PLATO

PLAnetary Transits and Oscillations of Stars

- > revealing the interior of planets and stars
- completing the age of planet discovery for Earth-sized planets
- -> constraining planet formation

Heike Rauer and the PLATO team

The PLATO Consortium: 501 members from 23 countries (European, Brazil, US, Chile, Canada, Australia)

The PLATO mission

Techniques:

- photometric transits
- asteroseismology
- ground based spectroscopy for radial velocity

PLATO:

- very large samples of bright stars
- continuous photometric monitoring from space, in the visible
- ultra-high precision
- very wide field

Accuracy for an Earth around a solar-like star:

- * planet radius up to 2%
- * planet mass up to 10%
- * age known to 10%

And much better for larger planets!

PLATO current status

- PLATO consortium applied to ESA to enter the M3 competition.
- PLATO already finished mission studies during M2 competition.
- The PLATO consortium will be re-adjusted to fit the M3 timeline (launch 2022/24)
- The science case is refined in the context of the 2022/24 launch perspective, taking into account recent Kepler and rvsurvey results

Planet Detections

Planet Detections

Focus of interest for future space-based transit missions:

→ Detect terrestrial planets up tp the HZ of solar-like stars

Planet diversity

2.5 Kepler-11f GJ1214b

2.5 Kepler-18b S5Crice

2 Kepler-18b S5Crice

1.5 Kepler-20b CoRoT-7b

1 Kepler-20b

Mars

0.5 Q 2 4 6 8 10

M_p (M_⊕)

Gautier et al. 2012

Fressin et al. 2011

- Future transit surveys need to
 - detect Earth-sized planets
 - characterize their radius and mass with high accuracy

Planet diversity

Meaningfiul constraints on planet interior require High accury on radius (2%) and mass (10%)

Rocky and icy planets

Gas giants

→ Our current understanding of planet formation predicts fast gas envelope accretion beyond 10-15 M_{earth}

- Do massive rocky planets exist?
- What is the critical mass for giant planet formation?
- Does it depend on the disc (e.g. dust/gas ratio)?

- What is the diversity of Earth-sized planets?
- Does it depend on orbital distance, stellar type, etc.?

PLATO Selection of science cases:

- Detect Earth-sized planets in the habitable zone with known radii and masses, including planets orbiting solar-like stars.
- Obtain statistical significant numbers of characterized small planets at different orbits, stars, ...
- Determine the critical mass for gas giant growth
- Study planet interior composition and structure including terrestrial objects
- Study planetary systems
- Determine accurate ages of planet systems
- Provide small terrestrial planets around bright stars as targets for atmosphere spectroscopy

Currently little overlap between current transit and rv surveys

- Planet radii are obtained by transit observations
- Planet masses can be derived by radial velocity measurements
- Transits are detected in broad-band (white light) photometry
- Radial velocity
 measurements require
 high-resolution
 spectroscopy -> much
 tighter limit on target
 brightness

Currently little overlap between current transit and rv surveys

Currently little overlap between current transit and rv surveys

Region of interest for atmosphere characterization

PLATO instrumental concept

- 32 « normal » cameras : cadence 25 sec
- 2 « fast » cameras :cadence 2.5 sec, 2 colours
- pupil 120 mm
- dynamical range:4 ≤ m_v ≤ 16

Concept of overlapping line of sight

4 groups of 8 cameras with offset lines of sight offset = 0.35 x field diameter

Optimization of number of stars at given noise level AND of number of stars at given magnitude

Observation strategy and sky coverage

- 1. two long pointings : 3 years or 2 years
- 2. « step&stare » phase (1 or 2 years): N fields 2-5 months each

~ 50% of the sky !

Organization of Groundbased follow-up

1-2m-class telescopes: 3-10m/s giant planets on short/medium orbits 100 nights/year x 6 years 6 telescopes

4m-class telescopes: 1-2 m/s giant planets on long orbits super-earths on short/medium orbits 100 nights/year x 6 years 4 telescopes

8m-class telescopes: < 50cm/s super-earths on long orbits, earths on short/medium orbits earths on long orbits @ brightest stars 40 nights/year x 6 years

1 telescope

Current transiting planet findings

PLATO planets versus current transiting planet findings

PLATO will provide a large sample of terrestrial planets, down to Earth size, with highly accurate mass and radius around bright stars up to the habitable zone.

Magnitude range of PLATO planets

The PLATO legacy

- a huge sample of characterized planets with known mass, radius and age, including terrestrial planets in the HZ of solar-like stars
- planets surrounding stars bright enough for detailed follow-up
 - → pioneers true comparative planotology and taxonomy of planet systems

A huge complementary science program:

- 1,000,000 of high-precision photometric stellar lightcurves
- 85,000 of these stars will allow for astroseismic characterization
- in synergy with Gaia: mass, age, rotation, distance, luminosity, radius
- → a breakthrough in stellar physics (e.g. stellar structure and evolution, internal mixing processes, stellar rotation, ages of globular clusters, young open clusters)

Selection of science cases:

- Detect Earth-sized planets in the habitable zone with known radi and masses, including planets orbiting solar-like stars.
- Obtain statistical significant numbers of characterized small planets at different orbits, stars, ...
- Determine the critical mass for gas giant growth
- Study planet interior composition and structure including terrestrial objects
- Study planetary systems
- Determine accurate ages of planet systems
- Provide small terrestrial planets around bright stars as targets for atmosphere spectroscopy