The 2007 ESO Instrument Calibration Workshop

A Personal Summary

Dietrich Baade ESO - Garching More than 20 of the top 50 Google hits for "Calibration Workshop" concern astronomy

Astronomical calibrations enable the

- transformation of qualitative observations to quantitative measurements
 - projection of non-tangible objects onto the human (and also microphysics) world

No calibration - no astronomy

Calibrating Astronomical Observations (I)

- Only have 8 observables:
 - 2 coordinates (RA, DEC)
 - time
 - wavelength
 - flux
 - degree of polarization
 - angle of polarization
- phase (differences)
 2007 ESO Instrument Calibration Workshop Summary

Calibrating Astronomical Observations (II)

Only need to consider 3 basic types of scientific calibrations:

o radiometry

always tough

extinction, sky background, instrumental background, sky concentration, slit losses, slit illumination, PSF, detector linearity, standards, variability, and many more atrocities

o geometry

mostly easy

but: flexure (e.g., VIMOS, FORS) requires differential parametric correction (or much time: hysteresis)

but: sensitivity to vibrations (VLTI)

but: do HARPS (Lovis), NACO (Seifahrt), VLTI et al. show that we have been settling for too little? (Lo Curto)

o chronometry

trivial (since introduction of GPS)

amazing – can this be true?

Calibrations at ESO

- Calibrations form the core of the very broad QC process www.eso.org/QC
- Calibration plans calibrate instruments rather than data sets.
 In 1995, philosophy received with much skepticism.
 Seemingly working quite well, but users see complexity.

 Marconi
- Have calibration plans been optimized for minimum effort?
 Does ESO over/under-calibrate data? Or is it just about right?
 Marconi, Scodeggio / Hanuschik, Rosati; Osip, Kaufer, Käufl
- Have calibration plans been adjusted to meet (changing) scientific requirements (expectations)?

 Kaufer, Rosations
- Physical models: becoming more common; predictive rather than clean-up calibration; add more physics as you learn to understand the instrument
 Rosa, Bristow, Jung, Walsh; Kaufer

Challenges – from VLT to ELT (I)

Pipelines

make them modular

Péron (recipes, CPL)

make them configurable

Hook & Sampo (ESO Reflex)

develop standard modules for standard tasks

minimal assumptions

IZZO

error propagation and estimates

Grado, Horrobin, Roth

publication-ready results

Nissen, Møller Larsen

robustness (must scale with data volume)

Emsellem, Izzo

Archive

- support in situ operations on images and parameters
- project log files onto exposures
- pro-active filters for selection of condidate collibration data
- offer also processed data

Nissen; Romaniello Rosati (Advanced Data Products), Hildebrandt

Merksätze (I)

- Calibration is a life-long learning process.
 (Marconi)
- Equivalence of experience and calibration: They are what we did not have when we needed them the most. (Unidentified)
- Calibration cannot make up for poorly prepared observations. (Bonifacio)
- A well calibrated instrument (ETC) is a prerequisite for the successful planning of any observing project.
 (Anonymous)

Challenges (II)

Trend analyses

Part of ESO-standard QC but not used for calibration

- Atmospheric extinction and background
 - a larger challenge than any decent instrument
 - fast and long-term variations
 - a 42-cm telescope will do
 - feed ASM/LOSSAM data into calibration procedures Patat, Freudling
 - consider autoguider and image analyzer data
 - repeatedly observed (standard) fields
 - **Smette, Thomas-Osip** IR transparency from precipitable water vapor
 - Dobrzycka, Pantin good IR calibrators from ISO and Spitzer
 - Hummel interferometry depends on seeing

Radiometric calibration of adaptive optics data

(Davies, Clenet)

All Patat, Riello, Rosa

Bonifacio, Burke

Mason

Merksätze (II)

- Calibration cannot subtract noise. But it often adds noise.
 (Bonifacio)
- Calibration maps are a strong alternative to re-sampling. (Davies, Izzo)
- Artifacts are removed most effectively by multiple re-sampling. (Emsellem)
- Cannot follow two, probably not more than one, slides/minute.
 (Self-cross-calibration with mental model)

Challenges (III)

- Sky subtraction from (MOS, IFU, etc.) spectra
- **Bonifacio, Monelli**
- Continuum retification
- Nissen
- Monitoring did not detect WFI contamination
- Selman

- Detector fringing
 - o built-in calibration tools not possible
 - o rapid non-homologous variability of night-sky lines

Walsh

Patat

- o physical model
- o thick deeply or fully depleted CCDs (and CMOS) can eliminate the problem (and increase near-IR sensitivity) Nissen, Baade

Merksätze (III)

- Software is a pipeline if it can reduce data from several instruments of the same kind. (Izzo, Möhler)
- Pre-natal modelling is better than post-mortem calibration.
 (Rosa)
- We must optimize cost. (Nobody)
- Involve the end users. Need agency/forum for coordination, and management for prioritization in the case of limited resources. (Lindler, Emsellem)

Challenges (IV)

Many

- Instrument design
 - stiff mechanics
 - very good telescope
 - pre-construction simulation
 - provisions for quality monitoring
 - active compensatory control loops
 - calibration plan derived from scientific requirements Selman
 - filters with standard passbands
- Surveys: homogeneity in sky and time
 - weaving calibration nets
 - special quality control (also using source catalogs)
- Laboratory and telluric calibration tools and data

Standard stars

Barrena, Bauwens, Burke, Dobrzycka, Keller, Morel (CalVin), Rodriguez Espinosa, Vernet

Richichi

Lorente (IFU's), Ramsay Howat (KMOS)

Clenet (NaCo)

Burke, Emerson, Hildebrandt, Irwin, Keller, Lewis, Mellier, Rosati, Riello, Selman

Araujo-Hauck,

Burke, Kerber,

Lovis, Papadaki,

Saitta, Schmidt

Merksätze (IV)

False matches can confirm expectations most beautifully.
 (Izzo)

If it's wrong, a polynomial will fit it.
 (Rosa)

- 'Calibration Manifesto': A combination of meritocracy (physical models) and democracy (plain data) is the optimal constitution. (Izzo and Rosa)
- NIR polarimetry at ESO is a last-minute add-on for enthusiasts.
 (Ageorges, Schmid)
- Polarimetry would be more popular with better support.
 (Ageorges, Schmid / Patat)
 Patat (Ageorges, Schmid / Patat)

Challenges (V)

- Performance monitoring and optimization of the tools
 - public test data and standard results
 - low-level interactivity
- Closing the feedback loops quickly and effectively (Multidisciplinary Instrument Operations Teams)
- Gathering and discominating the community-wide experience Open-source tools
 Calibration workshops
- Pipeline feedback to engineering calibrations, health checks ('preventive calibration'), etc.

Ageorges, Marconi, Möhler, Selman

EMC

Merksätze (V)

- If you know how to improve your calibrations and tools, do it.
 (Tycho quoted by Rosa)
- Thou shalt not have parallel pipelines.
 (Emsellem / Möhler, Hummel / Hanuschik)
- The sky is the limit.
 (Many meaning the Earth's atmosphere)
- ESO should accept and support calibration proposals.
 (Emsellem and the Calibrated Majority)
- The best quality check is a logarithmically scaled 3-color image. (Irwin)

Everyone's Uncalibratable Pet

Eierlegende Wollmilchsau (aka egg-laying woolly milk pig)
Physical modell courtesy M. Rosa

2007 ESO Instrument Calibration Workshop - Summary

The Calibration Workshop Experience

- We have covered a lot of ground, have exchanged encouragements, re-confirmations, and new inspirations.
- ESO has received a lot of valuable (calibrated!) feedback from its users community.
- In the area of public surveys, ESO is entering an era of qualitatively new cooperations (similar to the very successful joint Community/ESO development of instruments).
 This "Public Private Partnership" (PPP) could be a promising ansatz for other calibration tasks.
- ESO thanks you for your contributions,
- and we thank the organizers!