.
Here is a template to write a user defined function:

15-January-1988

8-8 CHAPTER 8. FITTING OF DATA

C+
C.NAHE
C USEROi
C
C.DESCRIPTION
C
C
C.INPUT ARGUMENTS: - : :
¢ NIND INTEGER Number of independent variables
¢ X (NIND) REAL Array of NIND elements with the
C independent variable
C NPAR INTEGER Number of parameters
C PARAM (NPAR) DOUBLE PRECISION Array of NPAR elements with the
C values of the parameters
C
C.OUTPUT ARGUMENTS: .
c Y DOUBLE PRECISION Value of the function
C DERIV (NPAR) DOUBLE PRECISION Array of NPAR elements with the
C partial derivatives of the
C function for each parameter
C_
SUBROUTINE USEROi(NIND,X,NPAR,PARAM,Y,DERIV)
IMPLICIT NONE
c ..
C .. Scalar Arguments .
INTEGER NIND,NPAR
- DOUBLE PRECISION Y
C ..
c .. Array Arguments ..
REAL X(NIND) .
DOUBLE PRECISION DERIV(NPAR),PARAM(NPAR)
c .
C .. Local Scalars ..
c .-
C .. Local Arrays ..
c .
C .. Executable Statements
RETURN
END

The variable Y must contain the value of the basic function at the parameter value
PARAM and the array DERIV has to receive the value of the partial derivatives, except if
the method used is CGNND (the abbreviation of Corrected Gauss-Newton No Derivative).
In the user functions, it is recommended to scale the parameters in such a way that their
absolute values lies in a small scale range let us say in [0.1 + 10.]. It is advised to use

15-January-1988

8.4. THE FITTING PROCESS. 8-9

this scheme to test and debug new functions that can later on be included in the system
supported set.

8.4 The Fitting Process.

The typical sequence of operations for a FITting process would be first to create the
approximating function, to choose relatively to your problem and your needs the FIT
options, then to execute the real least squares approximation and finally to store and view
the results. This corresponds to the typical sequence of MIDAS instructions :

EDIT/FIT fitname

SET/FIT options . .

FIT/... nfeval,prec image (or table and cols)
COMPUTE/FIT output

The commands have been designed so that defaults exists for almost all the parameters,
(see description in Volume C of the MIDAS User Guide).

EDIT/FIT has been described in the last section.

The MIDAS command SET/FIT is used to specify the different options of the FIT
command, for instance the method to be applied or the type of used functions. The
instruction

SET/FIT METHOD=CGNND PRINT=1 WEIGHT=S FUNCT=BLACBODY FCTDEF=USER

declares that the Corrected Gauss—Newton no derivatives method is to be applied, that at
each iteration, a display of the intermediate result will be performed, that the weighting
factors are statistical, that the name of the approximating function is BLACBODY, and that
this BLACBODY function which contains user defined functions has already been built in the
user area. The appendix or the MIDAS interactive HELP facility will give you the complete
description of the SET/FIT command.

The command SHOW/FIT displays the actual selected FIT options.

The FIT instruction is performing the least squares approximation itself. It has a
slightly different syntax if the fitting concerns a table or an image.

FIT/TABLE nfeval[,prec, [metpar]] table :depcoll,:wgt] :indcol,...
FIT/IMAGE nfevall,prec, [metpar]] image

nfeval is the maximum number of function evaluations that can be performed, prec
is the precision on the parameters i.e. the program stops if '

”a(aolution) _ a(jound)” < prec (1+ "a(]ound)”) ,

and metpar are the specific method parameters (for instance in NR : the relaxation factor).
The latter have not generally to be given as they can be deduced by the program. For
stiff problems, they can thus be overwritten by the user. Any non-given parameter is
defaulted. Consult the appendix or use the MIDAS interactive HELP to get a complete
description. For instance, the instruction

15-January—1988

8-10 CHAPTER 8. FITTING OF DATA

FIT/IMAGE 100,0.001 PROFILE

executed after the preceeding SET/FIT, will execute a non-linear least squares approxima-
tion using the CGNND method. The program will stop if more than 100 computations of
the approximating function have been performed or if the solution has been found with a
precision of 1073, ’

8.5 Outputs

To check any typing error or missing specification, first are displayed the options, the
required precision, the maximum number of function evaluations and the method param-
eters.

The frequency of the intermediate displays are controlled by the SET/FIT PRINT=iter.
It includes the display of the iteration number, the actual number of function evaluations,
the sum of the squares of the residuals, the so-called reduced chi, the percentage of decrease
of the reduced chi since last iteration, and, except for the NR method, the norm of the
gradient and the dimension of the space V; spanned by the Jacobian. The reduced chi
square is the :

xX* (a®)

degree-of freedom

In any case, this is followed by the value of the parameters. Except for the NR method,
the value of the gradient and the singular values of the Jacobian matrix are added.

At the end, a diagnostic message telling you if the convergence was reached or if any
numerical failure occurred during the algorithm. The different messages are:

==> METHOD : Convergence achieved <--
*%% ERR-1-METHOD : Bad initializatiomns ... Aborting %%
#x% ERR-METHOD : Likely an error in forming the derivatives #%#
**% ERR-NR : Problems in inverting matrix ##=x '
%k WARN-2-METHOD : No convergence reached ##x
#*%% WARN-3-METHOD : Final parameters not really satisfactory **=*
#%% ERR-4-METHOD : No convergence in singular value decomposition *#*
*#x WARN-5-METHOD : parameters only a good estimation #**
#%% ERR-i-METHOD : Final parameters are not satisfactory %%

In the last message i varies from 6 to 8 and the greater i is, the less reliable are the final
value of the parameters. For warnings and errors numbered more than 3, it is recommended
to perform another FITting with different initial guesses. If warning 2 is displayed, do
again the FITting starting with the last computed value of the parameters (nfeval < 0
in the FIT/... command). If an error in the derivatives is reported, check your user
functions code.

The diagnostic will be followed by the covariance matrix if you set iter to a negative
value in SET/FIT PRINT=. |

Finally, the found optimal value of the parameters with their estimated standard de-
viation are listed.

15-January-1988

8.6. TUTORIAL 8-11

8.6 Tutorial

A tutorial procedure (TUTORIAL/FIT) shows how to use the fitting package in the simple
case of a 1D-image consisting of two overlapping gaussians on top of a non-linear back-
ground with additional noise. It is recommended to run the tutorial while reading this
section and if possible, on a graphic terminal.

Two functions are copied into your area if you run the example: TEST to generate the
artificial data, and FUNCTION with the “model” to be fitted.

The artificial image, to be used in the example, is created as follows: First it creates a
reference image, called REF, to provide the definition interval of the independent variable.
Then the command COMPUTE/FUNCTION creates the 1D frame with the gaussian profiles
on top of the background. Finally, some noise is added to the data. The resulting frame,
- PROFILE is displayed on the graphic screen.

Now the ‘model’ FUNCTION will be fitted to the frame PROFILE, using the command
'FIT/IMAGE. The ’model’ was copied into your area already, but you could define it using
" the editor as: ‘

EDIT/FIT FUNCTION

This command allows you to create or modify FIT-files (ref Volume C of the MIDAS
User guide and Appendix C for use of the EDIT command on your terminal). In our
example, the user will edit the three basic functions e.g. as follows:

1 GAUSS(X;A1,A2,A3) A1=50. A2=95. A3=45.
2 GAUSS(X;A4,A5,A6) A4=A1 A5=135. A6=A3
3 POLY(X;A,B,C) A=0. B=0. C=0.

where two of the parameters of the second gaussian, height and FWHM, are related to
the parameters of the first Gaussian.

The different fitting methods ‘are then successively applied, changing regularly the
options through the SET/FIT. The exact sequence of instructions is:

SHOW/FIT

FIT/IMAGE 11,1.,0.5 PROFILE FUNCTION
SET/FIT METHOD=CGNND

SET/FIT PRINT=0

FIT/IMAGE 30,.5 PROFILE FUNCTION
SET/FIT METHOD=QN

SET/FIT PRINT=-4

FIT/IMAGE 30, .5 PROFILE FUNCTION
SHOW/FIT

SET/FIT METHOD=MGN

FIT/IMAGE 30,.5 PROFILE FUNCTION

It is possible to compare efficiency, precision and effects.
Finally, the fitted result is computed as:

-15-January—1988

8-12 : CHAPTER 8. FITTING OF DATA

COMPUTE/FIT FITTED = FUNCTION

and the fitted frame is plotted on top of the original data.
Individual components of the fit can be selected with the command SELECT/FUNCTION.

In the example, the sequence of commands

SELECT/FUNCTION FUNCTION 1,3
COMPUTE/FIT FIT1 = FUNCTION
SELECT/FUNCTION FUNCTION 2,3
COMPUTE/FIT FIT2 = FUNCTION
SELECT/FUNCTION FUNCTION ALL

is used to compute the two gaussxan components on top of the background. The results
are also plotted.

The full compatibility between image and tabular formats for input and output means
that, in our example, the fitted parameters can be used to compute fitted values in a table,
using the COMPUTE/FIT command as follows:

COMPUTE/FIT table :outcol = fitname(:incol)

where table is the name of a table containing the independent variable in the column
:incol, fitted values are stored in the column :outcol.

To begin with, it is advised to consult the appendix or use the MIDAS interactive HELP
about EDIT/FIT, SET/FIT, CREATE/FUNCTION, REPLACE/FUNCTION, FIT, FIT/IMAGE,
FIT/TABLE, COMPUTE/FIT. '

8.7 Command Summary'

Table 8.2 summarizes the commands which are implemented in the context of functions
and least squares fitting.

8.8 Basic Functions

8.8.1 Polynomials (1D and 2D)

POLY (z;a,b,c,... a+bz+cx?+---
POLY (z,y;a,bye,...) = a+br+cy+---

e
|

8.8.2 Logarithmic and Exponential Function

LOG(z;a,b,¢) = aln(b+ cx)
EXP(z;a,b,c) = aexp(b+ cz)

15-January—1988

8.8. BASIC FUNCTIONS 8-13

COMPUTE/FIT outima [= funct[(refima)]]

COMPUTE/FIT table:out[,:error] [= functi(:coli,...)]1]
COMPUTE/FUNCTION outima = funct(refima)

COMPUTE/FUNCTION table:out = funct(:coll,...)

CREATE/FUNCTION userfuncil,..]

EDIT/FIT [funct]

FIT/IMAGE [nfevall,prec[,metpar]]] [image[,wgt]l] [funct]
FIT/TABLE [nfevall,prec[,metpar]]] table dep[,wgtl ind [funct]
MODIFY/FIT table seqno [funct] -

REPLACE/FUNCTION userfuncil,..]

SAVE/FIT table seqno [funct]

SELECT/FUNCTION funct numberl[,...]

SELECT/FUNCTION funct ALL

SET/FIT [METHOD=mname]l [PRINT=iter] [WEIGHT=wgttyp] [FUNCT=fname] [FCTDEF=where]
SHOW/FIT

Table 8.2: Fitting Commands

8.8.3 Trigonometric Functions

SIN(z;a,b,c) = asin(b+ cz)
~ TAN(z;a,b,¢) = atan(b+ cz)

8.8.4 Sinc and Sinc Square

SINC(z;a,b,c) = asin(b+ cz)/(b+ cx)
SINCS(z;a,b,c) = asinc’(b+ cz)

15-January-1988

8-14 CHAPTER 8. FITTING OF DATA

8.8.5 Distributions

GAUSS(z;a,b,c) = aexp [— ln2(?_(£c:£))2]

GAUSS(z,y;a,b,c,d,e,f) = aexp [-— In2 ((x;',b)’ + (!!:;:)’ _ 2!(:—;2(&:—«:))]

2
GAUSSA(wia,be) = —E—exp [—% (=)]

2
IGAUSS(z;a,b,c) = a[°_exp [— In2 (_!2 uc—bl)] du

(e22)]

IGAUSSA(z;a,b,¢) = \/&r)e JZ exp |1

1-1

CAUCHY (z;a,b,c) = a[1+ (M)2

LORENTZ(z;a,byc,d) = a[1+(2gzc_b2)2

POISSON(z;a,b,c) = 2exelt)

T(z+1)

LAPLACE(z;a,b,¢) = aexp[-In2 (2z=4)]

TRIANG(z;a,b,c) = a(l-m)

[

8.9 References

A good introduction to optimization theory and a description of the the modern mini-
mization techniques can be found in Gill, Murray and Wright [1]. Bard [2] deals with the
particular problem of parameter estimation; chapters concerning the different estimators
and their properties, and the interpretation of the estimates are remarkable. Updating
formulas for Quasi~-Newton methods are discussed in [4].

. The reading of the cited chapters of [2] will allow an error—free interpretation of the
results of the optimization algorithms. It is therefore recommended.

[1] Gill P.E., Murray W and Wright M.H. . Practical Optimization.
Academic Press. London. 1981.
[2] Bard Y. . Non-~linear Parameter Estimation. Academic Press.

15-January-1988

8.9. REFERENCES 8-15

London. 1974.

[31 Gill P.E., Murray W. . Algorithms for the solution of non-linear
least squares problems. SIAM J. of Num. An., vol 15, pp 977-992, 1978

[4] Gill P.E., Murray W. and Pitfield . The implementation of two revised
algorithms for unconstrained optimization. Rep. NAC 11. Nat. Phys. 1972.
Lab., Teddington. England.

15-January-1988

8-16 CHAPTER 8. FITTING OF DATA

15-January—1988

Appendix A

Command Summary

Below is an alphabetical list of all basic MIDAS commands. The following abbreviations
have been used where appropriate for the command parameters:

input image: infr infr_1, infr_2...

output image: outfr outfr_1, outfr_2...
input tables: intab intab_1, intab.2...
output tables: outtab outtab_1, outtab_2...
display channel: chan chan_I

device: device

A.1 Core Commands

@@ proc [pari] ...[par8]

execute a MIDAS procedure
@ proc [parl] ...[par8]

execute a procedure in MID_PROC (MIDAS core procedures)
@a proc [pari] ...[par8]

execute a procedure in APP_PROC (MIDAS application procedures)
@s proc [pari] ...[par8]

execute a procedure in STD_PROC (MIDAS standard reduction proce-
dures)
@c proc [pari] ...[par8]

execute a procedure in CON_PROC (MIDAS contributed procedures)

ADD/ACAT [cat_name] frame list
add entries to an ASCII file catalog
ADD/FCAT [cat_name] file_list [lowstr,histr]
add entries to a fitfile catalog
ADD/ICAT [cat_name] frame_list [lowstr,histr]

A-1

A-2

APPENDIX A. COMMAND SUMMARY

add entries to an image catalog
ADD/TCAT [cat.name] table_list [lowstr,histr]
add entries to a table catalog
ALIGN/CENTER inframe refframe incent_x,.y refcent_x,.y
compute start coordinates for inframe to match with refframe center
ALIGN/IMAGE intab reftab [option] [overlay flag] [residual flag]
compute transformation coeflicients for two rotated images
APPLY/CONVERSION IMTB ima tab threshold
convert a "mask” image to a table
APPLY/CONVERSION TBIM tab ima npx1,npx2 stal,sta2,stpl,stp2 bg,fg
convert a table to a "mask” image
APPLY/EDGE inframe outframe [thresh]
do edge detection on an image
APPLY/MAP outframe = inframe mapframe control flags
use an image frame like a Lookup Table
APPLY/THIN inframe outframe
apply thinning algorithm
ASSIGN/DEFAULT
assign default devices
ASSIGN/DISPLAY [dev] [file name]
define output device for display
ASSIGN/GRAPHICS [device] [option]
define the graphic device for plot output
ASSIGN/INPUT [dev] [file_name]
define input device for writing
ASSIGN/PRINT [dev] [file_name]
define output device for printing
AVERAGE/AVERAGE [in_specs] [out_specs] [out_opt] [draw_flag]
compute average over subimage
AVERAGE/COLUMN out = in [start,end] [SUM]
average image columns
AVERAGE/IMAGES out = in_specs [merge] [null] [av_option] [dat_intval]
average images
AVERAGE/KAPPA [in_specs] [out_specs] [out_opt] [draw flag] [no_iter]
compute average (kappa-sigma clipping) over subimage
AVERAGE/MEDIAN [in_specs] [out_specs] [out_opt] [draw_flag]
compute average (median value) over subimage
AVERAGE/ROW out = in [start,end] [SUM]
average image rows
AVERAGE/WEIGHTS out = in.specs [merge] [null] [av.option] [dat_intval]
average weighted images
AVERAGE/WINDOW out = in_specs [meth] [bgerr,snoise]
compute average of (consistent) pixel values

I-November—1995

Al

CORE COMMANDS

BLINK/CHANNEL [chal,cha2,..] [intval]
blink between Image Display channels
BYE [proc]
terminate a MIDAS session + return to the host system

CENTER/GAUSS [in_specs] [out_specs] [out_opt] [curs_specs]
[wsize] [zwoption] [invert_flag]

find intensity weighted center
CENTER/IQE [in_specs] [out_specs] [out_opt] [curs_specs]
[wsize] [zw_option] [invert_flag]

find intensity weighted center + get angle of major axis
CENTER/MOMENT [in_specs] [out_specs] [out_opt] [curs_specs]
[wsize] [zw_option] [invert_flag]

find intensity weighted center
CHANGE/DIRECTORY direc

change the default (current) directory for MIDAS
CLEAR/ACAT

deactivate the ASCII file catalog
CLEAR/ALPHA

clear the alpha-numerics memory of the image display
CLEAR/BACKGROUND

put Midas session into "foreground” mode
CLEAR/BUFFER

clear the command buffer + reset command numbers
CLEAR/CHANNEL [chanl]

clear + initialize memory channel
CLEAR/CONTEXT [context]

remove command definitions of a context
CLEAR/CURSOR

disable cursors
CLEAR/DISPLAY

reset image display
CLEAR/FCAT

disable automatic catalog functions for fit files
CLEAR/GRAPHIC

erase the screen of the graphic window or terminal
CLEAR/ICAT

disable automatic catalog functions for image frames
CLEAR/ITT [chanl]

bypass ITT on display of memory
CLEAR/LUT [screen_segm]

bypass LUT in screen_segment on image display
CLEAR/OVERLAY

I-November—1995

A-3

APPENDIX A. COMMAND SUMMARY

disable graphics/overlay plane of display
CLEAR/SCROLL [chanl]
reset scroll values
CLEAR/SPLIT
disable split screen
CLEAR/TCAT
disable automatic catalog functions for table files
CLEAR/ZOOM [chanl]
clear zoom
CLOSE/FILE file_id
close an ASCII file
COMPUTE/AIRMASS frame [long] [lat]
COMPUTE/AIRMASS alpha delta ST [exptime] [long] [lat] [date] [UT]
compute airmass (from sec z)
COMPUTE/BARYCORR date UT alpha delta [longitude] [latitude] 1
COMPUTE/BARYCORR table.tbl [longitude] [latitude] -
COMPUTE/BARYCORR image alpha delta [longitude] [latitude]
correct universal times and radial velocities to center of sun or
barycenter of solar system
COMPUTE/COLUMN res_frame.column = arithmetic_expression
do arithmetics on columns of an image
COMPUTE/HISTOGRAM result = table col [bin [min [max]]]
table-to-image or table-to-table histogram transformation
COMPUTE/IMAGE [outspec =] expression
compute arithmetic expression
COMPUTE/KEYWORD key = arithmetic_expression
compute values of a keyword
COMPUTE/PIXEL [outspec =] expression
compute expression on pixel basis
COMPUTE/PRECESSION alpha delta equinox0 equinoxl
COMPUTE/PRECESSION table.tbl equinox0 equinoxl
precess equatorial coordinates from one epoch to another
COMPUTE/REGRESSION table column = name[(ind)] [d_type]
compute result of a regression
COMPUTE/ROW res_frame.row = arithmetic_expression
do arithmetics on rows (lines) of images
COMPUTE/ST date UT [longitude]
COMPUTE/ST table.tbl [longitude]
COMPUTE/ST image [longitude]
calculate geocentric Julian date (JD) and local mean sidereal time (5T)
from civil date and universal time (UT)
COMPUTE/TABLE table column = expression
compute arithmetic or string operations on table columns
COMPUTE/UT date ST [longitude]

I-November—1995

Al

CORE COMMANDS A-b

COMPUTE/UT table.tbl [longitude]
COMPUTE/UT image [longitude]

calculate geocentric Julian date (JD) and universal time (UT) from

civil date and local mean sidereal time (ST)
COMPUTE/WEIGHTS input_specs [window_specs]

determine weights for command AVERAGE/WEIGHTS
COMPUTE/XYPLANE result_cube = expression

compute arithmetic expression on xy_planes of cubes
COMPUTE/XZPLANE result_cube = expression

compute arithmetic expression on xz_planes of cubes
COMPUTE/ZYPLANE result._cube = expression

compute arithmetic expression on zy_planes of cubes
CONNECT/BACKMIDAS unit wait_specs b_char method

connect "command syntax” to another MIDAS
CONVERT/TABLE image = table x[,y] z refima [method] [par]
CONVERT/TABLE image = table x[,y] refima FREQ

table to image conversion
CONVOLVE/IMAGE frame psf result

convolve image with point spread function
COPY/DD source_frame source.desc dest. frame dest_desc

copy descriptors of source frame to destination frame
COPY/DIMA source. frame source_desc dest_frame

copy descriptor of source frame to new image
COPY/DISPLAY [out_dev] [stop_flg] [ITTdef] [LUTnam] [prflag] [prmode]

make a hardcopy of the display on output_device
COPY/DK source_frame source_desc dest_key

copy descriptor of source frame to keyword
COPY/DK source_frame source.desc dest_key

copy descriptor of source frame to keyword
COPY/GRAPHICS [device] [plotfile]

copy the existing plot file to the graphic device
COPY/ID source frame dest_frame dest_desc

copy image data to descriptor of destination frame
COPY/II source_frame dest._frame dest format delete flag

copy source frame to destination frame
COPY/IT inframe outable [column]

copy image into table
COPY/KD source_key dest_frame dest_desc

copy keyword to descriptor of destination frame
COPY/KEYWORD source key dest key [Munit]

copy keywords of same type
COPY/KI source key dest_frame

copy keyword to new frame
COPY/XT keyword table [column ...] element

1-November—1995

A-6

APPENDIX A. COMMAND SUMMARY

copy keyword into table element
COPY/LSDD list source_frame dest_frame
copy list of descriptors of source frame to descriptors of dest_frame
COPY/LSDK list source frame
copy list of descriptors of source frame to keywords
COPY/LSKD list dest_frame
copy list of keywords to descriptors of destination frame
COPY/TABLE intable outable [organization]
copy source table to destination table
COPY/TI intable outimage
copy table into image
COPY/TK table [column ...] element keyword
copy table element into keyword
COPY/TT intable incolumn [outable] outcolumn
copy a table column to an other existing table
COPY/ZOOM [out_dev] [stop_flg] [ITTnam] [LUTnam] [prflag] [prmode]
make a copy of the zoom window on output device
CREATE/ACAT [cat_name] [dir_spec]
create a catalog of files in the current directory
CREATE/COLUMN table column [unit] [format] [type]
create a table column
CREATE/COMMAND comnd text
create a "user” command
CREATE/CURSOR [dspid] [wind_specs] [Xstation]
create a cursor window
CREATE/D_COMMAND comnd text
create a directory "user” command
CREATE/DEFAULT comnd defl def2 ... def8
create special defaults for MIDAS command
CREATE/DISPLAY [dspid] [dspinfo] [meminfo] [alph flag] [gsize] [Xstation]
create a display window
CREATE/FCAT [catname] [dir_spec]
create a catalog of fit files in the current directory
CREATE/FILTER frame [dim_specs] [frame_specs] [filt_type] [coefs]
create filter frame
CREATE/GRAPHICS [graph id] [graph_spec] [gsize] [Xstation]
create a graphics window
CREATE/ICAT [catname] [dir_spec]
create a catalog of images in the current directory
CREATE/IMAGE frame [dim_specs] [frame_specs] [func_type] [coefs]
create an image
CREATE/LUT LUT_table H_specs S_specs I_specs cyclic_flag
CREATE/LUT LUT_table CURSOR [start LUT] [cursor LUT]
create a colour lookup table

I1-November-1995

A.1. CORE COMMANDS

CREATE/RANDOM_IMAGE name [dims] [starts,steps] [func_type] [coefs]
[seed]
CREATE/RANDOM_IMAGE name = ref_frame [func_type] [coefs] [seed]
create a random image
CREATE/ROW table row._position number of_rows
add one or several rows at a given position of a table
CREATE/TABLE table ncol nrow file [format_file] [organization]
create a table
CREATE/TCAT [catname] [dir_spec]
create a catalog of tables in the current directory
CREATE/VIRTUAL virtual table
create a virtual table from a physical table
CREATE/ZOOM [dspid] [wind_specs] [Xstation]
create a zoom window
CUTS/IMAGE frame [cut_specs]
display or set low + high cut values of an image frame

DEBUG/MODULE [low_lev,hi lev] [switch]

run MIDAS modules in debug mode
DEBUG/PROCEDURE [low_lev,hi_lev] [switch]

run MIDAS procedures in debug mode
DECONVOLVE/IMAGE frame psf result [no_iter] [cont_flag]

deconvolve image with point spread function
DELETE/ACAT [catalog] [conf flag] [range]

delete files with entry in ASCII file catalog
DELETE/COLUMN table column_sel

delete table column(s)
DELETE/COMMAND [comnd]

delete user defined command
DELETE/CURSOR [disp]

delete cursor window(s) on XWindow displays
DELETE/DEFAULTS [comnd]

delete special defaults for command
DELETE/DESCRIPTOR frame descr

delete descriptor of frame
DELETE/DISPLAY [disp]

delete display window(s) on XWindow displays
DELETE/FCAT [catalog] [conf flag] [range]

delete fit files with entry in catalog
DELETE/FIT name [conf_flag]

delete a fit file
DELETE/GRAPHICS [grap]

delete graphic window(s) on XWindow displays

1-November—1995

~1

APPENDIX A. COMMAND SUMMARY

DELETE/ICAT [catalog] [conf_flag] [range]
delete image frames with entry in catalog

DELETE/IMAGE name [conf flag]
delete an image frame

DELETE/KEYWORD key
delete user defined keyword

DELETE/LOGFILE
delete current logfile

DELETE/ROW table row_position number_of_rows
delete one or several rows of a table

DELETE/TABLE name [conf flag]
delete a table file

DELETE/TCAT [catalog] [conf flag] [range]
delete table files with entry in catalog

DELETE/TEMP
delete temporary MIDAS files

DELETE/ZOOM [disp]
delete zoom window(s) on XWindow displays

DISCONNECT/BACK MIDAS unit
disconnect from a background MIDAS

DISPLAY/CHANNEL [chanl] [LUT.sect]
display contents loaded in an Image Display channel

DISPLAY/LUT [switch] [intens]
en/disable display of current LUT

DRAW/ANY [intens]
draw manually in the overlay channel

DRAW/ARROW [in_spec] [coord ref] [draw_opt] [intens] [nocurs] [key flag]
draw arrows in the overlay channel

DRAW/CIRCLE [in_spec] [coord_ref] [draw_opt] [intens] [nocurs] [key flag]
draw circles in the overlay channel

DRAW/CROSS [in_spec] [coord_ref] [draw_opt] [intens] [nocurs] [key flag]
draw crosses in the overlay channel

DRAW/ELLIPSE [in_spec] [coordref] [drawopt] [intens] [nocurs] [key flag]
draw ellipses in the overlay channel

DRAW/IMAGE frame [chanl] [scale] [center] [cuts] [over] [iaux] [fix]
draw intensities of a line of an image into display channel

DRAW/LINE [in_spec] [coord ref] [draw_opt] [intens] [nocurs] [key_flag]
draw straight line in the overlay channel

DRAW/RECTANGLE [in_spec] [coord ref] [draw.opt] [intens] [nocurs] [key_flag]
draw rectangles in the overlay channel

DRAW/SLIT [in_spec] [coord_ref] [draw opt] [intens] [nocurs] [key_flag]
draw IUE slits in the overlay channel

I-November—1995

A.1. CORE COMMANDS

ECHO/FULL [levla,levlb]
show substitutions in MIDAS procedure files
ECHO/OFF [levla,levlb]
suppress display of input from MIDAS procedure files
ECHO/ON [levla,levlb]
display input from MIDAS procedure files
EDIT/TABLE table [edit.option] [col] [row]
interactive table editor
EQUALIZE/HISTOGRAM frame descr itt.name
perform histogram equalization
EXECUTE/CATALOG com_string parml ... parm?7
execute a MIDAS procedure or command for all entries in a catalog
EXECUTE/TABLE table command-string
execute command on all rows of table
EXTRACT/CTRACE [step] [frame] [plot flag] [zw_option]
extract a column from displayed image
EXTRACT/CURSOR [subfr] [xpx,ypx] [loop_flag]
extract a subframe via cursor
EXTRACT/IMAGE subframe = frame[...:...]
EXTRACT/IMAGE subframe = frame[...] Iloffsets roffsets
extract a subimage from an image frame
EXTRACT/LINE out = in[..] step
extract a 1-dim line from a 2-dim frame
EXTRACT/REFERENCE_IMAGE in ref out thresh
extract subimage according to reference image
EXTRACT/ROTATED_IMAGE steps frame
extract a rotated subimage from displayed image
EXTRACT/RTRACE [step] [frame] [plot_flag] [zw_option]
extract a row from displayed image
EXTRACT/SLIT [in_option] [resframe] [slit_specs]
extract a subimage defined by a fixed slit from image
EXTRACT/TRACE [step] [frame] [plot_flag] [cut_option] [zw_option]
extract a line from displayed image

FFT/FINVERSE inr ini outr outi

make inverse discrete Fourier transform
FFT/FPOWER inr ini outr outi pow_spec

make discrete Fourier transform and power spectrum
FFT/FREQUENCY inr ini outr outi

make discrete Fourier transform with frequency scaling
FFT/IMAGE inr ini outr outi
_ make discrete Fourier transform
FFT/INVERSE inr ini outr outi

1-November—1995

APPENDIX A. COMMAND SUMMARY

make inverse discrete Fourier transform
FFT/POWER inr ini outr outi pow_spec
make discrete Fourier transform and power spectrum
FILTER/COSMIC inframe outframe sky,gain,ron, [ns], [rc] [mask]
remove cosmic ray events.
FILTER/DIGITAL frame outframe [filter_specs] [subimage] [options]
use digital filter on an image
FILTER/GAUSS in out [radx,rady] [gauss_specs] [subima] [filtnam] [options]
use Gaussian filter on an image
FILTER/MAX frame outfram [xyradius] [subima] [options]
apply maximum filter to an image
FILTER/MEDIAN frame outfram [filt specs] [flag] [subima] [options]
smooth an image with median filter
FILTER/MIN frame outfram [xyradius] [subima] [options]
apply minimum filter to an image
FILTER/SMOOTH frame outfram [filter specs] [flag] [subima] [options]
smooth an image by averaging
FIND/MINMAX frame
find min, max of frame and corresponding pixel numbers
FIND/PIXEL frame low,high [inout_flag] [first flag] [table] [rowmax]
find first/all pixel(s) with a value in/outside interval [low,high]
FIT/FLAT SKY outframe = inframe [in specs] [order] [back_surface]
FIT/FLAT_SKY inframe [in_specs] [order] [back_surface]
Approximate background of image by a surface
FLIP/IMAGE frame [flag]
flip an image around an axis

GET/CURSOR [output] [option] [marker] [curs_specs] [zw_option]
read cursor coords from display
GET/GCURSOR [output_spec] [app.flag] [max]
read and store cursor coordinates from the graphics display
GET/IMAGE frame [input_source] [ITT flag]
read image from displayed image channel
GET/ITT out_specs [chanl] [sect]
read currently active I'TT from image display
GET/LUT out_specs [get_specs] [ITT] [format] [range]
read currently active LUT from image display
GROW/CUBE frame no_planes frame_list
expand 2-dim/3-dim frame
GROW/IMAGE out = in [start,step,no] [lincol_specs] [lincol flag]
expand single line into 2-dim image

I-November—1995

Al

CORE COMMANDS

HELP [help_topic]

display info about help.topic
HELP/APPLIC [proc]

display header information of application procedure
HELP/CL [command]

display help for commands only used in MIDAS procedures
HELP/CONTRIB [proc]

display header information of procedures in the Midas ‘contrib’ area
HELP/KEYWORD key

explain contents of given key
HELP/QUALIF [qualif]

display all commands with given qualifier
HELP/SUBJECT [topic]

display information related to given topic

INDISK/ASCII in_file [outfile] [npix_string]
read ASCII file from disk + convert to Midas image
INDISK/FITS in files [out_files] [option]
read FITS files from disk
INFO/DESCR frame descr
get type and size of descriptor
INFO/IMAGE frame
get internal info of frame
INFO/SETUP [setup]
display all the information about a Setup
INITIALIZE/DISPLAY [noLUT,LUTsz] [ownLUT] [M_unit] [fonts]
initialize the image display
INITIALIZE/SETUP [setup]
initialize the variables of a Setup
INSERT/IMAGE subframe modframe [startx,y,z]
insert a subframe into another frame
INTAPE/FITS file_specs file-id device [flags]
read frames from magtape in FITS/THAP format
INTERPOLATE/II outima inima refima [s] [degree]
interpolate Image to Image
INTERPOLATE/IT outtab i,d inima [s] [degree]
interpolate Image to Table
INTERPOLATE/TI outima intab i,d refima [s] [degree]
interpolate Image to Image
INTERPOLATE/TT outtab i,d intab i,d [s] [degree]
interpolate Table to Table
ITF/IMAGE inframe table coli,colo scal outframe
ITF correction

I-November—1995

APPENDIX A. COMMAND SUMMARY

JOIN/TABLE intabl :X1,[:Y1] intab2 :X2,[:Y2] outtable [tolX,tolY]
join table files

LABEL/DISPLAY labl [position] [mode] [option] [size] [key flag]
write a label on the image display
LABEL/GRAPHIC label [x_pos,y.pos[,mm]] [angle] [size] [pos_ind]
write a label_string on the graphics device
LOAD/CURSOR curs_table curs_no
load programmable cursor into the Image Display
LOAD/IMAGE frame_spec [chanl] [scale] [center] [cuts] [dirs] [fix]
load image into display device
LOAD/ITT in_specs [chanl] [load_specs]
load intensity transfer table to Image Display
LOAD/LUT in_specs [load_specs] [disp_flag] [format]
load colour lookup table into Image Display
LOAD/OVERLAY overlay table load_specs
load lookup table for overlay + graphics
LOAD/TABLE table x y [ident] [symbol [size [intens]]]
load table into overlay channel of Image Display
LOCK/KEYWORD key_list lockno
lock keyword(s)
LOG/COFF
suppress logging
LOG/ON
enable logging
LOG/TOF
write top_of form into logfile

MAGNITUDE/CENTER [in_specs] [out_specs] [Fsiz,Nsiz,Bsiz] [out_opt]
[center_params] [curs_specs] [zw_option]
compute magnitude in center
MAGNITUDE/CIRCLE [in_specs] [out_specs] [Fsiz,Nsiz,Bsiz] [out_opt]
[center_params] [curs_specs] [zw_option]
compute magnitude within circular aperture
MAGNITUDE/RECTANGLE [in_specs] [out_specs] [Fsiz,Nsiz,Bsiz] [out_opt]
[center_params] [curs_specs] [zw_option]
compute magnitude within square aperture
MERGE/TABLE intable [intable ...] outable
merge table files
MODIFY/AREA [source] [resfram] [degree] [constant] [drawflg]
remove bad data from a circular pixel-area in an image

I-November—1995

A.1. CORE COMMANDS A-13

MODIFY/COLUMN source_def res frame [col_type] column_coords
approximate values in a column
MODIFY/CUTS [image] [cursor_spec]
modify cut values of full frame or in cursor selected windows
MODIFY/GCURSOR frm_in frm_out y-coord xstart,xend no_curs,degree
interactive modification of pixel values in a frame
MODIFY/ITT [method] [value] [prflag]
modify the currently active I'TT
MODIFY/LUT [method] [colour] [prflag]
modify the currently active LUT
MODIFY/PIXELS [source] [resfram] [arfacts] [xdeg,ydeg,niter] [drawflg]
[noise]
approximate pixel-area in an image
MODIFY/ROW source_def res_frame row_type row-coords
approximate values in & row

NAME/COLUMN table column [new-column] [unit] [format]
redefines label/unit/format of a column

NORMALIZE/SPECTRUM inframe outframe [mode] [table] [batch flag]
approximate continuum of 1-D spectra for later normalization

OPEN/FILE filename flag file_control_key
open an ASCII file for reading or writing
OUTTAPE/FITS [catalog[,list]] device [flags] [density,block] [type]
write to device in FITS format
OVERPLOT/AXES [x_axis spec] [y.axis_spec] [x.sc,y_scil,x_off,y_offl]
[x_1ab] [y.-lab]
overplot a coordinate box with tickmarks and labels
OVERPLOT/AXES [coord_str] [x_lab] [y_lab]
overplot a coordinate box around a displayed frame
OVERPLOT/COLUMN frame [x-coord] [y_start,y_end] [offset] [l type]
overplot a column of a frame on a graphic device
OVERPLOT/COLUMN frame [x-coord] [y.start,y_end] [offset] [l_type]
overplot a column of a frame on a graphic device
OVERPLOT/CONTOUR frame [coord_str] [contours] [sm_par]
overplot contour map of 2-dim. frame with smoothing option
OVERPLOT/DESCRIPTOR frame [descr] [start,end] [offset]
overplot the contents of a descriptor
OVERPLOT/ERROR table [coll] [col2] col3 [direct] [bar]
overplot table error column
OVERPLOT/GRAY frame [coord str] [gray lev] [sm_par] [grayness] [options]
overplot gray scale map of 2-dim. frame with smoothing option

1-November—1995

APPENDIX A. COMMAND SUMMARY

OVERPLOT/GRID grid
overplot a grid on an existing coordinate box
OVERPLOT/HISTOGRAM tab col [offset] [bin[,min[,max]]] [exc] [log]
[opt]
overplot histogram of a column in the table
OVERPLOT/HISTOGRAM frame [offset] [log] [opt]
overplot the histogram of an image
OVERPLOT/KEYWORD [key name] [start,end] [offset]
overplot the contents of a keyword
QVERPLOT/LINE [1_type] [x.sta,y-sta [x_end,y_end]]
overplot a line on a graphic device
OVERPLOT/ROW frame [y-coord] [x_start,x_end] [offset] [1_type]
overplot a row (line) of a frame on a graphic device
OVERPLOT/SYMBOL [s_typel] [x_coord,y_coord] [s_size]
overplot a symbol
OVERPLOT/TABLE table [planel] [plane2] [x_sc,y.sc[,x off,y_off]]
[symbols] [lines] [flag dir]
plot table data on selected plotting device
OVERPLOT/VECTOR fram.a fram.b [coord._str] [scaler] [pos_range] [sm_par]
[head]
overplot vector map from two 2-dim. images with smoothing option

PLAYBACK/FILE name
playback MIDAS commands from an ASCII file
PLAYBACK/LOGFILE file
playback MIDAS commands from a previous logfile
PLOT/AXES [x axis spec] [y.axis_spec] [x_sc,y_sc[,x off,y off]] [x_lab]
[y_1ab]
plot a coordinate box with large and small tickmarks and labels
PLOT/AXES [coord.str] [x_lab] [y lab]
plot a coordinate box around a displayed frame
PLOT/COLUMN frame [x_coord] [y._sta,y_end] [x_sc,y_sc,x off,y_off]
plot a column of an image on a plotting device
PLOT/CONTQUR frame [coord str] [x.sc,ysc[,x.off,yoff]] [contours]
[c_typel
[sm_par]
plot contour map of 2-dim. image with smoothing option
PLOT/DESCRIPTOR frame [descr] [start,end] [x_sc,y.sc[,x off,y.off]]
plot a descriptor on plotting device
PLOT/GRAY frame [coord str] [x_sc,y.sc[,x_off,y.off]] [gray lev]
[sm_par] [gray ness] [gray.opt]
plot gray scale map of 2-dim. image with smoothing option
PLOT/HISTOGRAM tab col [x.sc,y-sc[,x_off,y off]] [bin[,min[,max]]]

I1-November—1995

AL

CORE COMMANDS A-15

[exc] [log] [opt]
plot histogram of a column in the table
PLOT/HISTOGRAM frame [x sc,y-sc[,x off,y off]] [exs] [log] [opt]
plot the histogram of an image
PLOT/KEYWORD [key._name] [start,end] [x.sc,y_sc[,x_off,y.off]]
plot the contents of a keyword
PLOT/PERSPECTIVE frame [coord-str] [alt,azi] [scal,offs] [sm_par] [xy flag]
tree dim. representation of a 2-dim. frame, with smoothing option
PLOT/ROW frame [y.coord] [x_sta,x end] [x sc,y.sc[,x.off,y off]]
plot a row (line) of an image on a plotting device
PLOT/TABLE table [planel] [plane2] [x_sc,y_sc[,x off,y off]] -
[symbols] [lines] [flag. dir]
plot table data on selected plotting device
PLOT/VECTOR frame.a frame.b [coord str] [x sc,y.sc[,x_off,y_off]] [scale_r]
[range] [sm_par] [head]
plot vector map from two 2-dim. images with smoothing option
PRINT/ACAT [cat-name] [lowno,hino]
print ASCII file catalog entries
PRINT/DESCR frame [descr_list] [disp_flag]
print descriptor values
PRINT/FCAT [cat_name] [lowno,hino]
print fit file catalog entries
PRINT/HELP [help_topic]
print info about help_topic
PRINT/HISTOGRAM table column [bin [min [max]]]
print statistics of a column
PRINT/ICAT [cat_name] [lowno,hino]
print image catalog entries
PRINT/IMAGE frame_specs [pixel_specs] [hide_header_flag]
print image data values
PRINT/KEYWORD [key_list] [since]
print contents of keywords
PRINT/LOGFILE [page_specs]
print contents of logfile
PRINT/TABLE table [column ...J] [eleml [elem2]] [N] [width]
PRINT/TABLE table [elemi [elem2]] [form] [N]
print table values on the device/file specified via ASSIGN/PRINT
PRINT/TCAT [cat_name] [lowno,hino]
print table catalog entries
PROJECTION/TABLE intable outable column_selection
projection of one or more columns from a table

I1-November—1995

APPENDIX A. COMMAND SUMMARY

READ/ACAT [cat.name] [lowno,hino]
read ASCII Catalog entries
READ/COMMANDS [proc]
read commands from a procedure + store into command buffer
READ/DESCR frame [descr_list] [disp_flag]
display descriptor values
READ/FCAT [cat_name] [lowno,hino]
read fit file catalog entries
READ/FILE file_id cbuf key [maxrd]
read an ASCII file
READ/HISTOGRAM table column [bin [min [max]]]
display statistics of table column
READ/ICAT [cat_name] [lowno,hino]
read Image Catalog entries
READ/IMAGE frame_specs [pixel_specs] [hide header flag]
display image data values
READ/KEYWORD [key_list] [disp.flag] [since] [Midunit]
display contents of keywords
READ/SETUP setup
read the contents of the variables related to a Setup
READ/TABLE table [column_sel] [row_sel] [form]
display table elements
READ/TCAT [cat_name] [lowno,hino]
read Table Catalog entries
REBIN/II outima inima refima [func] [param] [intop]
nonlinear rebin Image to Image
REBIN/IT outtab i,d[,b] inima [func] [param] [intop]
nonlinear rebin Image to Table
REBIN/LINEAR in out [stepx,stepy] [offx,offy] [startx,starty] [fluxcons]
REBIN/LINEAR in out [refframe] [fluxcons]
rebin an image linearly
REBIN/ROTATE in out [rot_specs] [ref frame] [ref flag]
rotate 4+ rebin an image
REBIN/SPLINE in out [stepx,stepyl] [offx,offy] [startx,starty]
REBIN/SPLINE in out [refframe]
rebin an image using cubic splines
REBIN/TI outima intab i,d[,b] refima [func] [pafam] [intop]
nonlinear rebin Table to Image
REBIN/TT outtab i,d[,b] intab i,d[,b] [func] [param] [intop]
nonlinear rebin Table to Table
REGRESSION/LINEAR table y x1,x2,...
linear regression on table columns
REGRESSION/POLY table y x1[,x2] d1i[,d2]
polynomial fit on table columns

I-November—1995

Al

CORE COMMANDS A-17

REGRESSION/TABLE tablel x1[,x2] table2 yi[,y2] degree tol [guess]
polynomial fit of variables in two tables (not yet implemented)
RENAME/FIT old new [history] [overwrite]
rename a fit file
RENAME/IMAGE old new [history] [overwrite]
rename an image frame
RENAME/TABLE old new [history] [overwrite]
rename a table frame
REPLACE/IMAGE in out [test/]low,hi=expressl[,express2]
replace pixels according to intensity
REPLACE/POLYGON in,intab out test/low,hi=value
replace pixels inside polygon
REPORT/PROBLEM [errfile]
send error reports and comments to the person(s) in charge of MIDAS
RESET/DISPLAY
reset Xwindow display after Control C
RESTORE/NAME [file_spec] [verbose] [history] [overwrite] [descr]
change file name according to descr. FILENAME
RETRO/TAB table
retrofit 3-dim table to old 90NOV format
ROTATE/1DIM in out nop_flag
rotate a 1-dim profile around its startpoint
ROTATE/CLOCK in out [factor]
rotate an image by multiples of 90 degrees clockwise
ROTATE/COUNTER_CLOCK in out [factor]
rotate an image by multiples of 90 degrees counter_clockwise
RUN progr
execute a program inside the MIDAS environment

SAVE/REGRESSION table name

save results of a regression
SCROLL/CHANNEL [chanl] [scrolx,scroly]

scroll given ImageDisplay channel
SEARCH/FCAT [cat_name] search_string [options]

search in fit file catalog for frame with matching descriptor IDENT
SEARCH/ICAT [cat_name] search_string [options]

search in image catalog for frame with matching descriptor IDENT
SEARCH/LINE frame w,t[,nscan] [table] [meth] [type]

search for spectral lines
SEARCH/TCAT [cat_name] search string [options]

search in table catalog for table with matching descriptor IDENT
SELECT/TABLE table logical-expression

select table entries

I-November—1995

A-18

APPENDIX A. COMMAND SUMMARY

SET/ACAT [cat.name]

make given catalog the "active” ASCII file catalog
SET/BACKGROUND [method] [echo] [sleep.time]

put Midas session into ”background” mode
SET/BUFFER [no lines]

set up command buffer for MIDAS
SET/CONTEXT cntxt

enable new context
SET/CURSOR [curs.no] [curs form] [curs_coords] [flag]

set cursor form and position
SET/DISPLAY [colour_mode]

set up Image Display for RGB or pseudo colours
SET/FCAT [cat_name]

make given catalog the "active” fit file catalog
SET/FORMAT [format.specs]

set formats for replacement of Midas data
SET/GCURSOR [curs_no] [curs_form]

set cursor form in graphics window
SET/GRAPHICS optionl[=valuel] option2[=value2] ...

set plot characteristics
SET/ICAT [cat_name]

make given catalog the "active” image frame catalog
SET/ITT [chanl] [sect]

enable ITT for Image display channel
SET/LUT [sect]

enable usage of colour lookup tables
SET/MIDAS_SYSTEM option=value

set different modes and options for Midas
SET/OVERLAY

enable graphics overlay
SET/REFCOLUMN table column

define column as reference in table access
SET/SPLIT [chanls]

enable split screen
SET/TCAT [cat_name]

make given catalog the "active” table file catalog
SHIFT/IMAGE inframe outframe [x,yshift]

shift the pixels in an image
SHOW/ACAT [cat_name] [display_flag]

show no. of entries in an ASCII file catalog
SHOW/BACK_MIDAS [option]

show info related to background MIDAS sessions
SHOW/CHANNEL [chanl]

show info related to ImageDisplay channel

I-November—1995

AL

CORE COMMANDS A-19

SHOW/CODE command_string [flag]

display the procedure which implements the command string
SHOW/COMMAND [comnd/qualif]

display MIDAS commands
SHOW/DEFAULTS

display all special defaults
SHOW/DESCR frame [dsclist] [flag]

show existing descriptors with name, type and size
SHOW/DISPLAY

show current status of ImageDisplay + Graphics
SHOW/FCAT [cat_name] [display_flag]

show no. of entries in a fit file catalog
SHOW/GRAPHICS device_name

show the setup parameters for plotting
SHOW/ICAT [cat_name] [display_flag]

show no. of entries in an image catalog
SHOW/KEYWORDS [keyword]

display contents of keyword data base
SHOW/TABLE table

display table parameters
SHOW/TCAT [cat_name] [display flag]

show no. of entries in a table catalog
SORT/FCAT [cat_name]

sort a fit file catalog
SORT/ICAT [cat_name]

sort an image catalog
SORT/TABLE table keys

sort table according to (ascending) values
SORT/TCAT [cat_name]

sort a table catalog
STATISTICS/IMAGE [frame] [area] [bins] [lo,hi_exc] [optlons] [outtab]
[plotflg] [format]

calculate statistics of a frame
STATISTICS/TABLE table column

simple statistics on a table column
STORE/FRAME key frame [indx] [exit_label]

store frame or entries of catalog into key
SUBTRACT/ACAT [cat_name] frame list

remove entries from an ASCII file catalog
SUBTRACT/FCAT [cat_name] frame_list

remove entries from a fit file catalog
SUBTRACT/ICAT [cat_name] frame_ list

remove entries from an image catalog
SUBTRACT/TCAT [cat.name] frame.list

1-November—1995

A-20 APPENDIX A. COMMAND SUMMARY

remove entries from an table catalog
SYNCHRONIZE/MIDAS
write keyfile and logfile to disk

TRANSLATE/SHOW proc option
translate MIDAS procedure and display resulting code
TRANSPOSE/CUBE inframe [outframe] [plane_spec]
rearrange the planes of a cube
TRANSPOSE/IMAGE inima outima [diagonal]
transpose image
TUTORIAL/EXTRACT
demonstrate some of the different EXTRACT commands
TUTORIAL/FILTER
explain the usage of filters
TUTORIAL/GRAPHICS option
explain the use of the graphics packages
TUTORIAL/HELP
explain usage of the HELP command
TUTORIAL/ITT [plotflag]
explain the usage of ITT’s
TUTORIAL/LUT [plotflag]
show some standard LUT’s and related MIDAS commands
TUTORIAL/SPLIT
explain the usage of split screen
TUTORIAL/TABLE
explain usage of tables

$ comnd
execute a host system command

VIEW/IMAGE [frame] [out_tab] [plot_option] [g,zhardcopy]
view an image with a "looking glass”

WAIT/BACKMIDAS [unit]

wait until command in background MIDAS terminates
WAIT/SECS [no.of_secs]

suspend MIDAS monitor for no_of_secs seconds
WRITE/COMMANDS [procnam] [pari] [par2] ... [par8]

save commands from command buffer + write into a procedure
WRITE/DESCR frame descr data [flg]

store values into a descriptor
WRITE/DHELP frame descr text

store help-text /comments for an existing descriptor

I-November—1995

A.2. APPLICATION COMMANDS A-21]

WRITE/FILE file_id charbuf
write into an ASCII file
WRITE/IMAGE frame_specs [pixel_specs] data [flg]
store values into image pixels
WRITE/KEYWORD key data [flg]
write values into a keyword
WRITE/OUT text_spec [section] [label]
display text on terminal
WRITE/SETUP [setup]
modify the variables of a Setup
WRITE/TABLE table column row_sel value
Store a value into a table

XCORRELATE/IMAGE temp spec result shift
correlate 2 similar 1-dim frames over 2*(shift) bandwith

ZOOM/CHANNEL [zoom_fact] [center]
zoom image on image display

ZOOM/OVERLAY [zoom fact] [center]
zoom image + overlay together

A.2 Application Commands

ASSOCIATE/RANK table coll col2 [action]
rank-order correlation coefficient

BIN/TABLE table coll col2 [bin] [min] [max] [sigma]
creates a table, bin.tbl with averages of col2 in bins of coll

COMPARE/2SAM table coll col2
kolmogorov two-sample test

COMPUTE/FIT imagel[,error] [= function[(refima)l]
compute fitted image values

COMPUTE/FIT table y[,error] [= function[(ind)]]
compute fitted table values

COMPUTE/FUNCTION image = function[(refima)]
compute function values, result as image

COMPUTE/FUNCTICN table y = function[(ind)]
compute function values, result in table column

1-November—1995

A-22

APPENDIX A. COMMAND SUMMARY

CREATE/FUNCTION funi[,fun2...] [library_specs]
define user functions for fitting

CREATE/GUI [name]
Creates graphical user interfaces

CREATE/STAR in frm in_tab outfrm [n size] [frm specs] [dmin,dmax] [radius]
create the profile of a reference star by adding and averaging

EDIT/FIT function
interactive function editor

FILTER/ADAPTIV frame outframe [maskframe] [type] [shape] size k noise
adaptive filtering of an image
FIT/IMAGE [nfeval[,prec[,metpar]]] [imagel[,wgt]] [funct]
fit image values
FIT/TABLE [nfeval[,prec[,metpar]]] table :dep,[:wgt] :ind [funct]
fit table
FTEST/VAR table coll col2
f-test for different variances

GET/FIT table [image]
create a table for fitting subimages

IDENTIFY/CURSOR table ident x [y] [error]
identify table entries from display
IDENTIFY/GCURSOR table ident x [y] [error]
identify table entries from graphic terminal
INTEGRATE/APERTURE [in_specs] [out_tab] [radius]
integrate the flux within an aperature
INTEGRATE/LINE frame [y_cool] [x_sta,x_end] [n_cur,deg] [batch] [x-pos,range]
integrate area in a (spectral) line
INTEGRATE/STAR [in_specs] [out_tab] [parameters] [mode]
computes flux, radius and background of stars previously centered

KSTEST/1SAM table col distri coeffs
kolmogorov one-sample test

MODIFY/FIT table seq.no [name]
modify fit parameters

I-November—1995

A.3. STANDARD REDUCTION COMMANDS A-23

PRINT/FIT func_name
print function parameters

READ/FIT func_name

display fitted function parameters
REGISTER/SESSION session directory file table

Register a session in the session manager
REPLACE/FUNCTION funli[,fun2...]

replace user functions for fitting

SAVE/FIT table seqno [name]

save results of a regression
SELECT/FUNCTION name number/[,...]

select function components
SET/FIT par=value [par=value ...]

set parameters for the FITTING package
SHOW/FIT

display parameters used in FITTING package
SORT/COLUMN input output

column oriented sorting of the pixels of a frame.
SORT/ROW input output

row oriented sorting of the pixels of a frame.
STEST/MEAN table coll col2

student t-test for different means

TUTORIAL/ALIGN
explain the alignment of two images

TUTORIAL/FIT
explain the modelling of table and image data by fitting non-linear
functions.

A.3 Standard Reduction Commands

A.3.1 ccdred

ALIGN/MOSAIC in_frm in_tab out_frm method,data [nxrsub,nyrsub] [xref,yref]
[x size,y size]
Align the elements of the mosaiced frame
BIAS/CCD [in_fram] [out_fram] [bs_fram]
Correct the input frame for the bias offset using a bias frame
COMBINE/CCD exp [in.spec] [out_fram]

I-November—1995

A-24

APPENDIX A. COMMAND SUMMARY

Combined a number of CCD frames of the same exposure type
CREATE/MOSAIC in_cat out_frm out._tab nx_sub,ny sub [notl,not2,...]
[nocol,norow]

Mosaic a set of (infrared) ccd frames
DARK/CCD [in_fram] [out_fram] [dk_fram]

Correct input frame for dark current offset using a dark current frame
FIT/MOSAIC in.frm inmsk in_tab out_frm [match] [nxrsub,nyrsub] [xref,yref]
[x size,y size]

Align and match the elements of the mosaiced frame
FIXPIX/CCD [in_fram] [out_fram] [fix_table] [fix meth]

Do a correction of bad pixels in the input frame
FLAT/CCD [in_fram] [out_fram] [ff_fram]

Do a flat field correction of the input frame
FRCOR/CCD [in._spec] [out _frm] [xboxmn,xboxmx] [yboxmn,yboxmx] [clip]
[lowsig,higsig]

Make fringe correction frame(s0 from sky frames
FRINGE/CCD [in_fram] [out_fram] [fr_fram] [fr_scale]

Do a fringe correction of the input frame
HELP/CCD [keyword]

show the parameter setting of the current CCD session
ILLCOR/CCD [in_spec] [out_frm] [xboxmn,xboxmx] [yboxmn,yboxmx] [clip]
[lowsig,higsig]

Make flat field illumination correction frame(s)

ILLFLAT/CCD [in_spec] [out_frm] [xboxmn,xboxmx] [yboxmn,yboxmx] [clip]
[lowsig,higsig]

Apply correction to a flat field to remove illumination pattern
ILLUMINATION/CCD [in_fram] [out_fram] [il fram]

Do an illumination correction of the input frame
INIT/CCD [name]

Initialize the CCD package, optionally using the setting of a saved

session
LOAD/CCD [intr]

Load instrument/detector specifications into the CCD context
MATCH/MOSAIC in frm in_tab out_frm method,data [match] [nxrsub,nyrsub]
[xref,yref] [x size,y size]

Align and match the elements of the mosaiced frame
MKREDT/CCD out_tab

Create CCD empty table with columns for science and calibration
frames '

OVERSCAN/CCD [in_fram] [out_fram] [sc_area] [mode]

Correct the input frame for the bias offset in the overscan region
REDUCE/CCD [in_spec] [out_frm]

Do the (partial) calibration of one or more frames
SAVE/CCD name

I-November—1995

A.3. STANDARD REDUCTION COMMANDS A-25

save current CCD session
SET/CCD keyw=value [...]

Define the values of parameters in the current CCD session.
SHIFT/MOSAIC out_tab [curs_opt] [csx,csy] [clear_opt]

Get x and y shifts of the subraster in the mosaic frame
SHOW/CCD [subject]

Show (part of) the setup of the CCD package
SKYCOR/CCD [in_spec] [out_frm] [xboxmn,xboxmx] [yboxmn,yboxmx] [clip]
[lowsig,higsig]

Make sky illumination correction frame(s)
SKYCOR/CCD [in_spec] [out_frm] [xboxmn,xboxmx] [yboxmn,yboxmx] [clip]
[lowsig,higsig]

Apply sky observation to flat field to remove illumination pattern
TRIM/CCD [in_fram] [out fram] [im_sec] [del flg]

Extract the useful data from the ccd frame.

A.3.2 ccdtest

TEST1/CCD in_cat [out_id] [meth] [option]
Combine bias frames stored in a catalogue and display it
TESTB2/CCD in_frm [out_id] [row ran] [col ran]
Compute row and column average of a (averaged) bias frame
TESTB3/CCD in_frm [out_id] [area] [size] [option]
Find the hot pixels in a (combined) bias frame
TESTB4/CCD in_frm [out_id] [area] [size,fac]
Make a histogram of the pixel intensities and rebin the input frame
TESTB5/CCD in_cat [out_id] [area] [size,fac]
Do the statistics of the bias frame is a catalogue.
TESTBA/CCD in_cat [out_id] [meth] [row.ran] [col_ran] [area] [size,fac]
Do a series of tests of a catalogue of bias frames
TESTC/CCD in_frm [rows] x_pix [colums] y_pix
Compute the horizontal and vertical charge transfer efficiency.
TESTD/CCD in_cat [out_id] [dec_fac]
Do a test on a catalogue of dark current frames
TESTF1/CCD in_cat [out.id] [meth] [area] [expran] [option]
Combine the flat frame in the input catalogue and display
TESTF2/CCD in_frm [out_id] [area] [thresh] [option]
Find the cold pixels in the combined low count flat.
TESTFA/CCD in_cat [out_id] [meth] [area] [exp.ran] [thresh]
Do a series of tests on a catalogue of low count flat frames
TESTS/CCD in_frmi inf frm2 [out frm] n_exp [dec_fac]
Find the shutter error distribution
TESTT1/CCD in_cat [out_id] [area] [option]

I-November—1995

A-26 APPENDIX A. COMMAND SUMMARY

Display the linearity and transfer curves of pairs of flat frames.
TESTT2/CCD in_tab [out_id] [select] [tim_int]

Fit the linearity cursves and determine the shutter offset
TESTT3/CCD in_tab [out_id] [select]

Fit the transfer curve and determine the ADU conv. factor and RON
TESTTA/CCD in_cat [out_id] [area] [tim_int] [select]

Do linearity and transfer tests on a catalogue of flat frames

A.3.3 do

ASSOCIATE/IMA ost exptype rule_table outtable [flag] [nexp]
associates to scientific exposures a set of suitable calibration images
CLASSIFY/IMAGE table descr outcol outchar
classify images according to one or several rules.
CREATE/CRULE table rule
create an classification rule for a given Observation Summary Table
CREATE/OST file_specs [file pref] intable outtable flag
create an Observation Summary Table
GROUP/ROW table incol outcol
group the rows of a table by the value of one of its column

A.3.4 echelle

AVERAGE/TABLE frame table xy_col outcol [size]

Read pixels in a frame at positions defined by a table.
BACKGROUND/ECHELLE in out [radx,rady,step] [degree] [smooth] [method]

estimate interorder scattered light of an echelle spectrum
BACKGROUND/SMOOTH input output [radx,rady] [niter] [visu]

estimate interorder scattered light of an echelle spectrum
CALIBRATE/ECHELLE [defmtd] [wlcmtd]

performs order definition and wavelength calibration
CLEAN/ECHELLE

Clears contexts Echelle and Spec and removes process tables
CONVERT/ECHELLE input output domain function param option

resample echelle orders
DEFINE/ECHE [ordref] [widthl,thresl,slope] [defmtd] [defpol]

define echelle order positions
DEFINE/HOUGH [ordref] [nbord] [hwid] [hough par] [thresh] [degx,degyl]
[hot_thres,step] [hough setup]

define echelle order positions; automatic detection by Hough transform.
DEFINE/SKY ima [nsky] [possky] [half width]

defines limits of the sky windows

I-November—1995

A.3. STANDARD REDUCTION COMMANDS A-27

DISPLAY/ECHELLE image [g flag]

Optionally creates a display and graphic windows and scales an

image to be displayed.
ERROR/ECHELLE command keyword

Low-level error message generator for the echelle package
EXTR/ECH input output [params] [method]

extract echelle orders
EXTR/OPT input output slit,ordl,ord2 [ron,g,sigma] [table] [coeffs]

weigthed extraction of echelle orders
EXTRACT/ORDER inp out sl,ang,off meth table coeff [ordl,ord2]

Extract echelle orders and produces a frame in space pixel-order
EXTRACT/SKY in out [mode]

Extracts sky spectrum.

FILTER/ECHELLE input output

filter echelle frame for cosmic ray hits and subtract background
FLAT/ECHELLE [flat] [correct] [blaze]

subtract background from flat-field image and approximate blaze pro-
file
HELP/ECHELLE keyword [mode]

Provides short help on an echelle session keyword
HOUGH/ECHELLE input [scan] [step,nbtr] [nbord] [flags] [hwid] [thres]
[params]

perform Hough transform and orders detection on a flat-field frame
IDENT/ECHEL [wlc] [lincat] [dc] [tol] [wlcloop] [wlcmtd]
[guess, [shift]] [ccdbin]

perform wavelength calibration of echelle spectra
INIT/ECHELLE [name]

initializes echelle parameters
INITIAL/EMMI [ref] [grism]

Initializes the Echelle context for a given EMMI configuration
KEYDEL/ECHELLE [table]

Deletes echelle session keywords
LOAD/CALIBRATION

display wavelength calibration result
LOAD/ECHELLE

display echelle orders (and optionally background) positions
LOAD/IDENTIFICATION

display initial identifications.

LOAD/SEARCH

Loads on display the position of the lines found by the

SEARCH/ECHELLE command.

MERGE/ECHELLE inframe outframe [params] [method]

merge echelle orders
MERGE/OPTIMAL rebima weight out [delta]

I-November—1995

A-28

APPENDIX A. COMMAND SUMMARY

Optimal weighted merging of echelle orders
OFFSET/ECHELLE [image] [range] [cover] [ordtab] [mode]
Determines the offset along the slit between the order
coefficients and a given echelle spectrum.
OVERLAP/ECHELLE rebima order
Plots the overlap region between adjacent orders n and n+1
PLOT/CALIBRATE [ordi,ord2]
plot dispersion relation in echelle reduction
PLOT/ECHELLE frame [ordl,ord2] [printer]
plot extracted echelle orders.
PLOT/IDENTIFICATION frame [ordl,ord2] [printer]
plot line identifications in echelle reduction
PLOT/RESIDUAL [ord1,ord2]
plot dispersion residuals in echelle reduction
PLOT/SPECTRUM in [start,end]
plots a rebinned spectrum in wavelength range
PREPARE/BACKGROUND [step] [init] [back_tab] [order_tab] [descr]
low-level command; create table back.tbl
PREPARE/WINDOW catalogue flat-bkg lhcuts
prepare echelle images for the command AVERAGE/WINDOW
REBIN/ECHELLE input output sample
rebin echelle orders into wavelength
REDUCE/ECHELLE input output [bkcor]
reduction of echelle spectra.
REGRESSION/ECHELLE [defpol] [niter] [absres] [kappal
fit 2-dim. polynomial to order positions (defpol limited to 5,5)
REPEAT/ECHELLE [scalx,scaly] [response]
iterate on the response computation
RESPONSE/ECHELLE [std] [fluxtab] [response]
compute instrument response
RIPPLE/ECHELLE input output [params] [method] [option]
correct for the blaze function
ROTATE/ECHELLE cat,ima root-name [mode] [flip axis] [angle] [o_time]
rotate (and optionally flip) echelle images
SAVE/ECHELLE name
saves current echelle session
SAVINIT/ECHELLE ima,tab mode
saves/reads echelle session keywords as descriptor of an image/table
SCAN/ECHELLE frame [scan-par]
update echelle keywords SCAN and IMSIZE.
SEARCH/ECHELLE frame [width2,thres2]
search for emission lines
SEARCH/ORDER [ordref] [w,t,s] [ordtab] [defmtd]
define echelle order positions

I-November—1995

A.3. STANDARD REDUCTION COMMANDS A-29

SELECT/BACKGROUND [all]

interactive unselection of background reference positions
SET/ECHELLE par=value [...]

set echelle keywords
SHOW/ECHELLE

show echelle session
SUBTRACT/BACKGROUND input bkg output [bkgmtd] [bkgvisu]

compute and subtract background from input frame.
TUTORIAL/ECHELLE

demonstrates main commands of echelle package
UPDATE/ECHELLE image

low-level command handling image geometry in world-coordinates
UPDATE/ORDER image [offset]

Updates order definition coefficients and background table.
VERIFY/ECHELLE file [type]

check consistency of frame size against predefined values.

A.3.5 1irac?2

ACUTS/IRAC2 [image] [load] [plot] [upper]
Display an image with cuts mean-3*sig and mean—+upper*sig
CMASK/IRAC2 ffield clnffield lthrshold,hthrshold [dispflag]
create a mask of bad pixels using a flatfield.
DCOMB/IRAC2 [select] [seqname] [accsky] [align] output [trim] [tag]
Sky subtract and combine dithered images.
FFIELD/IRAC obj frame ff frame out.frame
Flat Field an IRAC frame
FOCUS/IRAC2 seqnum [focout] [create]
Used to determine the best focus from a focus sequence.
LAST [num]
Giives very brief information on the most recent exposures
MASK/IRAC2 inframe outframe
replaces bad pixels by closest good pixel
MKFLAT/IRAC lamp_on lamp_off flat field
Make a flat field
OBSLIST/IRAC2 [start] [end]
Lists a subsection of the IRAC2B OST (Observation Summary Table)
OBSREP start end
Print out a subsection of the IRAC2B OST (Observation Summary Ta-
ble)
QL/IRAC2 imagel image2 [outimage]
Subtracts one IRAC2 image from another taking into account the
detector integration times.

I-November—1995

A-30 APPENDIX A. COMMAND SUMMARY

RCOMB/IRAC2 select [align] output
Combine frames created with the command RCOMB/IRAC2
SEEING/IRAC2
Determine the seeing, defined as the FWHM of stellar images, of
IRAC?2 images.
SSUB/IRAC obj_frame sky frame out_frame
Sky Subtract an IRAC frame

A.3.6 irspec

BADPIX/IRSPEC in out [l=load_opt.] [dir=clean opt.] [debug=debug opt.]
Clean image of fixed pattern of bad pixels
CALIBRATE/IRSPEC ima
Apply on-line (mechanical) wavelength calibration.
CALIBRATE/IRSPEC ima._ref mode=define
Define and store in ima_ref precise calibration from sky/lamp lines
CALIBRATE/IRSPEC ima ref=ima_ref
Apply precise wavelength calibration to frame ima from parameters
stored in ima_ref
DEFINE/IRSPEC image table [mode] [threshold] [number] [load_option]
Define fixed pattern of bad pixels and store it into a table.
FLAT/IRSPEC in_flat in_dark out [l=loadopt.] [t=threshold]
[v=vignetted_value]
Create a normalized flat from an input flat frame.
FLUX/IRSPEC in_ima response_ima out_ima [smooth=s1,s2] [shift=sh]
[norm=normalize option] [rect=rectify option]
Flux calibrate a spectrum (either 2D or 1D) using a response frame
created using RESPONSE/IRSPEC
MERGE/IRSPEC prefix ima i1,i2[,i3] out_table [excl=#pixels_excluded]
[corr=correct_option] [ref=#reference_image] [plot=plot_option]
[format=1i_format]
Merge 1D spectra into a table forcing connection of overlapping regions
RECTIFY/IRSPEC in out [l=load.opt.] [tilt=tilt_value] [ref=sreference_row]
Rectify tilted spectral lines.
RESPONSE/IRSPEC in_ima flux_table out_response_ima [yrows=yl,y2,y3,y4]
[obs=observation.mode] [norm=normalize option]
[rect=rectify option]
Create a response frame from a standard star 2D spectrum and
a flux table.
SKYSUB/IRSPEC ima_obj ima_sky out factor[,shift[,deltax,deltay]]
[sky=sky._table] [force=force sky_to_zero]
[cuts=cuts_values] [debug=debug_option]
Perform obj-sky correcting for variation and shift of sky lines.

I-November—1995

A.3. STANDARD REDUCTION COMMANDS A-31

STANDARD/IRSPEC in_ascii file out.table interp.method
[degree=degree] [step=wavelength step] [limits=wll,wl2]
[units=wavelength units] [plot=plot_option]

Create standard star flux table from a "flux ascii file”.
SUBTRACT/IRSPEC in_ima out_ima degree [exclude=area to_exclude]
[cont=continuum_image] [load=load. option]

Fit and subtract, row by row, polynomial to a given image.
TUTORIAL/CALIBR

demonstration of wavelength calibration commands in IRSPEC
TUTORIAL/IRSPEC

General tutorial for the package IRSPEC
TUTORIAL/SKYSUB

Tutorial for sy substraction with [IRSPEC package

A.3.7 long

APPLY/DISPERSION in out [y] [coef]

Apply the dispersion relation to a 1D spectrum and generates a table
BATCH/LONG

Prepare the Batch Reduction user interface
CALIBRA/FLUX in out [resp]

Correct an image for the instrumental response function
CALIBRATE/LONG [tol] [deg] [mtd] [guess]

Wavelength calibration of 1D and long-slit spectra
CALIBRATE/TWICE

Performs the wavelength calibration on a selected set of lines.
CLEAN/LONG

Clear context Long
COMBINE/LONG catalog output [mtd]

Average a catalog of images
EDIT/FLUX [resp]

Edit the instrumental response table
ERASE/LONG

Interactive rejection of dispersion relation nodes.
ESTIMATE/DISPERSION wdisp wcent [ystart] [line] [cat]

Estimate a linear approximation of the dispersion relation
EXTINCTION/LONG in out [scale] [table] [col]

correct spectra for interstellar or atmopsheric extinction
EXTRACT/AVERAGE in out [obj] [sky] [mtd]

extract a long-slit spectrum by averaging rows
EXTRACT/LONG in out [skyl] [obj] [order,niter] [ron,g,sigma]

Optimal extraction of a long-slit spectrum
GCOORD/LONG [number] [cuttab]

I-November-1995

APPENDIX A. COMMAND SUMMARY

Get coordinates from the display window
GRAPH/LONG [size] [position] [id]
Creates a graphic window
HELP/LONG [keyword]
provides information about session keywords.
IDENTIFY/LONG [wlc] [ystart] [lintab] [tol]
Interactive calibration of lines in an arc spectrum
INITIALIZE/LONG [session]
Initialises parameters of context long
INTEGRATE/LONG std [flux] [resp]
Generates an intermediate response table from a standard star spec-
trum
LINADD/LONG in w,bin [y] [mtd] [mode] [line]
Adds entries to the table line.tbl
LOAD/LONG image [scale_x,[scale_yl]
MAKE/DISPLAY
Creates a display window
NORMALIZE/FLAT in out [bias] [deg] [fit] [visu]
Normalisation of flat-fields
PLOT/CALIBRATE [mode]
Plot wavelength calibration identifications.
PLOT/DELTA [mode]
Plot the fitted dispersion relation and allow interactive
rejection of arc lines.
PLOT/DISTORTION wave [delta] [mode]
Plot the fitted position of arc lines in wavelength/y-coordinate space.
PLOT/FLUX [fluxtab]
Plot the flux table
PLOT/IDENT [wlc] [line] [x] [id] [wave]
Plot interactive identifications
PLOT/RESIDUAL [y] [table]
Plots residual after wavelength calibration
PLOT/RESPONSE [resp]
Plots the response correction function
PLOT/SEARCH [mode] [table]
Plot the results of SEARCH/LONG
PLOT/SPECTRUM table
Plots a 1D spectrum in table format, as supplied by APPLY/DISPERSION
PREPARE/LONG in [out] [1imits]
Extracts sub-images from an image or a catalog.
REBIN/LONG in out [start,end,step] [mtd] [table]
Rebin a long-slit spectrum using the row-by-row method
RECTIFY/LONG in out [reference] [nrep] [deconvol flag] [line]
rectify geometrically a distorted 2-D spectrum

1-November—1995

A.3. STANDARD REDUCTION COMMANDS A-33

REDUCE/INIT partab
Initialises the batch reduction parameters
REDUCE/LONG input
Batch reduction of long-slit spectra.
REDUCE/SAVE partab
Saves the batch reduction parameters
RESPONSE/FILTER std [flux] [resp]
Generate a response image by filtering based method.
RESPONSE/LONG [plot] [fit] [deg] [smo] [table] [image] [visu]
Converts the response correction from table to image format.
SAVE/LONG session
Saves session keywords
SEARCH/LONG [in] [thres] [width] [yaver] [step] [mtd] [mode]
search for spectral features in a long-slit spectrum
SELECT/LINE
Select lines identified in all rows of an arc spectrum.
SET/LONG key=value [...]
Assigns a value to long-slit session keywords
SHOW/LONG [section]
Displays values of session keywords.
SKYFIT/LONG input output [sky] [degree] [mode] [r,g,t] [radius]
fit polynomial to spatial flux distribution in windows of every column
TUTORIAL/LONG
demonstrate commands of the package Long
VERIFY/LONG file mode
Checks conformity of files in the long-slit context
XIDENT/LONG [wlc] [ystart] [lintab] [tol]
Invoke the identification graphical user interface

A.3.8 optopus

CREATE/OPTOPUS inp.file [out_tab] [fmt file] [old_equinox]

create input table for HOLES/OPTOPUS command
DRILL/OPTOPUS in_table [name]

write OPTOPUS drill command file
HOLES/OPTOPUS [inp_tab] [out_tab] [HH,MM,SS.sss] [+/-DD,AM,AS.ss]
[ac_flag] [p-flag] [old_eq,new_eq]

detetermine holes positions on Optopus plate.
MODIFY/OPTOPUS [table]

plot positions of holes on plate and enable rejection of objects.
PLOT/OPTOPUS [table] [label] [EW flip flag]

plot positions of holes on Optopus plate.
PRECESS/OPTOPUS [inp_tab] [new_equinox]

1-November—1995

A-34 APPENDIX A. COMMAND SUMMARY

p recess RA and DEC coordinates in table created by CREATE/OPTO.
REFRACTION/OPTQPUS [inp_tab] [out_tabl] [year,month,day] [exp] [lambdal,lambdaZ2]
[start_st.slot,end.st_slot] [opt_st] [ast_flag]

correct for atmospheric refraction X and Y coord. on Optopus plate.
RESTORE/OPTOPUS table

restore previously saved session parameters.
SAVE/QOPTOPUS table

save session parameters in descriptors
SET/OPTOPUS optioni[=valuel] option2[=value2] ...

set Optopus context parameters
SHOW/OPTOPUS

show session parameters.
ZOOM/QPTOPUS [table] [zooming factor]

blow up section of Optopus plate and enable rejection of objects.

A.3.9 pisco

REDUCE/PISCO catalog table sky calibration [mode]
perform complete reduction of polarimetric data

A.3.10 spec

CENTER/HISTOGRAM image
Median estimate and scale estimates of an image
COMPUTE/PARAL ra dec st wave refw
Computes parallactic angle and atmospheric differential refraction
CONTINUUM/SPEC in out [radius/meth] [type] [smooth] [degree]
Fitting of a spectrum continuum by smoothing splines
CORRELATE/LINE table_i table 2 [pixel] [entr,tol,rg,st] [pos,ref,wgt]
[ref value] [outima] (
Cross-correlation between table columns.
CUMULATE/HISTOGRAM in out
Transforms a histogram image into the cumulated histogram
DEBLEND/LINE infile [fitim] [fitpar] [method] [contin] [input] [intab]
multiple component Gaussian fitting of spectral lines
DISPERS/HOUGH [wdisp] [wcent] fr_specs [line] [cat] [mode] [rangel
[vflag]
Determination of dispersion relations by HT
EXTINCTION/SPECTRUM inframe outframe scale [table] [col]
correct spectra for interstellar or atmopsheric extinction
FILTER/RIPPLE frame outframe period [start,end]
correct 1-dim. images for periodic ripple (Reticon)

1-November—1995

A4,

CONTRIBUTED COMMANDS A-35

GRAPH/SPEC [size] [position] [id]
Creates a long graphic window adpated for spectroscopy
MERGE/SPECTRUM specl spec2 out [interval] [mode] [varil] [var2]
merge two 1D spectra
NORMALIZE/SPECTRUM inframe outframe [mode] [table] [batch flag]
approximate continuum of I-dim. spectra for later normalization
OVERPLOT/IDENTIFICATION [table] [xpos] [ident] [ypos]
overplot line identifications
REFRACTION/LONG inim outim [mode]
Differential atmospheric correction for slit spectra
REGRESSICON/ROBUST tab y x1[,x2,..,xn] [file] [out_col] [res_col]
Robust multi-variate regression by Least Median of Squares
ROTATE/SPEC cat [root] [meth] [flip] [angle] [mode]
rotate (and optionally flip) a catalog of images
SEARCH/LINE frame w,t[,nscan] [table] [meth] [typel
search for spectral lines
VERIFY/SPEC file dir keyw [type]
low-level spec command checking the existence of calibration tables

A.4 Contributed Commands

A.4.1 astromet

ASTROMETRY/COMPUTE mes option out trail

Convert the coordinates from the measured xy ot RA,Dec vice versa
ASTROMETRY/EDIT std plot

Delete/undelete the astrometric standards
ASTROMETRY/POS1

Interactive procedure for the POS1 astrometry package
ASTROMETRY/TRANS std mes center pla,cat schmidt,blink tol xterm,yterm
std

Compute the astrometric transformation parameters of a data

A.4.2 cloud

COMPUTE/ABSORPTION inframe outframe [cm_table] [ap_table] [psframe]
computes a synthetic 1dim. absorption spectrum

COMPUTE/EMISSION outframe [em.table]
computes a synthetic 1dim. emission spectrum

CREATE/PSF [outframe] fwhm
creates a 1-dim. image of a normalized gaussian

1-November—1995

A-36 APPENDIX A. COMMAND SUMMARY

A.4.3 daophot

ALLSTAR/DAOPHOT

do simultaneous multiple-profile-fitting
DAOMID/DACOPHOT table

convert a DAOPHOT table into a MIDAS table
DAOPHOT/DAOPHOT

do precise photometry and astrometry in a 2-dim frame
MIDDAQO/DAOPHOT table

convert a MIDAS table into a DAOPHOT table

A.4.4 esolv

FROMOD/ESOLV [mode] [colour] [intable] [column]
retrieve frames from optical disk
MTABLV/ESOLV [tablel] coll col2 l_frac col3
find semidiameter of ellipses at given fraction of light
STATPL/ESOLV table coll select disp
computes mean and sd of table file column given in p2
TABFLV/ESOLV [table] ascii file flag
lists the contents of special table file
TEXLV/ESOLV [table] tex_file
prepare Tex file with selected parameters from ESOLV

A.4.5 geotest

CREATE/ART_IMAGE frame frame dims [starts,steps] [func.type] [coefs]
CREATE/ART_IMAGE frame = ref frame [func_type] [coefs]
create artificial image
CREATE/RAMP image [slopel] [angle] [dimension]
generate uniform sloping image, with mean flux per pixel of 100 units
CREATE/SPC1 image [slope] [ampl] [period] [phase] [dim]
generate sinusoidal, sloping 1-dimensional image
CREATE/SPC2 image [period] [slope] [phase] [dimension]
generate a discrete 1-dimensional image
CREATE/SPC3 image psf_option centring table boxwidth-or-fwhm
generate an artificial spectrum with lines
CREATE/WAVE image [amplitude] [period] [dimension]
generate 2-dimensional sinusoidal background image

I-November—1995

A.4. CONTRIBUTED COMMANDS A-37

A.4.6 invent

ANALYSE/INVENTORY frame in.tab [out_tab] [ver_par] [deb.mode] [out_psf]

verify the used table of objects and calculates the image parameters
CLASSIFY/INVENT table

classify the analysed objects into stars, galaxies and spurious objects
SEARCH/INVENTORY frame table

search objects in an image frame and store the parameters
SET/INVENTORY parl [par2]

display and modify the values of the keywords used by Inventory
SHOW/INVENTORY parl [par2]

display the values of the keywords used by the Inventory package

A.47 mva

CLUSTER/TABLE intable outable [method]
hierarchical clustering

CMDS/TAB input_table output_table ncols._output_table
multidimensional scaling

CORRES/TAB input output row/column.analysis ncolumn outable
correspondence analysis

EDIST/TAB input_table output_table
standard distances

KNN/TAB training table no._of gp.l members test_table no._of NNs
discriminant analysis

LDA/TAB Input_table Output_table
Fisher’s linear discriminant analysis.

MDA/TAB input_table output_table eigenvectors
discriminant analysis

MST/TABLE intable outtable grid.size
create minimal spanning tree for position table

PARTITION/TABLE intable outable [no_of_class] [alg] [min. card] [s_value]
non-hierarchical clustering

PCA/TAB in_tab out_tab option row/col_anal ncols_table eigenvectors
principal components analysis

PLOT/TREE intable [col.ref]
plot output created by minimal spanning tree algorithm

A.4.8 pepsys

CONVERT/PHOT
Helps you make a new table of observational data

MAKE/HORFORM

I-November—1995

A-38 APPENDIX A. COMMAND SUMMARY

Make a blank FORM to fill in with horizon-obstruction data
MAKE/PHOTOMETER

generates or checks the instrumental table file for a photometer
MAKE/PLAN

generates a photometric observing plan

MAKE/STARFILE arglist

Helps you make a new file of program or standard stars
REDUCE/PHOT

Reduces tables of observational data

A.4.9 romafot

ADAPT/ROMAFOT int_tab [thres] [fac_int] [fac sky] [fac_hol] [x_siz,y_siz]

derive trial values for fitting a new frame
ADDSTAR/ROMAFOT in frame out_frame [reg_tab] [cat.tab] [x dim,y dim]
[n_sub] ,

create an artificial image with subframes added at random positions
ADSTAR/ROMAFOT in_frame out_frame [reg_tab] [cat_tab] [x dim,y dim]
[n_sub]

create an artificial image with subframes added at random positions
ANALYSE/ROMAFOT frame [cat_tab] [int_tab] [sigma,sat]

INPUT MODE select all stars within selected subfields;

OUTPUT MODE check at the results of the fit operation and select
CBASE/ROMAFOT frame_l frame_ 2 [out_tabl] [out_tab2]

create two tables for coordinate transformation
CHECK/ROMAFOT cat_tab reg_tab err_mag

examine number of artificial stars recovered and check the accuracy
CTRANS/ROMAFOT int_tab [tab_1] [tab_2] [pol_deg]

find transformation of coordinates and apply to an intermediate table
DIAPHRAGM/ROMAFOT frame [regi_tab] [rego_tab] ap_rad

do aperture photometry with fixed diaphragm
EXAMINE/ROMAFOT int_tab [hmin,hmax]

examine quality of fitted objects and flag badly fitted ones
FCLEAN/ROMAFQT cat_tab inti_ tab [into_tab]

selects windows in intermediate table present in catalogue table
FIND/ROMAFOT frame [cat_tab]

select objects using the image display
FIT/ROMAFOT frame [int_tab] [thres,sky] [sig,sat,tol,iter] [meth, [beta]]
[fit_opt] [mean_opt]

determine characteristics of stellar images by non-linear fitting
GROUP/ROMAFOT frame [areal] [cat_tab] [int_tab] [thres] [wndmax]
[end_rad,sta_rad] [wnd perc]

automatic grouping of objects

I-November—1995

A.4. CONTRIBUTED COMMANDS A-39

MFIT/ROMAFOT frame [int_tab] [thres,sky] [sig,sat,tol,iter] [meth, [beta]]
[fit_opt] [mean_opt] [mod file]

determine characteristics of stellar images by non-linear fitting
MODEL/ROMAFOT [mod_file]

compute (sub)pixel values for a model observation
REGISTER/ROMAFOT int_tab reg_tab [wnd_opt] [obj opt]

computes and store the absolute quantities in the registration table
RESIDUAL/ROMAFOT in_frame out_frame diff _frame [reg_tab]

compute reconstructed image and difference with original image
SEARCH/ROMAFOT 07-AUG-1989 RHW

do the actual search for objects above a certain threshold
SELECT/ROMAFOT frame [int_tab] [wnd_size]

select objects and store the positions in intermediate table
SKY/ROMAFOT frame [sky_tab] [area] [nrx,nry] [min,max]

determines intensity histogram and sky background in selected areas

A.4.10 surfphot

COMPUTE/FCOEFF infram orient rin,rout,rstep outtab

compute fourier coefficients of azimuthal profiles in spiral galaxies
COMPUTE/GRID angle

create image and table with distorted rect. and evenly spaced grid
COMPUTE/SKY inframl infram2 caltab method sky_factor

compute the sky background and restitute the frame
FILTER/FILL inframe outframe rx,ry thresh

fill up low-flux (below threshold) pixels with nearby high-flux pixels
FIND/PAIR intabl intab2 outtab colums [errors] [coo.sys]

match (pair) two coordinates tables and produce an output table
FIND/POSINC infram x_pos,y_pos rin,rout,rstep

find the position angle and inclination of a galaxy
FIT/BACKGROUND outframe = inframe(s) [deg,it] [clpl,clpn] [skew] [outbck]
FIT/BACKGROUND outframe = inframe(s) [coef] [outbck]
FIT/BACKGROUND inframe(s) [deg,it] [clpl,clpn] [skew] [outbck]
FIT/BACKGROUND inframe(s) [coef] [outbck]

compute 2-dim. polynomial fit of the background
FIT/ELL1 inframe outframe l.iso,h_iso x.cen,y_cen max rad

fit an ellips with respect to predefined center
FIT/ELL2 inframe pol_opt iso_tol iso_levels [center[[radius] [sky_levell]

fit an ellips with respect to predefined center
FIT/ELL3 inframe outframe [step] [x,y] [low,high] [min,max] [opt]

fit ellipses to the isophotes of an object in a 2-dim. frame
FIT/POSINC infram orient rin,rout,rstep region

fit the position angle and inclination to 2nd and 4th harmonic

1-November—1995

A-40

APPENDIX A. COMMAND SUMMARY

INTEGRATE/ELLIPS frame [ellips par] [flag]

integrate pixel intensities within ellipse in 2-dim. image
NORMALIZE/IMAGE infram outfram trunc_vals control vals

normalize and truncate a frame
REBIN/DECONVOLVE frame psf result zoom_x,zoom.y n_iter

rebin image linearly in space and simultaneously deconvolve it with psf
RECTIFY/IMAGE in out table [nrep] [deconvol flag]

rectify geometrically a distorted direct image
SUBTRACT/SKY inframe outframe nx,ny

remove sky by subtraction of histogram-modeled substitute-sky

A.4.11 tsa

AOV/TSA intab outima start step nsteps [order] [cover]

compute analysis of variance periodogramme L
BAND/TSA intab [maxobs] Evaluate frequency band for time series analysis
COVAR/TSA intabl intab2 outtab start step nsteps scale

compute discrete covariance function for unevenly sampled data
DELAY/TSA intabl intab2 outtab start step nsteps [func,mode] [parm]

compute chi2-time lag function
INTERPOLATE/TSA intab outtab func parm

Interpolate an unevenly sampled series using its covariance function
NORMALIZE/TSA intabl outtab column [mode]

Normalize mean and variance to 0 and 1
POWER/TSA intab outima start step nsteps

Compute discrete power spectrum for uneven sampling by slow method
SCARGLE/TSA intab outima start step nsteps

Compute Scargle periodogramme for unevenly spaced observations
SET/TSA set global keywords for TSA context
SHOW/TSA show global keywords for TSA context
SINEFIT/TSA intab outtab freque order iter

fit sine (Fourier) series, subtract it from input and return residuals
TABLE/TSA inascii [outtab] [type] [mxcol] convert ASCI table into
MIDAS table
WIDTH/TSA inima [width] [centre] Evaluate line width and profile

A.5 Procedure Control Commands

BRANCH var comparisons labels
multi-way branching

CROSSREF labll labl2 labl3 labl4 labl5 labl6 labl7 labl$8
define cross reference labels for the 8 parameters

I-November—1995

A.6.

COMMANDS GROUPED BY SUBJECT A-41]

DEFINE/LOCAL key_def data A lower_levels_flag
define the maximum no. of parameters for a procedure
DEFINE/PARAMETER Pi default type/option prompt_str low.lim,hi_lim
define default, type and valid interval for parameter i
DO loopvar = start end [step]
define a DO loop (as in FORTRAN)
ENTRY proc
define begin of procedure in a file with different name than the proce-
dure
GOTO label
branch to command line containing label:
IF parl op parZ2 command_string
execute conditional statement
INQUIRE/KEY key prompt._string
get terminal input in a MIDAS procedure
LABL:
define a label, LABL in this example
RETURN parl par2 par3
return to calling procedure (or terminal) and optionally pass up to 3
parameters back

A.6 Commands Grouped by Subject

In the following list, general MIDAS commands are given grouped in main application
areas. Only the most common commands are listed to make the list easier to use. Com-
mands used for special types of data reduction are given in appropriate chapters in the

main

part of this manual.

A.6.1 MIDAS System Control

(€I}

Execute a MIDAS procedure

BYE Terminate the MIDAS session
CHANGE/DIRECTORY Change the default (current) directory for MIDAS
CLEAR/CONTEXT Clear current context level or all levels
COMPUTE/KEYWORD Compute values of a keyword
CONNECT/BACK_MIDAS Connect "command syntax” to another MIDAS
CREATE/COMMAND Create a user command

CREATE/DEFAULTS Create special defaults for MIDAS commands
DEBUG/PROCEDURE Run MIDAS procedures in debug mode
DEBUG/MODULE Run MIDAS modules in debug mode
DELETE/COMMAND Delete a user defined command

1-November—1995

A-42

DELETE/DEFAULTS
DELETE/IMAGE
DELETE/KEYWORD
DELETE/LOG

DISCONNECT/BACK_MIDAS

ECHO/FULL
ECHO/OFF
ECHO/ON

LOG/OFF

LOG/ON
PLAYBACK/LOG
READ/KEYWORD
RENAME/IMAGE
RUN
SAVE/COMMANDS
SET/CONTEXT
SET/FORMAT
SET/MIDAS_SYSTEM
WAIT/BACK_MIDAS
WAIT/SECS
WRITE/COMMANDS
WRITE/KEYWORD
WRITE/OUT

APPENDIX A. COMMAND SUMMARY

Delete special defaults for command

Delete an image frame

Delete user defined keyword

Delete log file

Disconnect from a background MIDAS

Show substitutions in program files

Suppress display of input from program files

Display input from program files

Disable logging

Enable logging

Playback log file

Display contents of keywords

Rename an image frame

Execute program inside MIDAS

Save commands from command window in a procedure
Set new context level

Format for “number-to-string” conversion

Set different modes and options for MIDAS

Wait until command in background MIDAS terminates
Suspend MIDAS monitor for no_of_secs second

Store commands from a procedure into the command window
Store values into a keyword

Write out text

A.6.2 Help and Information

HELP
HELP/...

INFO/. ..
PRINT/HELP
PRINT/LOG
SHOW/COMMANDS
SHOW /DEFAULTS

Display help info for a command

Display info about various topics

Get information about frames, descriptors and specific setup
Print help information

Print log file

Display MIDAS commands

Display all special defaults

A.6.3 Tape Input and Output

INDISK/...
INTAPE/FITS
OUTTAPE/FITS

Read data from disk in FITS or ASCII format
Read data from tape in FITS or IHAP format
Write data to tape in FITS format

A.6.4 Image Directory and Header

ADD/xCAT
COPY/DD
CREATE/xCAT

Add one or more entries to a catalogue
Copy descriptors from one file to another
Create a catalogue

I1-November—1995

A.6. COMMANDS GROUPED BY SUBJECT

DELETE/ ...

DELETE/DESCRIPTOR

INFO/DESCRIPTOR
READ/DESCRIPTOR,
RENAME/. . .
SORT/xCAT
SUBTRACT/xCAT
WRITE/DESCRIPTOR
WRITE/DHELP

A.6.5 Image Display

BLINK/CHANNEL
CLEAR/ALPHA
CLEAR/CHANNEL
CLEAR/DISPLAY
CLEAR/LUT
CLEAR/SPLIT
CLEAR/ZOOM
COPY/CHANNEL
COPY/DISPLAY
CREATE/CURSOR,
CREATE/ZOOM
CREATE/DISPLAY
CUTS/IMAGE
DELETE/DISPLAY
DISPLAY/CHANNEL
DRAW/ ...
EXTRACT/CURSOR

EXTRACT/ROTATED

EXTRACT/TRACE
GET/CURSOR
GET/IMAGE
INITIALIZE/DISPLAY
LABEL/DISPLAY
LOAD/CURSOR
LOAD/IMAGE
LOAD/ITT
LOAD/LUT
LOAD/TABLE
MODIFY/LUT
SCROLL/CHANNEL

Delete a frame

Delete a descriptor

Get type and size of descriptor
Read descriptors

Rename a frame

Sort entries in a catalogue
Remove an entry from a catalogue
Write a descriptor

Write descriptor help

Blink between channels

Clear the alpha-numerics memory

Clear and initialize memory channel

Reset monitor

Bypass LUT in screen segment on monitor
Disable split screen

Clear zoom

Copy image memory channels

Hard copy of image display

Create cursor window

Create zoom window

Create a display window (using Xwindow)
Set display thresholds for image

Delete the display windows

Display image loaded into channel

Draw rectangle and other figures in the overlay plane
Extract a subframe from the frame currently
displayed

Extract a rotated subimage from displayed
image

Extract interactively a line from an image
Coordinates from display device by cursor
Read currently loaded image from channel
Initialize the image display

Write character string on display device
Display cursor into display device (DeAnza only)
Load image into display device

Load an intensity transfer table

Load a colour lookup table into display unit
Display table data on image display

Modify the currently active lookup table
Scroll image on given channel

I-November-1995

A-43

A-44

SET/CURSOR
SET/DISPLAY
SET/LUT
SET/SPLIT
SHOW/CHANNEL
VIEW/IMAGE
ZOOM/CHANNEL

A.6.6 Graphics Display

ASSIGN/GRAPHICS
CLEAR/GRAPHICS
COPY/GRAPHICS
CREATE/GRAPHICS
CUTS/IMAGE
DELETE/GRAPHICS
GET/GCURSOR
LABEL/GRAPHICS
OVERPLOT/ERROR
OVERPLOT/HISTOGRAM
OVERPLOT/ROW
OVERPLOT/TABLE
PLOT/AXES
PLOT/CONTOUR
PLOT/DESCRIPTOR
PLOT/HISTOGRAM
PLOT/ROW
PLOT/PERSPECTIVE
PLOT/TABLE
SET/GRAPHICS
SHOW /GRAPHICS

A.6.7 Image Coordinates

CENTER/. ..
GET/CURSOR
GET/GCURSOR
READ/DESCRIPTOR
WRITE/DESCRIPTOR

APPENDIX A. COMMAND SUMMARY

Set cursor form and position

Define colour display control, size of screen etc. (DeAnza only)
Enable use of colour lookup table

Enable split screen (DeAnza only)

Show information related to channel

Explore an image interactively

Zoom image on display

Define plotter output device and replot

Clear graphic screen

Copy the plot file to the specific graphic device
Create a graphic window (using Xwindow)

Set plot thresholds (high and low) for image
Delete the graphic windows -
Coordinates from graphic device by cursor

Plot text in an existing plot

Overplot table error column

Overplot histogram of table column or image
Overplot row/line of image data on previous plot
Overplot table data on previous plot

Plot a coordinate box with large and small tickmarks and labels
Contour plotting of an image

Plot an entry in a descriptor

Plot a histogram of a table column or an image
Plot row/line of an image

Perspective plotting (3-dim.) of an image

Plot table data

Set plot characteristics like scaling

Show graphic characteristics

Find center

Coordinates from image display via cursor

Get coordinates from graphics device by cursor
List reference coordinates

Write reference coordinates

A.6.8 Coordinate Transformation of Images

ALIGN/IMAGE
EXTRACT/IMAGE
FLIP/IMAGE

Calculate linear transformation between 2 images
Extract part of image
Flip image in x and/or y

I-November—1995

A.6. COMMANDS GROUPED BY SUBJECT

GROW/IMAGE
INSERT/IMAGE
REBIN/II
REBIN/LINEAR
REBIN/ROTATE
REBIN/SPLINE
REBIN/WAVE
RECTIFY/IMAGE
ROTATE/CLOCK
TRANSPOSE/CUBE
TRANSPOSE/IMAGE

A.6.9 Image Arithmetic

AVERAGE/AVERAGE
AVERAGE/COLUMN
AVERAGE/IMAGE
AVERAGE/ROW
AVERAGE/WINDOW
COMPUTE/COLUMN
COMPUTE/IMAGE
COMPUTE/PIXEL

COMPUTE/ROW
COMPUTE/..PLANE

A.6.10 Filtering

CONVOLVE/IMAGE
CREATE/FILTER
DECONVOLVE/IMAGE
FILTER/GAUSS
FILTER/MAX
FILTER/MEDIAN
FILTER/MIN
FILTER/SMOOTH
FFT/IMAGE

FFT/INVERSE

Repeat one scan line to make 2 dim images
Insert a subimage into father image
Logarithmic, exponential, /4 frequency rebin
Pixel rebinning of image

Rotate an image any angle

Rebin an image with cube splines

Rebin 1-D image to linear wavelength
General geometric correction

Rotate clockwise 90 degrees

Rearrange planes of 3-dim data cube
Transpose an image

Compute simple average of all pixels in a subimage
Jompute average of image columns

C t ve of : I

Calculate the average of images

Compute average of image rows

Compare images, then take the meaning

Perform arithmetic expression on image column
Compute arithmetic expression of images

Perform arithmetic operations on images using
pixel coordinates

Compute arithmetic expression on image scan lines
Do arithmatic on planes of a data cube

Convolve image with given point spread function
Create filter image

Deconvolve image with point spread function
Use Gauss filter on image

Apply maximum filter to an image

Median filter image

Apply minimum filter to an image

Smooth an image

Compute discrete fourier transform of a complex
input frame

Compute inverse discrete fourier transform of a
complex input frame

A.6.11 Image Creation and Extraction

COPY/II
CREATE/IMAGE

Copy image frames
Create new image

1-November-1995

A-45

A-46

CREATE/RANDOM
EXTRACT/CURSOR
EXTRACT/IMAGE
EXTRACT/LINE
EXTRACT/ROTATED
EXTRACT /SLIT
EXTRACT/TRACE
INDISK/ASCII
INDISK/FITS
INSERT/IMAGE

APPENDIX A. COMMAND SUMMARY

Create a new image from a random distribution
Extract a subframe from the frame displayed
Extract part of an image

Extract a line from a frame

Extract a rotated image

Extract subimage defined by fixed slit

Extract line from an image

Read ASCII file from disk

Read FITS file from disk

Insert a subimage into father image

A.6.12 Transformations on Pixel Values

FIT/FLAT_SKY
ITF/IMAGE
MODIFY/AREA
MODIFY/CURSOR
MODIFY/GCURSOR
MODIFY/PIXEL
REPLACE/IMAGE
REPLACE/POLYGON

A.6.18 Numerical Values

FIND/MINMAX
FIND/PIXEL

FIT/FLAT SKY
INTEGRATE/APERTURE
INTEGRATE/LINE
MAGNITUDE/CIRCLE

MAGNITUDE/RECTANGLE

MODIFY/CURSOR
MODIFY/GCURSOR
MODIFY/PIXEL
PLOT/HISTOGRAM
PRINT/IMAGE
READ/IMAGE
STATISTICS/IMAGE
WRITE/IMAGE

Correct an image for sky variations

Transform pixel values in an image

Remove bad pixel from circular area

Change pixel values in image by cursor
Change pixel values in image by graphic cursor
Change pixel values in image

Modify pixel values in given intensity interval
Replace pixel values inside a polygon

of Image Pixels

Display (ands tore) max and min value

Find first pixel with a value inside or outside
the interval

Fit background image

Integrate flux inside aperture

Integrate pixel-values over area in image
Compute the magnitude of the specified object
by integrating over the central area defined

by a circular aperture

Compute the magnitude of the specified object
by integrating over the central area defined

by a rectangular aperture

Change pixel values in image by cursor
Change pixel values in image by graphic cursor
Change pixel values in image

Plot histogram of pixel values in image

Print an image

List pixel values into image

Calculate statistics of an image

Change pixel values in image (world coordinates)

I-November—1995

A.6. COMMANDS GROUPED BY SUBJECT A-47

A.6.14 Spectral Analysis

CALIBRATE/LINE
CENTER/. ..
CONVERT/TABLE
EXTINCTION/SPECTRUM
IDENTIFY/GCURSOR
IDENTIFY/LINE
INTEGRATE/GCURSOR
MODIFY/GCURSOR
OVERPLOT/IDENT
PLOT/IDENT

REBIN/. ..
RESPONSE/SPECTRUM
SEARCH/LINE

Calculate coefficients for wavelength calibration
Compute center of line

Make image from table values

Correct 1-D image for extinction

Identify table entries from graphic display
Equate X positions to wavelengths
Integrate line interactively

Change data in line interactively

Overplot line identifications

Plot line identifications

Linear or non-linear image rebinning

Malke file for flux correction, response curve
Search calibration lines

A.6.15 Least Squares Fitting

COMPUTE/FIT
COMPUTE/FUNCTION
EDIT/FIT

FIT/IMAGE
FIT/TABLE
PRINT/FIT

READ/FIT
SELECT/FUNCTION
SET/FIT

SHOW/FIT

Compute fitted image or table

Compute function values of image or table
Define function for fitting

Least squares fitting in image

Least squares fitting in table

Print fitted values

Read fitted values

Select functions to be fitted

Control execution of fitting

Display control parameters

A.6.16 Table File Operations

BIN/TABLE
COMPUTE/HISTOGRAM
COMPUTE/REGRESSION
COMPUTE/TABLE
CONVERT/TABLE
COPY/TT
CREATE/COLUMN
CREATE/TABLE
DELETE/COLUMN
EDIT/TABLE
MERGE/TABLE
NAME/COLUMN
PRINT/TABLE
READ/TABLE

Create a table with averages of col2 in bins of coll
Compute histogram for a table column

Compute column from regresion coeflicients
Compute arithmetic expression between columns
Compute image from table data

Copy keys from table to table file

Create new column in a table file

Create a table file

Delete column from an element in a table file
Change value of entry in table file

Merge two table files

Insert a label name for a column

Print table

List elements of a table file

I-November—1995

A-48 APPENDIX A. COMMAND SUMMARY

REGRESSION/POLYNOMIAL Compute regression between column in table file

SELECT/TABLE Select a subtable

SHOW/TABLE List table directory

SORT/TABLE Order a table file

STATISTICS/TABLE Computes low order statistics for a column

1-November-1995

Appendix B

Acknowledgements

B.1 General

It is of course never possible to adequately acknowledge the many small, but extremely use-
ful, comments which the Data Management Division have received from many colleagues
both within ESO and outside. Nevertheless, we would like to express our gratitude to
those who have helped to make MIDAS what it is today and hopefully what it will be
in the future. In addition, we would like to try to specifically acknowledge certain major
contributions.

B.2 Packages and Commands

The fitting routines in MIDAS were developed in close collaboration with O. Richter and
later upgraded by Ph. Defert. The INVENTORY programs were developed and written
by A. Kruszewski during his extended visits to ESO. The multivariate statistical package
has been developed in close collaboration with F. Murtagh. The package for 1-dimensional
spectral reductions was designed and tested in collaboration with D. Baade and M. Rosa.
The ROMAFOT package for crowded field photometry was developed by R. Buonanno,
C. Buscema, C. Corsi, I. Ferraro, and G. Iannicolo at the Osservatorio Astronomico di
Roma. The implementation of ROMAFOT in MIDAS was done in collaboration with
R. Buonanno. M. Tapia and A. Moneti collaborated in the development of the IRSPEC
reduction package. Marguerite Pierre developed modelling commands for interstellar ab-
sorption work and contributed to the Long Slit package. P. Stetson created a MIDAS
compatible version of DAOPHOT-IL.

The digital filter to remove cosmic ray events from single frames was contributed
by P. Magain and M. Remy. Several routines used in the COMPUTE command for
calculations of airmass, barycentric correction, ST, UT and Julian data were kindly made
available by D. Gillet. The FILTER/ADAPTIVE command was kindly provided by G.
Richter. The OPTOPUS context was implemented by A. Gemmo. The PISCO context
was implemented by M. Schloetelburg and O. Stahl. The astrometry context ASTROMET
was made available for MIDAS by O. Hainaut. The original code was written by R. West.

B-1

B-2 APPENDIX B. ACKNOWLEDGEMENTS

Significant contributions were also added in the application area. A number of im-
portant applications were made by ESO La Silla (or in close collaboration with them)
such as the new Long Spectral Package and the XAlice graphic user interface for spectral
analysis.The IRSPEC reduction was revised by E. Oliva, while an image restoration and
co-addition application, based on ideas of L. Lucy, was added by R. Hook (ST-ECF).
A Time Series Analysis context, which includes analysis of non-equally spaced data, was
made by A. Schwarzenberg-Czerny. The Wavelet package was implemented by J. L. Starck
and contains both general routines for wavelet transforms and special applications e.g. for
deconvolution. Finally, the PEPSYS context was introduced by A.T. Young as the first
application in a new context for calibrations of point-source photometry.

B.3 Libraries
B.3.1 AGL

The plotting package in MIDAS is based on the low level routines in the Astronet Graphic
Library (AGL) which was developed and is maintained by the Italian ASTRONET. The
implementation of the AGL library in MIDAS was done with the help of L. Fini.

B.3.2 IDI

In the early implementations of IDI routines for XWindows the Trieste Observatory
(Mauro Pucillo, Paolo Santin, Fabio Pasian) provided a prototype for X10 which has
been used for our further developments.

B.4 Manual

This manual has been typeset in TEX and IATEX using an extensive set of macros provided
by H.-M. Adorf.

I-November—1995

Appendix C

Site Specific Implementation

This appendix describes the site specific hardware setup and implementations used in
ESO, Garching.

C.1 Hardware Setup

This section gives short description of the hardware configuration of the general ESO
computer facilities in Garching used for image processing. The main installation contains
a number of UNIX workstations and Servers (most of which are SUN/SPARC compati-
ble). The logical names of the workstations are wsn where n is a running number. The
Servers have the prefix ns or mec depending on their main function as either file servers
or main computers. In addition several X-terminal are available. All the systems are
interconnected through a Local Area Network using TCP/IP protocols.

C.1.1 UNIX Workstations

A number of SUN/SPARC workstations and X-terminals for general MIDAS use are lo-
cated in the User room 213. They run UNIX and are configured with the X11 window
system. You can login by giving the Userid /Password allocated to you. When working
in the ESO X11 environment, it is necessary to point the cursor on the X11 OSF/Motif
window in question to get access to it. Several MIDAS sessions may be run on a worksta-
tion at the same time using the parallel option when starting MIDAS with the inmidas
command. Different MIDAS unit numbers can also be given specified on the command
line.

Below we describe the devices currently supported by MIDAS. A complete list of avail-

able devices at ESO-Garching the reader is referred to to ESO WWW page http://http.hq.eso.org/e

info/computing/devices.html

C.1.2 Printer and Plotter Queues

To output listings and hard copies of plots a number of devices can be used. These can
be used through a number of system queues which spool the output to the appropriate

C-1

C-2 APPENDIX C. SITE SPECIFIC IMPLEMENTATION

devices. The majority of these printers are PostScript compatible.
To print the log of the MIDAS session the PRINT/LOG command is used. This command
will produce the output on printers, most of which are located in the User room.
Hardcopies of plots are made using the COPY/GRAPH and the PLOT commands (see
Chapter 6). The first parameter of the ASSIGN/GRAPH command specifies the plotting
queue/device to be used. The help command in MIDAS can be used to get an up to date
list of output devices.

C.1.3 X11 Window systems

Image display windows can be created and deleted from MIDAS using the commands
CREATE/DISPLAY and DELETE/DISPLAY, respectively. AlL MIDAS display commands will
work on these window displays, some have to be implemented in software which makes
them slow e.g. ZOOM and SCROLL. The cursor is implemented through the mouse on which
the left button is Enter and the middle button (or right button on a 2 button mouse} is
Exit. When the cursor is positioned on a feature it is also possible to use the Return key
to read the cursor location. Some commands use a second cursor which is implemented
through the arrow key on the keyboard.

C.1.4 Film Hardcopy

This Section describes the Film hardcopy devices available at ESO, Garching. Only a
system for recording 35mm Colour Slides is offered.

Film print queues

They are implemented as standard UNIX print queues and can be accessed with the UNIX
1pr command. Files written to a queue must be in the correct format (see ESO WWW
page http://http.hq.eso.org/garching-info/computing/devices.htm)

In the case of Colour Slide the MIDAS command COPY/DISPLAY SLIDE can be used.
This command will both create the PostScript image file and submit it to the slide queue.

Processing of Film Hardcopies

Depending on the number of entries, images in the olour queue will be checked and acti-
vated once per week. Development of the films may take upto two weeks after which they
will be send to the user. Thus, a turn-a-round time of approximately one month must be
expected when using filin hardcopy.

C.1.5 Tape I/O

Several tape drives (1/2 inch, QIC, 8mm, DAT) are available on the UNIX system. They
can be accessed from any UNIX workstation on the network. The step by step procedure
is as follows:

1. Login on a UNIX workstation.

1-November-1995

C.1.

5.

6.

HARDWARE SETUP -3

Run MIDAS with inmidas.

. Mount your tape on a drive connected (see below). If you want to write on the tape

remember to enable writing,.

Use the intape and outtape commands to access the tape unit using the logi-
cal device name e.g. tapeO. or the physical device name e.g. /dev/nrst0 or
wsl:/dev/nrst0 for a tape unit on remote host wsl. Since the recording density
for UNIX tape units is defined by their name, the device name will overrule the
density given on the command line! Some 1/2 inch drives require the density to be
set manually on the drive as well. During reading the tape drive will itself sense
the tape density used. Thus, the generic tape name can normally be given when
reading,.

Dismount your tape from the drive so that others can use it.

Logout from MIDAS with bye and from the workstation.

Concerning the usage of tape media please note the folowing:

1.

(W}

Tape drives can be selected from any host in the same domain. To get access to
drives in other domains you need to have another account with the same name in
the remote domain. '

Tape devices have to be accessed via theirs system names;

The temporary register accounts used by visitors belong to domain eso.

. New tapes are from factory write enable.

. Tapes can be obtained from the operator, room 220/1, 2nd floor.

The MIDAS error Permision denied occurs when the given tape is write protected
(check remarks below) or when it is allocated to another user (use deallocate
command)

Concerning 1/2 inch tapes:

e For each 1/2 tape drive can be accessed in two densities: high (6250 bpi) and
medium (1600 bpi). The mode that is used to access the data depends on the
device name.

e 1/2inch magtape drives have to be set to enable remote density selection: with
the drive OFF-LINE press the button DENSITY until LED "REMOTE DEN”
comes on. The device name used with the command “INTAPE/MIDAS” will
actually set the density.

e 1/2 inch magtape drives can read tapes of any density if the drive is set with
"REMOTE DEN?” on. That is, for reading there is no difference between, e.g.
tape2, tape2h, and tape2m.

1-November—1995

C4 APPENDIX C. SITE SPECIFIC IMPLEMENTATION

e 1/2 inch tapes are write enable when they are mounted with the write enable
ring and the LED "WRITE ENBL” comes on.

8. Concerning 8mm tapes:

e Smm-High drives can also read 8mm-Low density tapes, but not vice versa.

e The 8mm tape is write enable when the red switch in front of the tape is in
"REC” position.

9. Concerning QIC tapes:
e QIC-150 drives can only write on high density tapes DC600XTD or DC6150
however they can read QIC-24 low density tapes DC300XL or DCG00A.
e QIC-24 drives use only low density tapes DC300XL or DC600A.

e QIC tapes are write protected when the round switch in the tape points to the
"SAVE” position; write enable otherwise.

10. Concerning DAT tapes:

e DDS drives use Sony 60/90/120 min.
e DAT tapes are write enable when the swith in front of the tape closes the hole.

e An up to date list of available tape drives is posted on the bulletin board in
the user room.

C.2 Operating Systems

The main operating system used for image processing in ESQO is UNIX. On the SUN
workstation the X11 OSF/Motif window system is used to provide virtual terminals or
displays. For those who are not familiar with UNIX systems this section tries to provide a
very basic introduction. For more information, the interested user is referred to the various
UNIX or SUN publications. A few copies of these manuals and other documentation are
available through system management (room 220/2).

C.2.1 Login Procedures

The X11 window system will display a login window which has user identification and
password files. If the screen is black you may have to move the mouse or press a key on
the keyborad to exit the screen save mode. First enter your userid and then your password
each terminated with the return key. This will start an automatic login procedure (see
OSF /Motif manual for customising the widow manager). In case you don’t have an account
on the systems you should contact the System Manager (room 220/2).

1-November—1995

C.3. DATA FORMAT COMPATIBILITY C-5

C.3 Data Format Compatibility

The internal binary data formats of the VAX and SUN systems are different which makes
it impossible to share data files (e.g. image or table). The SUN systems store data starting
with the most significant bits (i.e. big endian) and use IEEE floating point format while
VAX’s are byte swapped and have a proprietary floating point format.

In order to exchange data files between these systems it is necessary to use a ma-
chine independent format e.g. FITS. For this reason and because internal MIDAS data
structures may change, it is strongly recommended to save data in FITS format.

I-November—1995

APPENDIX C. SITE SPECIFIC IMPLEMENTATION

I-November—1995

Appendix D

Release Notes

D.1 Current Status

This appendix contains on the following pages the Release Notes for the 95INOVrelease of
MIDAS. A listing of the MIDAS NEWS-file which gives an overview of the modifications
and improvements of the system for the present release has been added.

D.2 Installation

The 95NOV release of ESO-MIDAS can run on most UNIX systems, and is most likely
to run under DEC/VMS 4.7 and DEC/OPEN-VMS 6.0 (or higher). If you are going to
install ESO-MIDAS on your system you have retrieved a copy of this release through ftp.
However, as have been announced, as of 1995 new applications are not tested automatically
on VMS/Open VMS systems.

The monitor and low level interfaces are coded in C which means the portable MIDAS
requires a C compiler for installation. Many applications are written in FORTRAN-77
and can therefore only be installed if either a FORTRAN-77 compiler or a FORTRAN-
to-C convertion package (e.g. f2c for UNIX) is available. The installation of MIDAS
has been certified with the public domain GNU ANSI-C compiler which can be obtained
from the Free Software Foundation, and verified with the quality control tool Purify from
Pure-Software.

The instructions for installation are given in separate documents for either VMS or
UNIX systems which are included in the distribution kit. Read the appropriate one care-
fully and proceed as described (the procedure may have been modified compared with
previous installations!). Basic knowledge of your local operating system (e.g. VMS or
UNIX) is assumed and required.

One area may require special attention during the first installation. It relates to the
image display interfaces that, for MIDAS, must conform to the standard IDI interfaces.
IDI’s are provided only for the X-Window system, Version 11. For other display devices
a set of IDI routines has to be written.

For a few commands the NAG mathematical library is required. If you do not have

D-1

D-2 APPENDIX D. RELEASE NOTES

this library MIDAS can still be installed, however, some commands may not be available.
In future versions we will try to reduce our dependency on NAG. A list of programs using
NAG and the routines are given in Section D.5.

Starting with the 89NOV release a separate installation of the lower level AGL library
is no longer required. The library, i.e. those parts needed for the MIDAS plot facilities,
is fully integrated within the MIDAS directory structure and will be generated as every
other MIDAS subroutine library. For a full installation of the AGL library refer to the
Astronet Documentation Facility, Trieste.

D.3 Software Modifications

The MIDAS release 95NOV is the 10th official release of portable MIDAS. A number
of new applications have been added to this version. Given below is a overview of the
changes and improvements compared with the previous release:

1. The Problem Report form of the XHelp GUI has been simplified to make it easier to
send us e-mail. After one year of working with the GNATS problem report database,
new PR categories have been created, in particular for GUlIs and for each context.

2. The Echelle package has been refurbished to allow calibration in world coordinates.
The 94NOV version of the package is still available under the package name echellec.
Documentation for the EMMI calibration is provided with the command INITIAL-
IZE/EMMI. A MOTIF GUI for the new version of the Echelle package is provided

and can be activated with create/gui echelle.

3. Several new commands have been included in the Spec package related to spectral
analysis:

e CONTINUUM/SPECis a new command for the determination of spectra continuum
using smoothing spline interpolation. This command comes in complement of
NORMALIZE/SPEC, based on standard polynomials.

e DEBLEND/LINE allows to fit up to 6 multiple-gaussian components in spectral
lines (contributed by Goettingen University)

e REFRACTION/LONG provides the correction for differential atmospheric disper-
sion (contributed by P.W.A. Goerdt, Goettingen University).

e COMPUTE/PARALLACTIC allows to compute the parallactic angle (contributed by
A. Smette, Groningen Observatory).

4. The MOS context has been developed by the Observatory of Heidelberg in the con-
text of the FORS data reduction software development. The context includes a
tutorial (TUTDRIAL/MDS).

Different search paths for Midas procedures, data and executables are now possible.

[w}

6. A first set of 3-dim functions has been implemented.

I-November-1995

D.4. MANUAL UPDATES D-3

7. An upgrade of the CCD context (now called CCDRED) that now also includes tools
for mosaicing ccds.

8. A separate context CCDTEST containing an updated version of the CCD testing
commands.

9. A new context IRAC2 containing on- and off-line commands to support processing
of the IRAC?2 data.

For a more complete list of all updates/additions use the MIDAS command HELP
[NEWS] after having installed this release. A hardcopy of it can be obtained via PRINT/HELP
[NEWS].

D.4 Manual Updates

Several sections of the MIDAS User’s Manual have been updated in this release. A list of
the parts to be replaced is given below :

Volume A, Titlepage
Volume A, Chapter 1
Volume A, Chapter 3
Volume A, Appendix A
Volume A, Appendix B
Volume A, Appendix C
Volume A, Appendix D

Volume B, Titlepage
Volume B, Chapter 1
Volume B, Chapter 3
Volume B, Appendix A
Volume B, Appendix D
Volume B, Appendix J
Volume B, Appendix K

Volume C, Complete Volume

Introduction
Monitor and Syntax

Command Summary

| Acknowledgements

Site Specific Implementation

Release Notes

Introduction

CCD Reductions
Command Summary
Echelle Reduction
IRAC2

CCD Test Procedures

Detailed Command Summary

to be replaced
to be replaced
to be replaced
to be replaced
to be replaced
to be replaced

to be replaced

to be replaced
to be replaced
to be replaced
to be replaced
to be replaced
to be added

to be added

to be replaced

D.5 Use of NAG Library

The NAG mathematical library is still used in a few MIDAS commands. A list of these

programs and routines are given below:

1-November—1995

D-4

APPENDIX D. RELEASE NOTES

Program

Package

NAG Routines

fitimag

genran

echrippl

Fit

General

Echelle

e04fdf, e04fcf, eOdgcf, el4hev,
e04gbf, e04gef, e04gdf, e04ycf,
e04jaf, e04hbf, e0G4jbf, eO4kaf,
e04hcf, e04kbf, e04kef, e04kdf
g05cbf, g05ddf, g05daf, g05dbf,
g05def, g05edf, g05eyf, g05ect,
g05dff

e04gdf

A set of dummy routines are provided for sites that do not have a NAG library. This
implementation enables sites to use the FIT package even without the NAG library (in
this case, only the Newton-Raphson method is supported).

I-November-1995

Appendix D

Release Notes

D.1 Current Status

This appendix contains on the following pages the Release Notes for the 94NOVrelease of
MIDAS. A listing of the MIDAS NEWS-file which gives an overview of the modifications

and improvements of the system for the present release has been added.

D.2 Installation

The 94NOYV release of ESO-MIDAS can run on most UNIX systems, as well as under
DEC/VMS 4.7 and DEC/OPEN-VMS 6.0 (or higher). If you are going to install ESO-
MIDAS on your system you have retrieved a copy of this release through ftp.

The monitor and low level interfaces are coded in C which means the portable MIDAS
requires a C compiler for installation. Many applications are written in FORTRAN-77
and can therefore only be installed if either a FORTRAN-77 compiler or a FORTRAN-
to-C convertion package (e.g. f2c for UNIX) is available. The installation of MIDAS
has been certified with the public domain GNU ANSI-C compiler which can be obtained
from the Free Software Foundation, and verified with the quality control tool Purify from
Pure-Software.

The instructions for installation are given in separate documents for either VMS or
UNIX systems which are included in the distribution kit. Read the appropriate one care-
fully and proceed as described (the procedure may have been modified compared with
previous installations!). Basic knowledge of your local operating system (e.g. VMS or
UNIX) is assumed and required.

One area may require special attention during the first installation. It relates to the
image display interfaces that, for MIDAS, must conform to the standard IDI interfaces.
IDI’s are provided only for the X-Window system, Version 11. For other display devices
a set of IDI routines has to be written.

For a few commands the NAG mathematical library is required. If you do not have
this library MIDAS can still be installed, however, some commands may not be available.
In future versions we will try to reduce our dependency on NAG. A list of programs using

D-1

D-2 ' APPENDIX D. RELEASE NOTES

NAG and the routines are given in Section D.5.

Starting with the 89NOV release a separate installation of the lower level AGL library
is no longer required. The library, i.e. those parts needed for the MIDAS plot facilities,
is fully integrated within the MIDAS directory structure and will be generated as every
other MIDAS subroutine library. For a full installation of the AGL library refer to the
Astronet Documentation Facility, Trieste.

D.3 Software Modifications

The MIDAS release 94NOYV is the 9th official release of portable MIDAS. A number of
new applications have been added to this version. Given below is a overview of the changes
and improvements compared with the previous release:

1. Readline: a new line editor from GNU only on UNIX systems. It enhances the line
editing capabilities of MIDAS, like a history stack of commands, Emacs or Vi edit-
ing functions, command and filename completion functions, and a communication
channel to the MIDAS GUI Xhelp for a help-on-line function

2. INTAPE/FITS with data decompression on-the-fly only on UNIX systems. Com-
pressed FITS data, by default those with extensions .z and .Z, are decompressed
automatically on-the-fly (pipeline) when accessed.

3. The generic-tape driver. Based in the semi-standard MTIO system interface to
tapes, this new driver handles most of the tape devices without any other particular
configuration than the system device-name.

4. A new client/server model for access to remote tapes with machine-independent data
structures. '

5. A refurbishment of the graphics software that resulted in notable improvements
in performance. Graphical representation of three dimensional tables is now also
supported.

6. Graphical user interfaces for the Data Organizer context (DO) and for the context
IRSPEC.

7. A upgrade of the CCD context which now also include test procedures for monitoring
the quality of the detectors by a series of standard tests.

8. A new astrometry package called ASTROMET has been included.

For a more complete list of all updates/additions use the MIDAS command HELP
[NEWS] after having installed this release. A hardcopy.of it can be obtained via PRINT/HELP
[NEWS].

1-November—1994

D.4. MANUAL UPDATES D-3

D.4 Manual Updates

Several sections of the MIDAS User’s Manual have been updated in this release. A list of

the parts to be replaced is given below :

Volume A, Titlepage
Volume A, Chapter 1
Volume A, Chapter 3
Volume A, Chapter 5
Volume A, Chapter 6
Volume A, Appendix A
Volume A, Appendix B
Volume A, Appendix C
Volume A, Appendix D

Volume B, Titlepage
Volume B, Chapter 1
Volume B, Chapter 3
Volume B, Chapter 7
Volume B, Chapter 16
Volume B, Appendix A
Volume B, Appendix D
Volume B, Appendix G

Volume C, Complete Volume

Introduction

Monitor and Syntax

Table File System

Graphic and 'Ima,ge Display
Command Summary
Acknowledgements"

Site Specific Implementation
Release Notes

Introduction

CCD Reductions

Echelle Spectra
Astrometry

Command Summary
Echelle Reduction

Long Slit and 1D Spectra

Detailed Command Summary

to be replaced
to be replaced
to be replaced
to be replaced
to be replaced
to be replaced
to be replaced
to be replaced
to be replaced

to be replaced
to be replaced
to be replaced
to be replaced
new

to be replaced
to be replaced
to be replaced

to be replaced

D.5 Use of NAG Library

The NAG mathematical library is still used in a few MIDAS commands. A list of these
programs and routines are given below:

1-November—1994

D-4 ' APPENDIX D. RELEASE NOTES

Program | Package | NAG Routines

fitimag Fit e04fdf, e04fcf, eO4gcf, e04hev,
e04gbf, e04gef, e04gdf, e04yct,
e04jaf, e04hbf, e04jbf, e04kaf,
e04hcf, e04kbf, e04kcf, e04kdf
genran General | g05cbf, g05ddf, g05daf, g05dbf,
g05def, g05edf, glbeyf, g0bect,
g05dff

echrippl | Echelle | e04gdf

. A set of dummy routines are provided for sites that do not have a NAG library. This
implementation enables sites to use the FIT package even without the NAG library (in
this case, only the Newton-Raphson method is supported).

1-November—1994

	eso_midas_69a-1.pdf
	eso_midas_69a-2

