ESO CMO Conference

Summary and Discussion

Ortwin Gerhard, MPE Garching

- Thanks to Nadine, Eric, SOC, LOC and ESO a very good conference!
- Many very fascinating talks!

Apology: a few topics omitted or mentioned only very briefly.
 They may come up in the discussion!

The Galactic Center Black Hole and Nuclear Cluster

- SMBH: 4.3×10⁶M_☉, coincident with Sgr A*, based on ~30 stellar orbits, particularly S2. Indications for hot spots in relativ. disk (flares, polarization) and wind effects.
- IMBH: no evidence. Limit M_{⋈ int}<~10³M_☉. Puzzling 3 stars IRS 13.
- Nuclear star cluster several populations
 - Central S-stars (B main seq. stars), ~spherical, thermal ecc's
 - Clockwise warped disk of young WR stars, counter-rotating component of same age (~5×10⁶ yr), ecc's ~0.3, top-heavy IMF
 - − Old stellar cluster, $\sim 10^7 M_{\odot} \sim 10^6 M_{\odot}$ in r ~ 1 pc, density r $^{\sim -2}$, core radius ~ 0.5 pc, some rotation, age > 1 Gyr, $\sim \infty$ extended SFH with normal IMF
- Different properties (radii, ecc's, types, ages) ⇒ diff. origins.
 Currently favoured models:
 - S-stars: Binary capture (Hills), with massive perturbers & resonant relaxation; low-mass IMBH carrying & randomizing stars still possible
 - Young stellar disks: infalling & colliding gas clouds, in situ SF, rare?
 - Old star cluster: extended SFH

The Galactic Center Black Hole and Nuclear Cluster

- **SMBH nuclear cluster connection:** some stars (B-stars) formed *after* SMBH. Favoured origin of S stars *needs* SMBH.
 - Is this a "minor" contributor to the build-up of cluster mass?
 - What are the oldest stars in the cluster? Age indicators of old cluster (AGB?)
- Young stellar disks with top-heavy IMF may be rare, based on M/L of diffuse cluster light:
 - How secure is the result?
 - If it is true, why do we see them now?
- Observed core in the old star cluster density distribution:
 - No time to form? Again, oldest stars?
 - Destroyed (Past IMBH)?
 - Invisible? What role do collisions play? Evidence? Why IRS 13 dust blobs?
- Testing the formation scenarios for the young stars:
 - Does cloud infall scenario for the disks require typical or special initial conditions?
 - Is resonant relaxation the explanation for the warp and the co-/counter-rotating dichotomy? Why are the counter-rotating stars seen in the middle radius range?
 - Binary capture mechanism for S stars: can we constrain outer B star eccentricity distribution?

Black Holes and Their Scaling Relations

- Dynamical black hole mass determinations: for ~50 galaxies, give tight M_{|x|}-σ relation. Sinfoni sample ~30 more; issues:
 - Composite/pseudo-bulge systems suggest $M_{\mathbb{K}}$ - σ or $M_{\mathbb{K}}$ - $M_{\text{class bulge}}$ more fundamental than $M_{\mathbb{K}}$ - $M_{\text{total bulge}}$.
 - Ongoing: extend to low and high mass ends: no curvature yet
 - Is there real scatter (vs. uncertainties in data, modeling)?
 - Modeling uncertainties: sphere of influence often barely resolved; how reliable is $\Delta\chi^2$ parameter estimation given possible addl. systematics? E.g. nuclear cluster, M/L(r) from population grads & DM, triaxiality, .. Historical estimate ~ factor ~2
- AGN diagnostics & MW: there are galaxies with BH but without classical bulge. How do we determine their σ for M_{|x|}- σ ?
- Accurate BH determinations in megamaser galaxies lie below M_{\boxtimes} - σ , with large scatter. Small classical bulges? σ 's? BHs in LSB galaxies also below the relation. None yet in UCDs. What does scatter tell us?
- Scaling relation also with globular cluster systems !?
- Coming: More Sinfoni kinematics, disk-dominated galaxies, megamasers; X-ray selected samples; constraints from tidal disruption flares.

Nuclear Star Clusters and Relation to BHs

- NSCs frequent (50-75%) in spirals, S0s, dEs, not Es. Large nucleation fractions in Virgo & Fornax. Compact, <1". Masses 10⁶ -10⁷M_☉, half-light radii 3 5 pc, tail to large r_h. Complex SFHs, several bursts. Nuclei younger than hosts but >2 Gyr old. Some rotating/flattened, one counter-rotating case. Arches. M54.
- Origin: first form at galaxy centre or migrate there?
 - Episodic accretion, ~10⁵ M_☉ per event, in NSCs in late-type galaxies
 - Migration of globular clusters: infall time-scales ~right, model may explain core / no cusp; but multi-episode stellar pops?
 - Star cluster mergers would result in triaxial nuclei testable

Coexistence with BHs:

- few good cases, where $M_{\mathbb{N}} \sim 0.1 M_{NSC}$.
- Also in nearby Seyferts BH and starburst clusters coexist.
- Generally NSCs seen in late-type galaxies, BHs in ETGs.

Walcher, Graham, Seth, Neumayer, Barth, Shields, Harfst, Capelli, Ferrarese, Merritt, Ljubenova, Davies, Bellazini, Vesperini, Hartmann, Erwin

Are IMBHs formed in Nuclear / Globular Clusters?

Theoretically, they could be:

Run-away collisions in young clusters after core collapse. Original model for MGG11 in M82 reached 2000M_☉ star; more recent: stellar evolution/ winds limit growth ⇒ only few 100M_☉ reached. [altern.: Pop III stars]

Observational signatures for IMBHs in star clusters:

- From X-rays: transients in M82+, accreting ~300 L_{Edd}, with QPOs. X- and radio emission in G1 (M31).
- From density structure of GCs: core radius and shallow density slope not unique signatures; binary heating resp. pre core collapse
- From velocity dispersion cusps and dynamical modeling in GCs: hard
- IMBH suppresses mass segregation, scattering massive stars in binary

Observational evidence in GCs controversial – work on-going

- ω Cen controversial: dynamical analysis depends on cluster center & precise σ -profile; mass-dependent σ -profile analysis suggests none.
- Several candidate clusters with suggestive dynamical evidence: M10,
 M54, NGC 6388. Data complicated, would like independent confirmation.
- Few NSCs with embedded BHs but special place in galaxy where BH could have formed first

Star Formation, Inflow/Feeding, Feedback

Mechanisms for angular momentum loss and inflow

– From large to small scales: mergers, bars, unstable disks (gravitational), three-armed spirals (pressure waves, seen in action in Seyfert nuclei), turbulent viscosity, magnetic stress. All inferred from observations and simulations; circumstances in which each dominates?

Star formation and feeding

- Lag between starburst and AGN (switch from fast SN to slower winds)
- Thick, dynamically hot molecular gas disk in Seyfert nuclei meets torus requirements
- Mass loss from surrounding stars can grow nuclear disk and cause accretion

Feedback

- Halts inflow, accretion, star formation, can thus regulate BH growth to galaxy formation. Can even cause new inflow, accretion.
- Momentum-conserving outflows can explain $M_{\mathbb{M}}$ - σ -relation
- Radiative hydro models + SF etc: SF & stellar feedback favoured in small systems, BH growth & AGN feedback favoured in high-mass systems

Murray, Davies, Maciejewski, van der Laan, Power, Mueller-Sanchez, Schartmann, Kawakatu, Antonucci, Dumas, Steiner, Beck

BH Formation

- Seed BHs: Pop III, direct collapse of IMBH, in dense star clusters
- Explorative power of numerical simulations
 - Study consequences of physical processes in non-linear collapse, such as suppressing fragmentation by magnetic fields in runaway collapse
 - Study evolution of complex systems under varying assumptions, such as growth and predicted distributions of seed black holes for observational follow-up
 - Constrain merger/accretion growth using statistical data on BH mass and luminosity functions

Some issues

- Runaway collisions in star clusters at low Z?
- Hypermassive star clusters? Relation to BH formation?
- Presence/absence of BH signatures in dwarf galaxy stellar orbits?
- Subgrid models for BH growth in simulations?

New observational constraints

 Supercompact UV-luminous galaxies in Galex/SDSS surveys – do they contain AGN and what can we learn about BH growth?

Devecchi, Hidenori, Schleicher, Overzier, van Wassenhove, Bonoli

Conference Questions

- What is the evolutionary/causal connection between nuclear clusters and black holes?
- Are intermediate mass black holes formed in nuclear clusters/ globular clusters?
- Where do we stand observationally for black holes, nuclear clusters and intermediate mass black holes?
- What can the Galactic Centre tell us about the nuclear clusteblack hole connection?
- How does the central massive objects relate to the host galaxies?
- What do theoretical models tell us about star formation in the extreme gravitational potential near the black hole and under the extreme stellar densities in galactic centers?
- What do theoretical models tell us about dynamics, evolution and migration of nuclear star clusters in galaxy centres?
- Do we understand the feeding of the central pc? How are nuclear clusters replenished with fresh gas?