What is this radio interferometry stuff?

Anita Richards UK ARC with thanks to ALMA colleagues

What are you letting yourself in for?

EUROPEAN ARC ALMA Regional Centre || UK

ALMA data will be science-ready, right?

- Pipelined, quality-controlled image cubes will be delivered in full operations
 - With expert/ARC help in Early Science

ALMA data will be science-ready, right?

- Pipelined, quality-controlled image cubes will be delivered in full operations
 - With expert/ARC help in Early Science
- Change resolution? Self-calibration? Combine data?
 - Apply calibration provided, continue in CASA (or your favourite package)

ALMA data will be science-ready, right?

- Pipelined, quality-controlled image cubes will be delivered in full operations
 – With expert/ARC help in Early Science
- Change resolution? Self-calibration? Combine data?
 - Apply calibration provided, continue in CASA (or your favourite package)
- Early science or challenging observations
 - Full/partial data reduction (recipes and pipeline scripts provided, ARC assistance).

Getting the best out of ALMA

- High spectral resolution (up to ~10⁸)
 Channels linearly spaced in frequency
- High angular resolution (≥ 0 ".005 full ops)
 - Relatively small FoV
 - 'missing spacings' in extended configurations
- Instrumental corrections
- Atmospheric refraction and absorption
 - Correct refractive (phase) errors
 - Reference source within few deg
 - Also provides astrometry
 - Correct time-dependent amplitude fluctuations
 - Best sensitivity to short $\boldsymbol{\lambda}$ in good weather
- Sensitivity: $\sigma_{\rm rms} \propto T_{\rm sys} \div [(N(N-1)/2) \, dv \, \Delta t]^{0.5}$
 - Number antennas (ALMA's huge collecting area!)
 - dv freq. per image, Δt total time on source

Interferometry resolution

- One antenna: maximum resolution $\theta \sim \lambda / D$ - D 12m, λ 1 mm (v 300 GHz) gives $\theta \sim 17$ arcsec
- θ~FWHM filled aperture sidelobes
- Many antennas: maximum resolution $\theta \sim \lambda / B$
 - \underline{B} 15 km at λ 1 mm gives $\theta \sim 0.014$ arcsec
 - Sensitivity helped if noise decorrelates
 - but sparse coverage gives worse sidelobes

Interferometry resolution

- One antenna: maximum resolution $\theta \sim \lambda / D$
 - D 12m, λ 1 mm (v 300 GHz) gives θ ~17 arcsec

- Many antennas: maximum resolution $\theta \sim \lambda / B$
 - B 15 km at λ 1 mm gives θ ~0.014 arcsec
 - Sensitivity helped if noise decorrelates
 - but sparse coverage gives worse sidelobes

Interferometry resolution

- One antenna: maximum resolution $\theta \sim \lambda/D$
 - D 12m, λ 1 mm (v 300 GHz) gives θ ~17 arcsec

- Many antennas: maximum resolution $\theta \sim \lambda/B$
 - B 15 km at λ 1 mm gives θ ~0.014 arcsec
 - Sensitivity helped if noise decorrelates
 - Better with more antennas/longer track

Interferometry

- Earth rotation aperture synthesis
- Vectors between pairs of baselines sweep out uv tracks
 - Record combined signals every few sec
 - Few antennas/short runs means lots of gaps

From interferometry to images

- Signals from different parts of source reach different telescopes at different
 - Fourier transform of complex visibility amplitude and phase gives sky brightness distribution

$$\sum V_{v}(u_{v},v_{v}) e^{[2\pi i(uvl + vvm)]} du dv = I_{v}(l,m)$$

 $-V(u,v) \Leftrightarrow I_{v}(l,m)$ for short

Correlation

- Digitise and combine signals in correlator
 - Create spectral channels by adding $\sim \mu sec$ time lags
 - Make parallel (and cross) polarizations
 - FT into frequency domain
 - Output averaging determines integration time
- Produces complex visibility data
 - Time series of amps & phases per baseline per pol.

Correlator configurations

- Four spectral windows (spw), max. width 2 GHz
 - 128 chans per spw (dual pol) TDM
 - 4096 chans per spw (~0.5 km/s at 300 GHz) FDM
 - Useful max. 1.875 GHz (so 3840 channels usable)
- Narrower spectral windows for higher resolution
 - Factors of two down to 62.5 MHz (15.25 kHz chans)
 - Higher spectral resolution in single pol.
- Two sidebands, spacing depends on band
 - e.g. B7, B3 sideband centres separated by 12 GHz
 - Two spw in each sideband, centre spacing 2 GHz

See documentation and OT for full details

Frequency flexibility (Cycle 1)

Brightness temperature

- Brightness temperature $T_{\rm b} = S_{\rm source} \ 10^{-26} \ \lambda^2$ / $2k_{\rm B} \ \Omega$
 - Ω emitting area (sr), λ (m), S (Jy = 10⁻²⁶ W m⁻² Hz⁻¹)
 - Resolved?
 - Use ${\color{black}{\hbox{\rm S}}}$ per measured Ω
 - Unresolved measurement over large area?
 - Estimate actual Ω
 - Will ALMA recover all the flux?
 - Use S per best estimate of Ω to find $T_{\rm b}$
 - Predict ALMA flux density $S = T_b 2k_B \theta_b^2 / 10^{-26} \lambda^2$
 - Substitute $\Omega = \theta_b^2$ (ALMA synthesised beam)
 - Use Sensitivity Calculator
 - Need >5 σ_{rms} on peak and $3\sigma_{rms}$ on extended details

HL Tau on large scales

- $T_{\rm b} = [(S/Jy)10^{26} (\lambda/m)^2] \div [2 k_{\rm B} \Omega/{\rm Sr}]$
 - Use smaller of (actual size) or (beam size) as area Ω
 - Smooth 5mJy in whole 120" would be $\sim 1\mu$ Jy/1."5 beam

High-resolution brightness of HL Tau

- D-array lowest contour 0.3 mJy in 1500-mas beam
 - Fit Gaussian peak~3 mJy in ~200-mas diameter region
 - \equiv 0.18 mJy in 50-mas beam
- A-array lowest contour 0.15 mJy in 50-mas beam
 - Missing smooth, extended bright flux: missing spacings
 - Missing weak flux: small beam \Rightarrow higher $T_{\rm b}$ threshold

Visibility coverage and imaging

- Single dish just gives flux measurement
- FT of two short samples is stripes
- Long track on single baseline only point sources

Adding more antennas....

Clean image

Visibility phase and amplitude

ALMA calibration

- Water vapour in the troposphere
 - Delay to incoming wavefronts
 - Water Vapour Radiometry (WVR)
 - Measure 183-GHz atmospheric line
 Derive path length corrections every s
 - Amplitude absorption
 - System temperature (T_{sys}) measurements every few min
- Residual delay and bandpass errors
 - Phase & amplitude corrections as a function of $\boldsymbol{\nu}$
 - Derive from bright astrophysical source
 - Good signal to noise in a single channel
- Planets, large moons, asteroids to set flux scales
- Phase-referencing for remaining time-dependent errors

Time-dependent instrumental corr.

Phase referencing

- Observe phase-ref source close to target
 - Point-like or with a good model
 - Close enough to see same atmosphere
 - 1 few degrees (isoplanatic patch)
 - Bright enough to get good SNR much quicker than the atmosphere changes, $\boldsymbol{\tau}$
 - τ 10 min/30 s short/long *B* & low/high v
 - Nod on suitable timescale e.g. 5:1 min
 - Derive time-dependent corrections to make phase-ref data match model
 - Apply same corrections to target
 - May correct amplitudes similarly
- Self-calibration works on similar principle

Reference phase corrections

Amplitude corrections

Effects on imaging

0.35

0.3

No astrophysical calibration: no source seen

Phase-only solutions: source seen, snr 15 but no flux scale

Amplitude and phase solutions: source seen, snr 22

1.2

(r)

Fourier transform and clean

ALMA Field of View

Visibility coverage

70

60

50

40 (J

/beam) ら

20

10

0

10^s

20^s

J2000 Right Ascension

 00^{s}

50'

-13°52'

Total Power only

38'

1400

1200

12-m single dish arcmin resolution

Peak Jy/beam ∝ resolution² SD 1500 Jy/bm + ACA 500 Jy/bm + main array 75Jy/bm

CASA uses Measurement Equation

 $\underline{V}_{ij} = \mathbf{M}_{ij} \mathbf{B}_{ij} \mathbf{G}_{ij} \mathbf{D}_{ij} \mathbf{F}_{ij} \mathbf{$

VectorsV isibility = f(u,v)Starting
pointI mageThe goal

A_dditive baseline error

Scalars

Methods

S mapping <u>I</u> to observer pol. *I,m* image plane coords *u,v* Fourier plane coords *i,j* telescope pair

Jones Matrices

Hazards

Multiplicative baseline error

Bandpass response

Generalised electronic gain

Dterm (pol. leakage)

E (antenna voltage pattern)

Parallactic angle

Tropospheric effects

Faraday rotation

Visibility data: Measurement Set format

MAIN	Model, e.g.:	Corrected data	Flags
Original visibility data	FT of image made from MS FT of supplied model image FT of point flux	Copy of visibilities with calibration tables applied (Used in	(Edits are stored here first; backup tables can be made and used to modify)
	density	calibration)	

- Unix-like directory structure with binary data and ascii metadata files arranged in subdirectories
- Additional tables in MS or free-standing:
 - Admin: Antenna, Source etc.
 - Processing: calibration, flags, etc.
- ~interconvertible with FITS; similar image format

Measurement Set MAIN table

•	▼ ■ Table Browser									I _ 🗆 ×				
<u>F</u> ile	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ools E <u>x</u> port <u>H</u> elp													
3C277.1C.ms														
data		uvw 😽	FLAG	WEIGHT	ANTENNA1	ANTENNA2	EXPOSURE	FIELD_ID	Т	IME	DATA			
ble o	53	[-131860, -138051, 85180.9]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14:22.00 [4,	1] Complex			
ta	68	[-131776, -138090, 85247.1]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14:39.00 [4,	1] Complex			
table keywords	83	[-131692, -138129, 85313.3]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	14-14-38-00 [4, 1] Complex				
	98	[-131609, -138168, 85379.5]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	3C277.1C.ms[53, 21] =				
	113	[-131525, -138207, 85445.6]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	Complex Array of size [4]				
	128	[-131441, -138246, 85511.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	0				
	143	[-131357, -138285, 85577.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	0 (0 1643	-	2)		
rds	159	[.131273 .138323 856/37]	[4] 1	[52 5	1	5	7 99	0	1005-04-1	0 (-0.1645	/9,-2.0301	2)		
ywo	Restore Columns Resize Headers								1 (0.446854,0.111045)		i)			
PAGE NAVIGATION First << [1/211] >> Last 1 Go								2 (-0.0716612,0.223381)		381)				
								3 (-2.49088,-0.869153)		3)				

- Some of the columns per visibility measurement

 Correlated amp & phase per baseline per integration
- Data: Complex value per spectral channel for each polarization (XX YY XY YX)

Time jargon

17:29:38.0 - 18:29:30.0

 Total integration time = 456357 seconds

 Observed from 15-Apr-1995/17:13:58.0 to 20-Apr-1995/

 (UTC)

 Timerange (UTC)

 Scan FldId FieldName nVis Int(s)

 17:13:58.0 - 17:28:38.0

1 OQ208

. 10 1300+580 270 17:07:38.0 - 17:09:54.0 8 17:10:37.0 - 17:17:49.0 9 11 3C277.1 825 7.99 17:18:36.0 - 17:19:56.0 10 10 1300+580 165 7.99 17:20:35.0 - 17:27:55.0 11 11 3C277.1 840 7.99 17:28:42.0 - 17:29:54.0 12 10 1300+580 150 7.99

- Time on all sources
- Span of observations (might be gaps)
- Flux scale/polarisation calibration scans
- 7.99 Alternate phase 7.99 ref/target scans
 - Single integration time

- Estimate hour angle coverage
- An integration is the shortest averaging time in correlated data
- A scan is usually the time between source changes
 - The phase-ref/target cycle should be less than the atmospheric coherence time (after WVR correction)

6750 7.99

Polarization jargon

Left-hand LHC, L, LL **Right-hand** RHC, R, RR Cross hands LR RL make linear Stokes V =(RR-LL)/2

Fractional V/I, |V|/I, %

LINEAR Stokes Q =(RL + LR)/2Stokes U = (RL - LR)/2i Polarized intensity $P = \sqrt{(Q^2 + U^2 + V^2)}$ **Polarization angle** $\chi = \frac{1}{2} \operatorname{atan}(U/Q)$ Linear feeds ALMA X, XX, Y, YY Cross hands XY YX

Diagrams thanks to Wikipaedia

Proposal writing

- OT steers you towards suitable configurations
 - Multiple source/v changes inefficient, deprecated
 - Stretching the system is more likely to go wrong!
- Strong science case, unique to ALMA
 - Evidence for ability to interpret results e.g. modelling
- Check precise positions (small field of view)
 - Proper motions for Galactic objects
 - Sensitivity, resolution, field of view
 - Allow at least $5\sigma_{ms}$ for detection experiments
 - Noise very elevation-dependent (Sensitivity Calculator)
 - ~10% of time suitable for Band 9 (450 $\mu m)$
- Accurate freq/vel, correct reference frame/convention
 - Spectral set-ups may cover many lines
 - Give observing frequency of most important lines
 - Helps Quality Assurance process

What ALMA data do you get?

Image cubes for principal science target channels

Science products + info always delivered to PI

+ Visibility data sufficient to re-do processing in CASA subject to what was available when observations were taken.

All products available from Archive

Information and processing summary Data processing scripts

Any or all of ASDM (one per SB)

Part-calibrated MS

The only thing scarier than getting an ALMA proposal rejected...

is if you do get the data!

151-4

00--0

