Exoplanetary atmospheres: from hot Jupiters to habitable planets

Michaël Gillon michael.gillon@ulg.ac.be

Overview

- From solar to extrasolar planetary atmospheres
- Phase curves of non-transiting planets
- Transiting planets
 Transit transmission spectrophotometry
 Occultation emission spectrophotometry
 Phase curves
 2D emission maps
- Direct spectroscopy of extrasolar planets
- Conclusions

Before extrasolar planets: solar planets atmosphere observations

XIXth century: imagery and photometry establish the existence of an atmosphere for several planets

- * Occultation of stars are gradual
- * Variable features incompatible with surface origin

From 1920s: spectroscopic studies of planets, e.g.

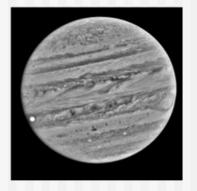
- * No O₂ in Venus' atmosphere (Webster 1927)
- * CH₄ in the atmosphere of giant planets (Adel & Slipher, 1934)
- * CO₂ in the atmosphere of terrestrial planets (Adel 1937)
- * Detection of the atmosphere of Titan (Kuiper 1944)

Second half of XXth century to now: *in situ* measurements with probes (orbiters & landers)

→ Accurate thermal profiles & composition (*e.g.* Seiff et al. 1998)

The planetary atmospheres zoo: theoretical expectations

Seager & Deming (2010)


- Primordial atmospheres captured from the protostellar nebula and dominated by H and He in cosmic proportions (giant planets)
- Outgassed atmospheres rich in H (up to 50%) around planets in the 10 to 30 Earth masses range, massive enough to retain H. No He.
- Outgassed atmospheres dominated by CO₂ (Venus, Mars) around lower-mass planets. Could be found around planets having lost their primordial atmosphere.
- Outgassed atmospheres dominated by N₂ (Earth), CO₂ having been trapped in a liquid ocean.
- Silicate dominated atmospheres of hot low-mas planets having lost their volatil content. Enriched in refractory elements.
- Atmosphere free planet (Mercury): low-mass and/or large irradiation.

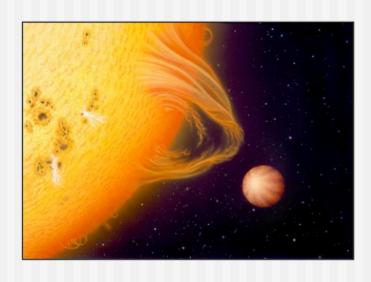
From solar to extrasolar planets: a giant step

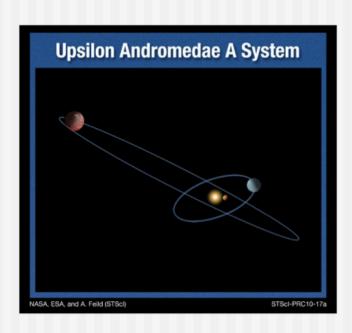
Theory: solar planet atmospheres observations established the theoretical foundations needed to understand exoplanet atmospheres.

Observations: much more difficult!

Jupiter

Alpha Cen A


Exoplanets are very distant relative to solar planets. Furthermore, they lie very close to much brighter objects.


SNR + resolution + contrast (space-resolution)
SNR (time-resolution)

Ups And b: a hot Jupiter orbiting around nearby F8V star in a multiplanetary binary system.

M sin i = 0.7 M_{Jup}, a = 0.059 AU, F_{inc} ~1.4 10^9 erg s⁻¹ cm⁻²

(Jupiter: a = 5.2 AU and $F_{inc} \sim 5.1 \cdot 10^4 \text{ erg s}^{-1} \text{ cm}^{-2}$)

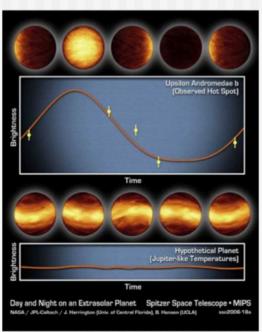


Ups And b is most certainly tidally locked.

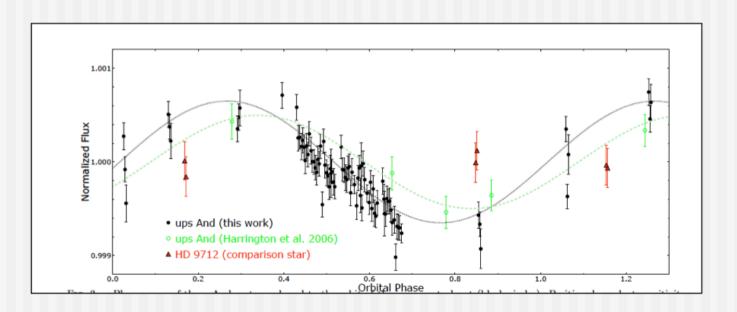
Question: is there a temperature gradient between day and night side of its atmosphere?

Spitzer/MIPS 24 µm photometry at five different phases of the orbit (Harrington et al. 2006)

Peak-to-through = 0.3%


-> large temperature gradient

$$\frac{\Delta F_P}{\langle F \rangle} = \frac{B_{\nu}(T_{P1}) - B_{\nu}(T_{P2})}{B_{\nu}(\gamma T_{\text{eff}})} \left(\frac{R_P}{R_*}\right)^2 \sin i,$$


i and R_p unknown

Not phase offset:

-> immediate reemission of incident flux

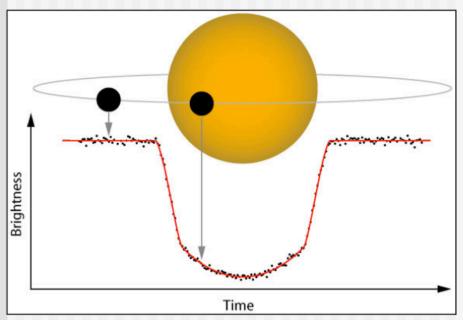
Ups And b: reanalysis + new Spitzer data (Crossfield et al. 2010)

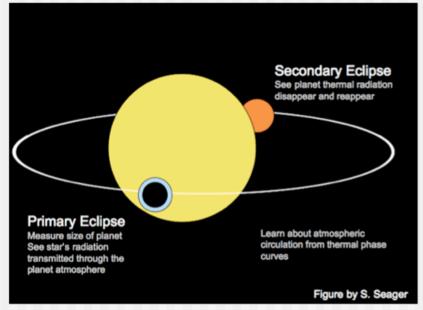
Amplitude drops to 0.13%! -> calibration issues

Phase offset of 84.5° ± 2.3°

$$(1 - A_B) \frac{R_*^2}{2a^2} T_{\text{eff}}^4 = T_{P1}^4 + T_{P2}^4.$$

$$\frac{\Delta F_P}{\langle F \rangle} = \frac{B_{\nu}(T_{P1}) - B_{\nu}(T_{P2})}{B_{\nu}(\gamma T_{\text{eff}})} \left(\frac{R_P}{R_*}\right)^2 \sin i,$$


2 wedge models, no internal luminosity


If A_B and R_p known -> T_{P1} and T_{P2} can be computed for all i

Assuming
$$A_B = 0$$
 and $R_p \approx 1.3 R_{jup}$
 $\downarrow \bullet$
 $i > 28^\circ, \Delta T > 900K$

The phase offset implies a hot spot at the East terminator, and thus atmospheric heat transport (vs direct reemission)

Transiting planets: treasures in the sky

 R_p + $ρ_*$ + *i* from photometry With RVs: M_p + β

Transit: limb transmission Occultation: day side emission

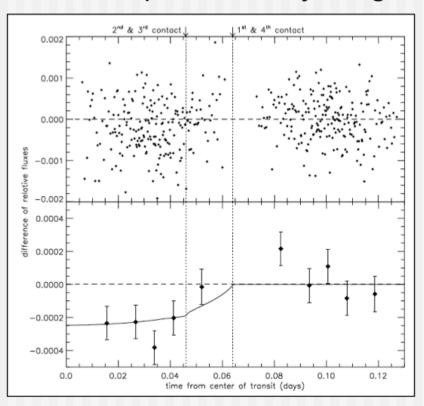
Transit transmission spectrophotometry

Basic of the technique: dividing the spectrum of star + planet (during transit) by the spectrum of the star alone (before & after transit). Practically: getting high-precision transit light curves in many different (as narrow as possible) spectral bands and compare the resulting planetary radii.

Expected signal? (Seager & Sasselov 2000) For a strong transition, the effective R_p increases by a few atmospheric scale heights $H = k_BT / (\mu_m g)$

The signal is

$$\Delta \delta = \frac{\pi (R_p + N_H H)^2}{\pi R_\star^2} - \frac{\pi R_p^2}{\pi R_\star^2} \approx 2N_H \delta \left(\frac{H}{R_p}\right)$$

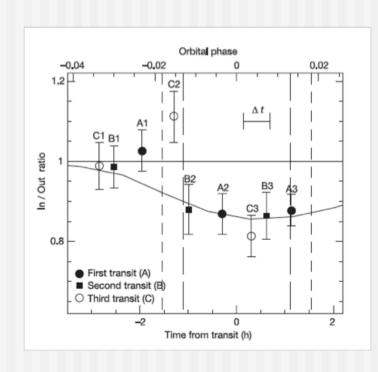

Hot Jupiter: ~100ppm, Earth-Sun: ~1ppm

Atomic Na in the atmosphere of HD 209458 b

Instrument: STIS spectrograph aboard HST

Goal: detecting the 589.3 nm Na resonance doublet, based on

theoretical predictions by Seager & Sasselov (2000)


- ~4 sigma detection
- ~3 times shallower than "expected"
- depletion of Na? maybe due to competition Na Na2S? It requires that only 1% of Na in atomic form
- High cloud deck?

(Charbonneau et al. 2002)

The evaporating atmosphere of HD 209458 b

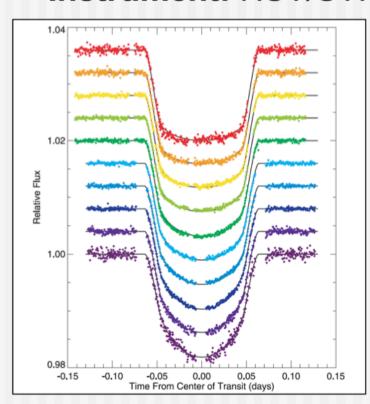
Instrument: STIS spectrograph aboard HST

Goal: detecting the H Lyman-α121.6 nm signature

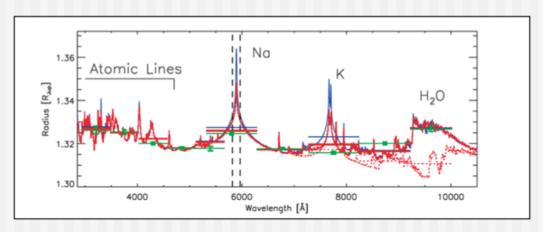
Vidal-Madjar et al. (2003)

~4 sigma detection

Effective R_p of 4.3 R_{Jup}!


Roche lobe limit ~ 3.6 R_{jup}

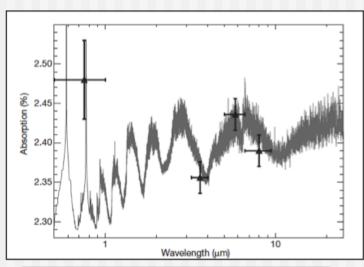
Evaporating H upper atmosphere forming a comet-like coma around the planet

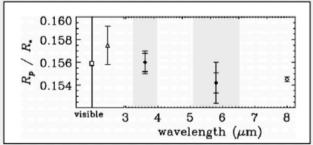

Minimum escape rate translates in negligible loss over the life of the star (~0.1%)

Detection of water in the atmosphere of HD 209458b?

Instrument: HST/STIS

Knutson et al. (2007)


Barman (2007)

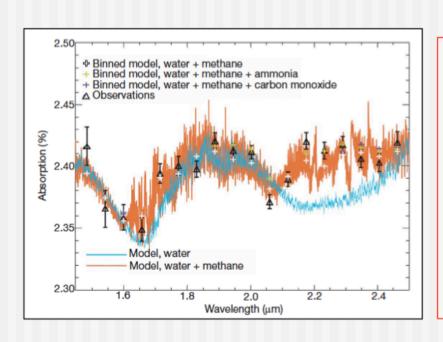

Possible systematic effects make this detection tentative (Knutson 2007; Tinetti et al. 2007)

Detection of water in the atmosphere of HD 189733 b?

Instrument: Spitzer/IRAC

 H_20 should give $\Delta dF(5.8\mu m - 3.6\mu m) ~ 1.7 - 3.4%$

Only water explains the IRAC R_p measurements

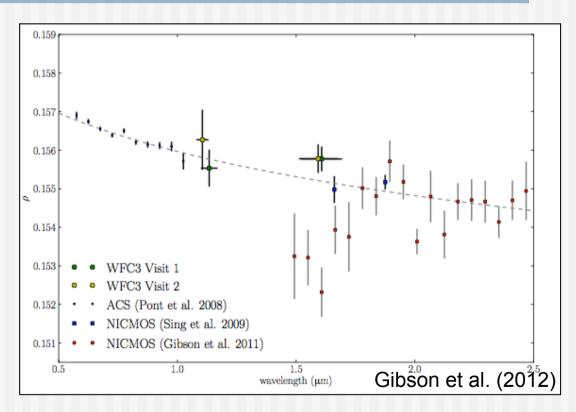

R_p is larger in the visible: Clouds/haze? Starspots?

Tinetti et al. (2007)

But a more thorough analysis of the data contradicts convincingly this detection (Ehrenreich et al. 2007)

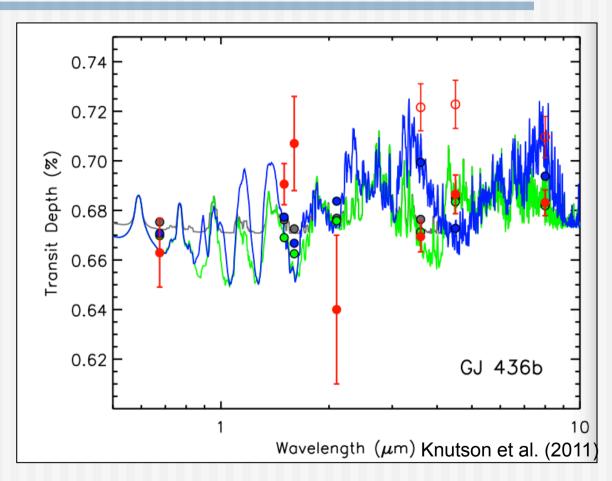
Detection of methane in the atmosphere of HD 189733 ?

Instrument: HST/NICMOS

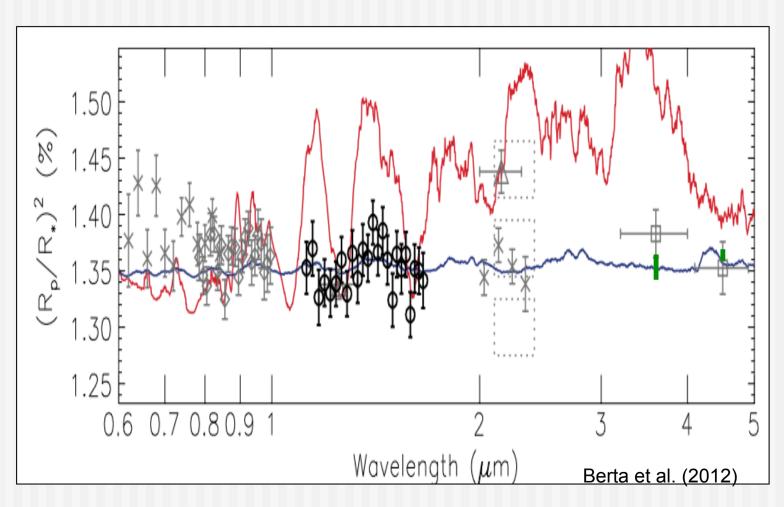

Detection of H₂O and CH₄ CO should be the dominant Cbearing molecule for

- T > 1200K
- ->Chemical gradient?
- ->Photochemical mechanism?

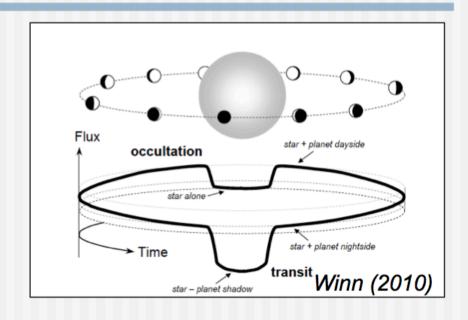
Swain et al. (2008)


Light curve is detrended using the out-of-transit data, using a 5-variables function + wavelength correction. <= reror bar ~50ppm.

HD189733b's methane detection: too nice to be true?


Haze dominates the transmission spectrum Spots makes the situation difficult, NICMOS systematics make it even worst

Methane depletion in a 'cool' Neptune atmosphere?


Models with enhanced CO and reduced CH₄ are favored. Spots makes difficult to draw firm conclusions...

Super-Earth GJ1214b's atmosphere: water or H₂ + clouds/haze?

⁺ Bean et al. (2010; 2011), Croll et al. (2011), Désert et al. (2011); de Mooij et al. (2011)

Occultation emission spectrophotometry

IR:

$$\delta_{\rm occ}(\lambda) = k^2 \frac{B_{\lambda}(T_p)}{B_{\lambda}(T_{\star})}$$

Vis:

$$\delta_{\rm occ}(\lambda) = A_{\lambda} \left(\frac{R_p}{a}\right)^2$$

brightness temperature $T_b(\lambda)$ of the dayside hemisphere

Geometric albedo $A(\lambda)$

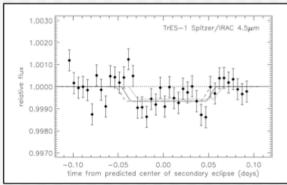
Occultation emission spectrophotometry

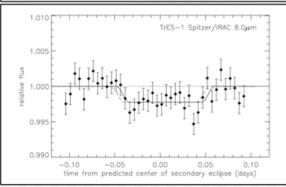
Reflectance signal: ~100ppm for a hot Jupiter

Thermal emission: a few 1/1000 for a hot Jupiter

$$T_p = T_* \left(\frac{R_*}{a}\right)^{1/2} [f(1 - A_{\rm B})]^{1/4},$$

f = reradiation factor


= 1/4 if incident energy is homogeneously distributed across the atmosphere


= 2/3 if incident stellar flux is directly remitted back to space A_B = Bond albedo

First detections of the emission of exoplanets: TrES-I

Instrument: Spitzer/IRAC 4.5 and 8 µm

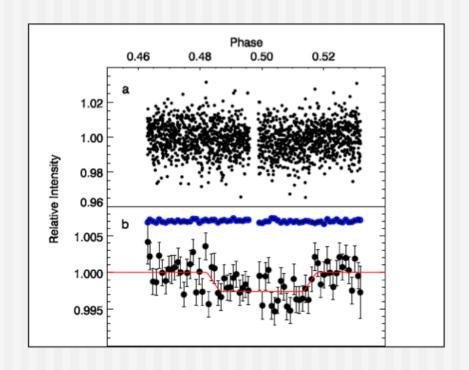
Charbonneau et al. (2005)

$$dF_{4.5\mu m} = 660 \pm 130 \text{ ppm}$$

 $dF_{8\mu m} = 2250 \pm 360 \text{ ppm}$
 $T_{b,4.5\mu m} = 1010 \pm 60 \text{ K}$
 $T_{b,8\mu m} = 1230 \pm 110 \text{ K}$
 $T_p = 1060 \pm 50 \text{ K}$
 $A_B = 0.31 \pm 0.14 \text{ for } f = 1/4$

But of course, the planet does not emit like a blackbody, and *f* is unknown

First detections of the emission of exoplanets: TrES-1 b



Sudarsky et al. (2003) model for 51 Peg b, rescaled

First detections of the emission of exoplanets: HD 209548 b

Instrument: Spitzer/MIPS 24 µm

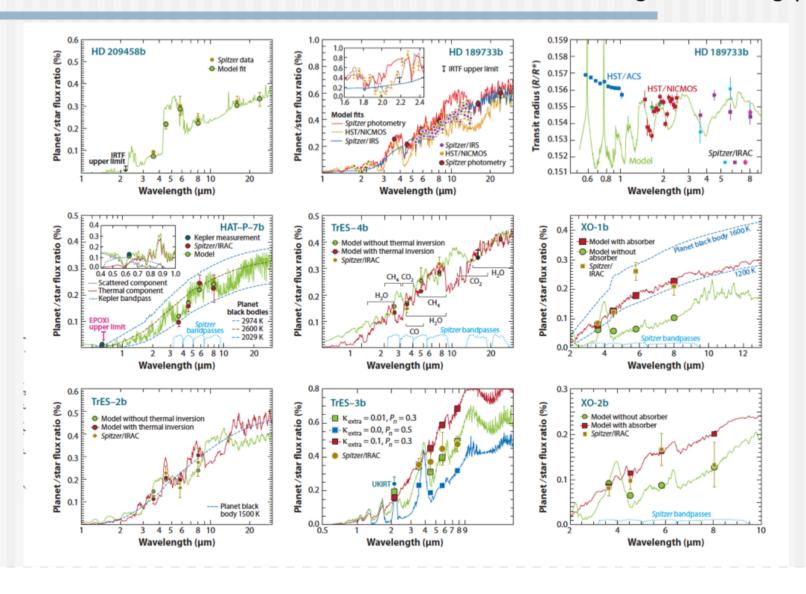
Deming et al. (2005)

$$dF_{24\mu m}$$
 = 0.26 ± 0.05 %
 $T_{b,24\mu m}$ = 1130 ± 150 K

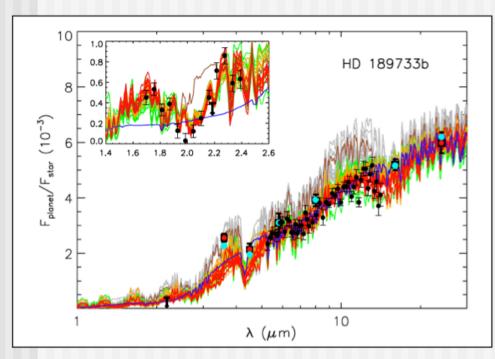
A few words about emission spectrum models

1-D plane-parallel radiative transfert code. Solves equations of radiative transfert, radiative and hydrostatic equilibrium to get P(z), T(z) and radiation field $R(z,\lambda)$.

Boundary conditions: stellar flux and interior entropy.

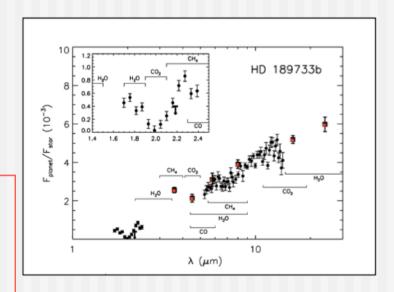

Parameters:

- Interior entropy
- Opacities
- Choice of atomic & molecular species to include
- Abundances
- Chemical equilibrium or not (CO, N₂)
- Clouds
- Heat distribution efficiency


Atmospheric circulation (e.g. hot Jupiters): 3D models based on fluid dynamic equations

The Spitzer Legacy

Seager & Deming (2010)

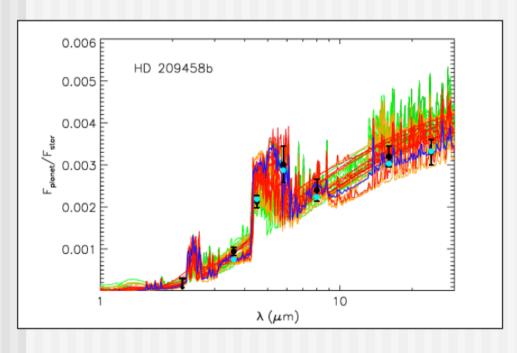

Occultation spectrophotometry: the hot Jupiter HD 189733 b

Madhusudhan & Seager (2009)

No model can fit all the data
The best-fit models for Spitzer do
not fit at all NICMOS

MIPS 24µm IRS 16µm IRS spectrum 5 – 14µm IRAC 3.6, 4.5, 5.8, 8µm NICMOS 1.7-2.5µm Ground upper-limit 2.2µm

Occultation spectrophotometry: the hot Jupiter HD 189733 b

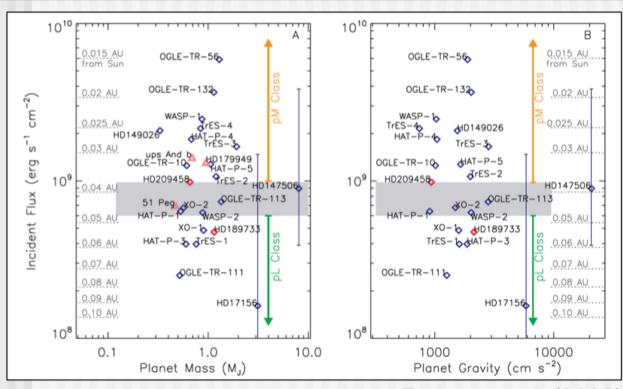

IRS: models with moderately efficient distribution to the night sides are allowed. No thermal inversion. No constraint on abundances.

IRAC/IRS/MIPS photometry: favors poorly efficient heat distribution and no thermal inversion, and gives some constraints on abundances. CO₂ detection.

NICMOS: many constraints on abundances. No CH₄. Strong CO₂ absorption feature, not in agreement with Spitzer.

The agreement between all these data sets is weak, so, at face value, we have to admit a variability of the atmospheric properties.

Occultation spectrophotometry: the hot Jupiter HD 209458 b

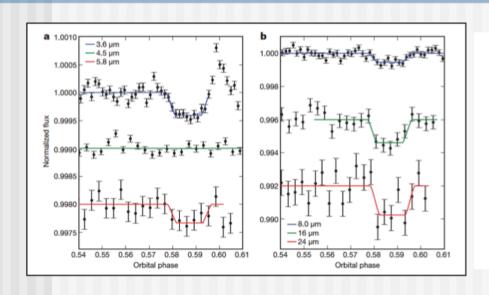


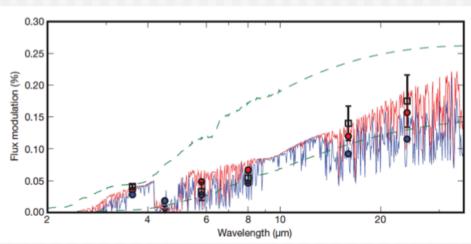
MIPS 24µm IRS 16µm IRAC 3.6, 4.5, 5.8, 8µm Ground upper-limit 2.2µm

Madhusudhan & Seager (2009)

Unavoidable thermal inversion Presence of CO, CO₂, H₂O and CH₄ Efficient heat distribution

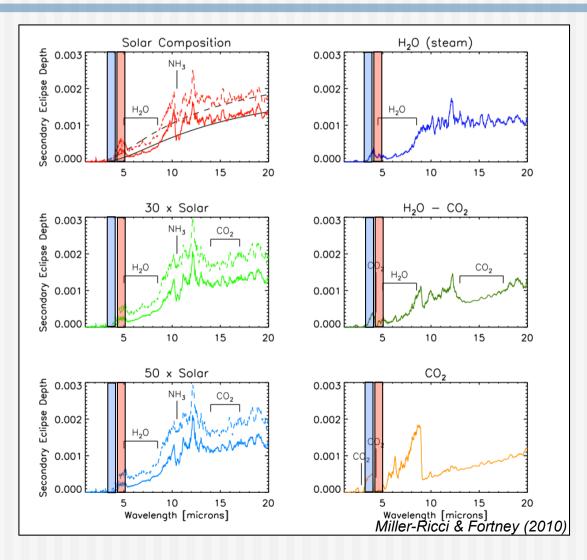
Thermal inversions: two classes of hot Jupiter?


2009, Gillon et al. 2009)


Planets with Teff > 2700K have lower albedo and/or heat transport efficiency (Cowan & Agol 2011)

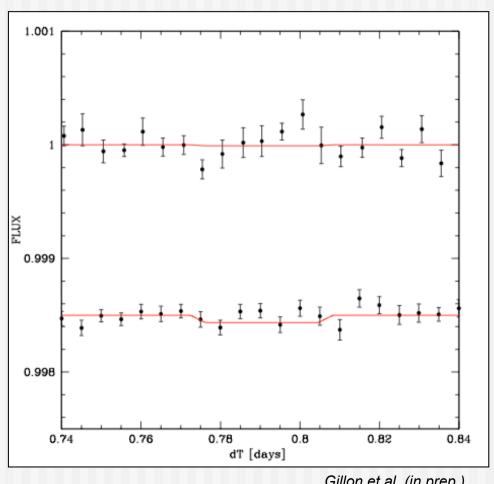
Fortney et al. (2008)

But the inference of thermal inversion is not always secure (Madhusudhan & Seager 2010)
Some 'pM' planets do not show inversion... (e.g. Fressin et al.


The broadband thermal emission spectrum of the hot Neptune GJ 436 b

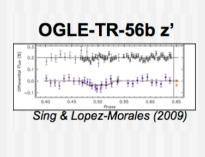
High CO abundance, deficiency in CH₄
CH₄-to-CO ratio at least 10⁵ times smaller than predicted
Disequilibrium processes? (vertical mixing, CH₄ polymerization)

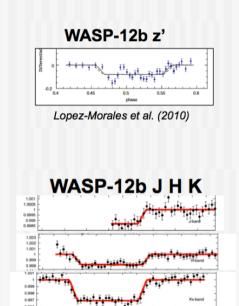
Measuring the thermal emission of a super-Earth: GJ1214b

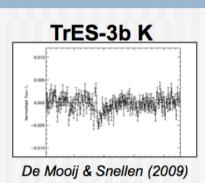


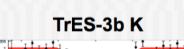
- Teq ~ 560K
- Spitzer program
 70049 (PI D.
 Deming): 42h at
 3.6μm and 460h at
 4.5μm
- Global analysis of all
 Spitzer data (3
 programs,17 transits
 + 20 occultations)
- Expected occultation depths: from <50 to ~300 ppm

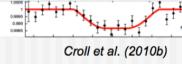
Measuring the thermal emission of a super-Earth: GJ1214b

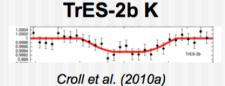

- Depth 3.6µm 30 (-20,+35) ppm <122 ppm (95%)
- Depth 4.5µm 47 (-28,+35) ppm <115 ppm (95%)

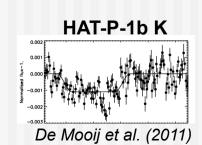

Still under analysis...

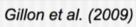

Gillon et al. (in prep.)

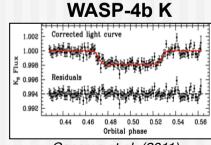

Ground-based occultation measurements



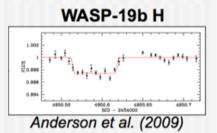


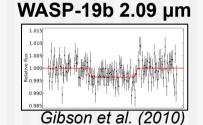

Croll et al. (2011)



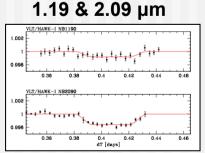


CoRoT-1b 2.09 μm

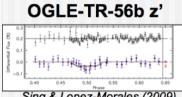


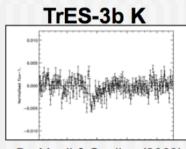


Rogers et al. (2010)

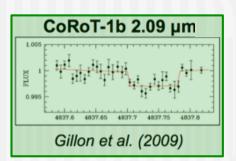


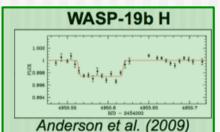
Caceres et al. (2011)

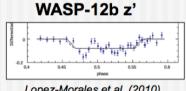


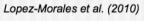

Gillon et al. (2012)

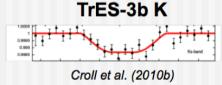
Ground-based occultation measurements

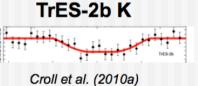

VLT/HAWK-I

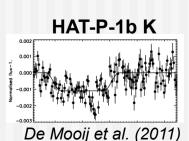


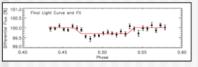

Sing & Lopez-Morales (2009)

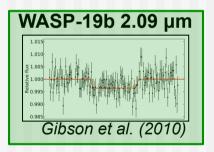



De Mooij & Snellen (2009)

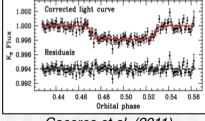




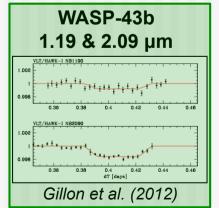


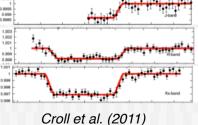


CoRoT-1b K

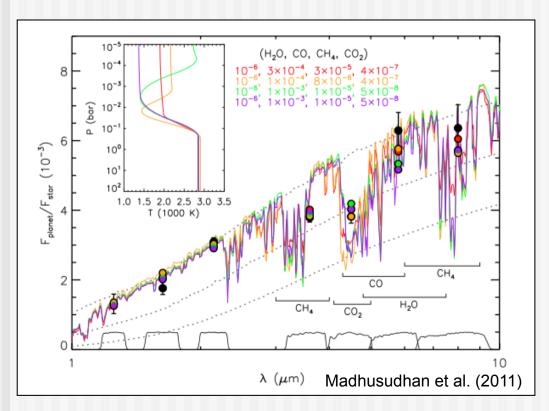


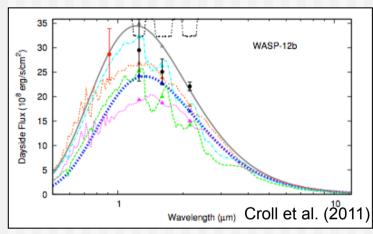
Rogers et al. (2010)


WASP-4b K



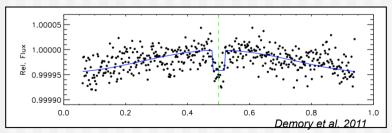
Caceres et al. (2011)



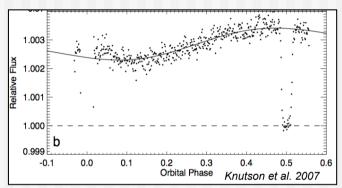

WASP-12b J H K

Ground-based occultations: complementary to Spitzer

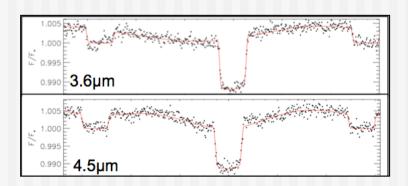
Near-IR = peak of SED for hot Jupiters



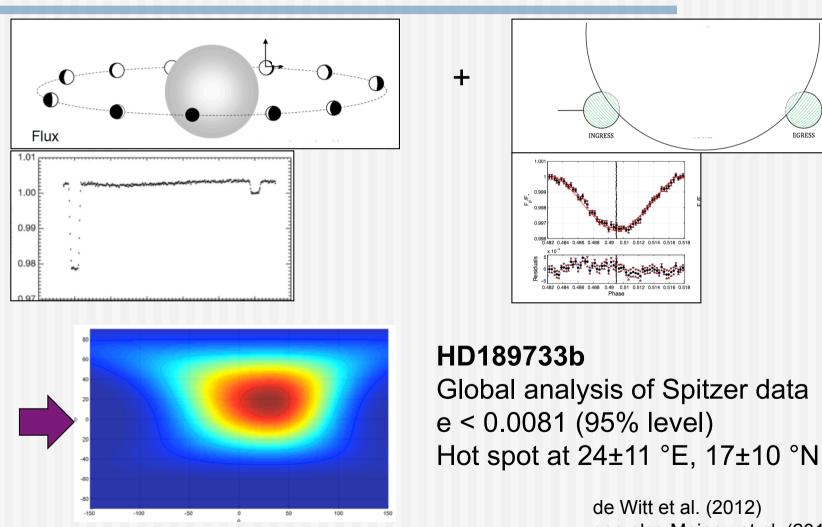
WASP-12b: a 'pM' planet without a strong thermal inversion and with a high C/O ratio


Phase curve of transiting planets: measuring the heat transport efficiency

Degeneracy heat transport/albedo broken by optical (albedo) or IR (heat transport) full orbit curves.


Eccentric orbit: constraints on radiative time constant, tidal heating and pseudo-synchronisation rotation (HD 80606, e=0.93, Laughlin et al. 2007)

Kepler-7b optical photometry with Kepler: a high albedo hot Jupiter ($A_g \sim 0.3$)



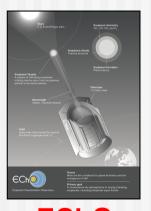
HD189733b 8µm photometry with Spitzer: Efficient heat distribution & hot spot shifted East

WASP-12b 3.6/4.5µm photometry with Spitzer: Inefficient heat distribution and non-zero albedo

Phase curves + eclipse scanning: 2D emission maps

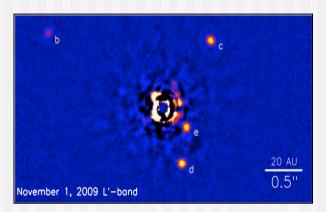
see also Majeau et al. (2012)

The future of transiting planets atmospheric characterization


1/ Space-based visible + infrared spectroscopy/photometry

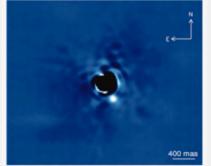
SPICA
JAXA/ESA – 3.5m
3.5 to 210µm
Launch: 2017

JWST
NASA+ESA/CSA – 6.5m
0.6 to 23µm
Launch: 2018 - 2020

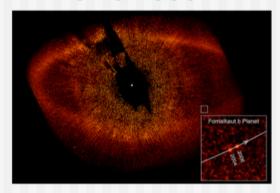

EChO ESA – 1.4m 0.4 to 16μm Launch: 2022 (?)

2/ Ground-based visible + near-IR instruments

Certainly, but need "wide" FOV (comp stars)

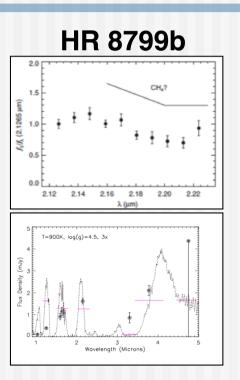

Direct spectroscopy of extrasolar planets

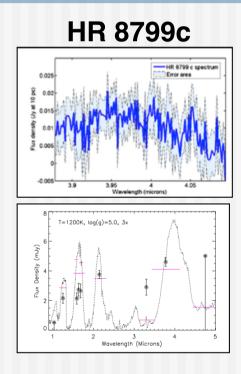
HR 8799

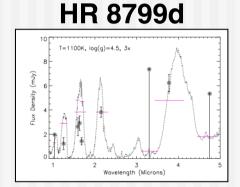

Marois et al. (2011)

β Pictoris

Lagrange et al. (2010)


Fomalhaut

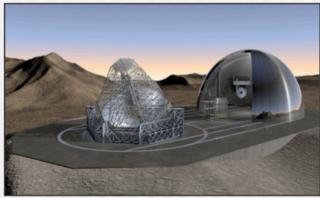



Kalas et al. (2008)

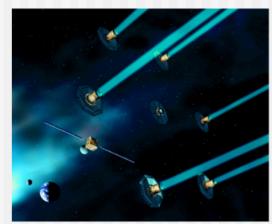
Nearby young A stars, large period massive planets still in contraction

Direct spectroscopy of HR8799 planets

Janson et al. (2010) Bowler et al. (2010) Currie et al. (2011)


Similar to BD spectra, but only to some extent. Discrepancies in colors/magnitudes explained by thicker cloud coverage.


Origin: gravity? Metallicity?


The future for spatially resolved exoplanet characterization

Extremely large ground-based telescopes and ...

... space-based coronography & interferometry

Conclusions

- □ The era of atmospheric characterization of exoplanets has started: thermal profile, heat transport, clouds/haze, emission map, composition.
- □ Transiting planets makes possible thorough atmospheric studies without the need for spatial resolution of the planet.
 - * Transmission spectra: very challenging very promissing
- * Emission spectra: well established method for photometry also possible from the ground
 - * Phase curves + occultations: 2D maps!
- □ Direct detection of exoplanets → spatially resolved spectroscopy for young massive giant planets at large orbital distances. First spectra: similar to BDs, but only to some extent.

Thank you for your attention!