

CRIRES and VISIR, ESO's latest tools for infrared studies of PNe beyond the Milky Way

May 19, 2004

Hans Ulrich Käufl, ESO

Description of VISIR and CRIRES

- · VISIR: description and report from "first light"
- · CRIRES: description and status

Potential of Infrared Imaging and Spectroscopy:

- surveying for PNe
- · study of physical properties of PNe
- study of the PN progenitors
- · technicalities, constraints, pitfalls ...
- comparison to Spitzer

VLT- instrumentation in a $(\Lambda, \Lambda/\Delta\Lambda)$ -map

1ST GENERATION VLT INSTRUMENTS

PNe, Garching, May 19, 2004 Hans Ulrich Käufl, ESO

VISIR

- · built by CEA/Astron
- $10/20 \mu m$ imager/ spectrometer (R ~ 500 - 30000)
- sensitivity (BLIP)
 - ~ 2mJy 10µm imaging
 - ~ 20-200mJy spectro
- diffraction limited (~ 0.3 ", sampling 0.075" / pix)
- as of May 2004 @VLT-UT3slide 4

- schematics of
 spectrometers
 (R ~ 500 30000)
- high-resolution grism xdispersed (4" slit)
 but
 for selected lines
 longslit mode possible

PNe, Garching, May 19, 2004 Hans Ulrich Käufl, ESO slide 5

- close view of spectrometers
- detector
 mount on lid
 (removed)
- re-imager and order selection on back side

PNe, Garching, May 19, 2004 Hans Ulrich Käufl, ESO slide 6

- 1st light results
 Menzel 3 [Ne II]
- · comparison HST Ha

PNe, Garching, May 19, 2004 Hans Ulrich Käufl, ESO slide 7

- more 1st light results
 Menzel 3 [Ne II]
- long-slit spectroscopy
 R ~ 30000 (i.e. 10 km/s)

 note: in BLIP (back-ground noise limited performance)

S/N a J R PNe, Garching, May 19, 2004 Hans Ulrich Käufl, ESO slide 8

VISIR outlook

- · more 1st light results under VISIR home page
- · next commissioning June 30 July 6 2004
- detection in [Ne II] or [S IV] is only a question of surface brightness within 0.3"
 - => e.g. Menzel 3 easily detectable up to > 100 kpc
- · below, a preview using TIMMI2 on IC418

VISIR <--> Spitzer (ex SIRTF)

- sensitivity: Spitzer wins by up to $\sim 10^3$ (imaging) but
- spatial resolution VISIR/VLT wins at least a factor of 10 (CRIRES wins a factor of ~ 20-30)
- spectral coverage: Spitzer wins (e.g. a comparison [S III] to [S IV] not really feasible from the ground but
- spectral resolution: VLT/VISIR/CRIRES wins by a factor of up to 100 and
- sensitivity disadvantage of BLIP partially compensated

Historical: TIMMI@3.6 <--> ISO (Waters et al.)

Figure 3 Spatial distribution of the oxygen and carbon rich components of the Red Rectangle. Top, False-colour images of the broad-band 10 μ m emission (left) and continuum subtracted narrow-band 11.3 μ m emission (right) in the Red Rectangle nebula. The images were taken on 24 February, 1994 with the 10 μ m camera TIMMI attached to the 3.6 μ m telescope of the European Southern Observatory (ESO), La Silla, Chile. The pixel size is 0.33 arcsec. The broad-band 10 μ m image shows that the bulk of the emission at that wavelength originates

from the circumbinary disk, and the brightness distribution of the narrow-band 11.3 μm image shows that the carbon-rich carriers of the UIR bands are located in the extended nebula⁵⁸. Bottom, ISO-SWS spectrum of the Red Rectangle. The boxes relate the carbon-rich components to the extended nebula, and the oxygen-rich component to the circumbinary disk in the centre of the nebula, respectively.

good example that ISO-IR spectroscopy was difficult to understand without the spatial information only available at groundbased telescopes

870 NATURE | VOL 391 | 26 FEBRUARY 1998

- λ : 1.0-5.4 μ m
- $\Delta \lambda \approx 3 \text{ km/s}$
- 4 1 k x 0.5 k
 InSb detectors
- instantaneous λ -coverage $\approx 2\%$
- precision for calibration and stability ~ 75m/s
- curvature sensing
 Adaptive Optics
 0.2" spatial res.
 for 40" slit
- stability!!!!

CRIRES

- being built by ESO in house
- status: in integration
- first laboratory spectra expected in summer 2004
- right: 40cm R4-Echelle
- bottom: detector mosaic

if interested a tour through the lab could be organized

CRIRES: spectral features of interest:

- · atomic lines:
 - various Hydrogen recombination lines (e.g. Pa_β, Br_ν, Br_α, Pf_β)
 - various Helium lines
 - · forbidden lines: e.g.

in J-band: [Fe II]

in K-band: [KrIII]

in L-band: [Zn IV]

c.f. Mike Barlow, proceedings of ESO-workshop "High Resolution Infrared Spectroscopy in Astronomy"

- molecular lines
 - H₂ lines from hot shocked molecular gas (quadrupole trans.)
 - "normal" dipol rotational-vibrational transitions

AGB & post AGB: Rotational-Vibrational Molecular Spectra

- To remember: for one molecular species several hundred infrared transitions can be expected which all have a different optical depth and which therefore sample different altitudes in stellar atmospheres
- isotopic shifts scale with the reduced mass:

e.g. for
$$^{28}\mathrm{Si}^{16}\mathrm{O}~\mathrm{vs}~^{29}\mathrm{Si}^{16}\mathrm{O}$$
 : $\Delta\mathrm{M}_{\mathrm{red}}\approx~1.0~\%$

left: examples low resolution spectra of the bandheads of overtone transitions of SiO (from Aringer et al. 1999 A&A 342); all structure is statistically significant; ~ 100 lines each 2-3km/s wide merge into one bandhead CRIRES allows to observe "single" lines

CRIRES and VISIR are not just built for PNe and post-AGB-star research but they seem to be a perfect match:

- sufficient atomic lines available for detailed studies of excitation conditions and kinematics
- · rot.-vib. molecular spectra are an extremely efficient tool
 - · to study atmospheres and their physics
 - · to study physics of mass loss and dust formation
- · IR-studies are least affected by extinction
- easy access to abundances and isotopic ratios
 - constraints on thermo-nuclear models (s-process isotopes)
- the sensitivities allow to do research on star samples selected by other criteria than apparent magnitude.