High-Resolution and High-Precision Spectroscopy with HARPS

Christophe Lovis and Francesco Pepe Geneva Observatory, Switzerland

The 2007 ESO Instrument Calibration Workshop

The "State of the Art"

$$P2 = 31.6 \text{ days} \quad M \sin i = 11.8 M_{\oplus}$$

$$P3 = 197 \text{ days}$$

P3 = 197 days M sini = 18.1 M_{\oplus}

Baggiar de of the Art" The state of the Art" The state of the Art" The state of the Art"

HD 69830

53300

 $0-C [m s^{-1}]$

Radial Velocity [m s⁻¹]

 $0-C [m s^{-1}]$

Radial Velocity [m s⁻¹]

53650

53000

The Doppler measurement

Possible error sources

- **Stellar** noise
- Tntermediate medium (Earth's atmosphere, etc.)
- Instrumental noise
 - *Instrumental stability (from calibration to measurement)
 - *Calibration accuracy (ThAr and iodine techniques)

Definition of "calibration"

A process that establishes, under specified conditions, the relationship between the values indicated by the measuring system, and the corresponding values of a quantity realised by a reference standard or working standard.

CCD pixel position

Line position of spectral reference

The wavelength solution

Calibration errors

- pixel-position precision
 - *photon noise
 - * blends
 - * pixel inhomogeneities, block stitching errors
- accuracy of the wavelength standard
 - *systematic errors, Atlas, RSF
 - *instabilities (time, physical conditions: T, p, I)
- accuracy of the fit algorithm

Photon noise

ThAr:

Single line: 1 ms⁻¹

Average: 8 ms⁻¹

Global: 8 cms⁻¹

Line (and Instrumental) stability

The problems of blends

Isolated lines are very rare!

Fit neighbouring lines simultaneously with multiple Gaussians

Treatment of blends

Isolated lines are very rare!

Fit neighbouring lines simultaneously with multiple Gaussians

Calibration errors

- pixel-position precision

 * photon noise (line: 1 150 ms⁻¹, global 8 cms⁻¹)

 * blends (line < 8 ms⁻¹)

 * "pixelisation" (line < 8 ms⁻¹)
- accuracy of the wavelength standard
 **systematic errors, Atlas, RSF
 **instabilities (time, physical conditions: T, p, I)
- accuracy of the fit algorithm

Wavelength standard

Palmer & Engleman 1983: Atlas of the Th spectrum
3,000 usable lines at
R~600'000
Accuracy of individual lines:
15-150 m s⁻¹

HARPS ThAr spectra:

Lot of unidentified lines at R~110'000 Best precision ~1-2 m s⁻¹ individual lines

The wavelength solution

Build up a new wavelength reference

- The dispersion of the residuals around the wavelength solutions (~50-70 m s⁻¹) is completely dominated by the uncertainties in the input wavelengths!
- More accurate wavelengths would decrease residuals around the fit and stabilize the wavelength solutions
- More than 50% of the detected lines are NOT in the atlas because they were too faint on the FTS scans!
- Use of more lines would better constrain wavelength solutions

New ThAr atlas -> Lovis et al. 2007, in prep.

Use HARPS spectra to build a new ThAr atlas!

Perform a systematic search for lines in the spectrum

Fit a global wavelength solution through all spectral orders

Find the systematic offset of each line and correct its wavelength

New list of ~ 8,600 lines

Internal precision on individual wavelengths ~ 10 m s⁻¹

X² ~ 1.5 (residual pixelisation effect of ~ 8 m s⁻¹

The wavelength solution

New ThAr atlas -> Lovis et al. 2006, in prep.

Calibration errors

- pixel-position precision

 * photon noise (line: 1 150 ms⁻¹, global 8 cms⁻¹)

 * blends (line < 8 ms⁻¹, global 10 cms⁻¹)

 * "pixelisation" (line < 8 ms⁻¹, global 10 cms⁻¹)
- accuracy of the wavelength standard

 **systematic errors (line < 8 ms⁻¹, global 10 cms⁻¹)

 **instabilities (time, physical conditions: T, p, I)
- accuracy of the fit algorithm

Other results from ThAr tests

- Stability of Thorium lines over years: ~< 1 ms⁻¹ rms
 </p>
- Stability of Argon lines over years: ~ 10 ms⁻¹ rms (probably due to p variations -> never use for calibration)
- Dependence on lamp current (7-10 mA): < 0.2 ms⁻¹ rms
- Dependence on flux (factor 6): < 0.1 ms⁻¹ rms

Open questions and limitations

- Life time, exchange
- Precision at < 0.1 ms⁻¹ rms
 - * Dynamical range of line intensity
 - * Wavelength coverage and spacing uniformity
 - * Blends

(valid for thorium and iodine)

The perfect calibrator

- Cover full spectral range
- Constant line spacing
- Lines width < spectrograph resolution</p>
- High density of lines, up to one per ~2-3 RE
- All wavelengths precisely known and stable
- Homogeneous line intensities, close to saturation

The CODEX project: 1cm s⁻¹

For example: Fabry-Perot or laser frequency comb (see next talk)

