Adaptive Radiative Transfer Innovations for Submillimeter Telescopes

Christian Brinch

on behalf of the ARTIST team:

Jes Jørgensen¹, Michiel Hogerheijde², Josep Miquel Girart³, Wouter Vlemmings⁴, Frank Bertoldi,⁵ Attila Juhasz², Marco Padovani³, Rolf Kuiper^{5,6}, Reinhold Schaaf⁵, Pau Frau³

Centre for Star and Planet Formation and Niels Bohr Institutet, Copenhagen Sterrewacht Leiden, Leiden Institut de Ciències de l'Espai, Barcelona Onsala Space Observatory, Onsala Argelander Institute for Astronomy, Bonn Jet Propulsion Laboratory, Pasadena

Motivation: Example question in future ALMA proposals

- What is the chemistry in the inner envelope/disk around protostars?
- What is the dynamical structure of low-mass protostars e.g. infall vs. rotation on small scales?
- What is the distribution of matter in envelopes and disks?
- What is the kinematical structure of protoplanetary disks?
- Are the holes/gaps seen in transitional disks really empty?

- What is the structure of magnetic field in cloud cores and what is the role of magnetic field in the early phases of star formation?

Motivation: How can ALMA help to answer these questions?

ALMA is by far the most powerful telescope in three key areas;

Sensitivity

Spatial resolution

Dynamic range in spatial frequency

Model predictions should have the similar properties (e.g. image resolution, dynamic range, 3D), which is challenging.

Supported by national funding agencies within EU/ASTRONET framework(2009-2011).

"... supply a user-friendly 3D radiative transfer code that can be used to provide full detailed images (lines; continuum; polarization) given a physical/ chemical structure of any object..."

"... provide a user-friendly *modeling environment* that can be used to make predictions for observations with current and future submillimeter telescopes given a physical/chemical model of any object..."

1) An innovative radiative transfer code using adaptive gridding that allows simulations of sources with arbitrary (3D) structures, ensuring rapid convergence - even for molecules with a complex level structure, e.g., H₂O

2) Tools for modeling the polarization of line and dust emission, information that will come with standard ALMA observations

3) A Python-based comprehensive interface with Graphcal User Interface connecting these packages and providing links to extremal codes

4) A library of pre-coded common models (e.g., Shu collapse model) for the user to browse.

Theoretical input models

E.g., analytical collapse, magnetic field, chemical network

Dust radiative transfer

Self-consistent (dust) temperature distribution

Line excitation

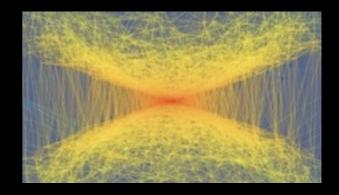
Chemistry: abundances Dynamics: velocity field

Continuum polarization

Grain alignment efficiency dependent on density/temperature

Raytracer

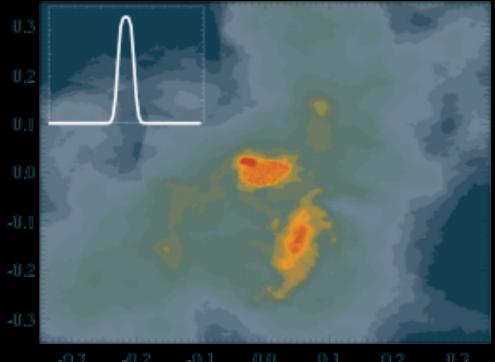
Images in molecular lines, continuum and polarization


Integration of images into data analysis software, e.g. CASA Constraints on density, temperature, velocity field, magnetic field, chemistry

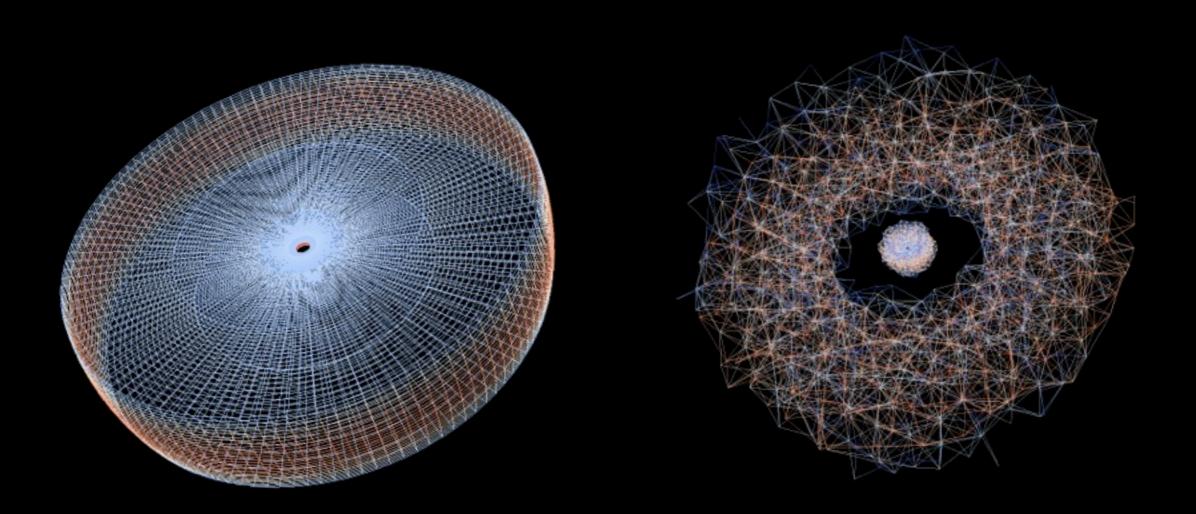
User interface

Components: Line excitation / Raytracing

Brinch & Hogerheijde, 2010


LIME is a new and innovative non-LTE spectral line radiation transfer code for 3D models in arbitrary geometries.

Instead of a 2D regular mesh (e.g. nested AMR) Lime transports photons along the edges of a 3D unstructured Delaunay-grid (Ritzerveld & Icke 2006)


Grid points are placed semi-randomly but grid point distribution is well controlled => grid is very flexible

Visualization with VTK

Image data are written in FITS format that can be used in directly in CASA (simdata).

Components: Line excitation / Raytracing

Components: Continuum polarization

Dustpol (Padovani et al. 2012, in press.)

Calculates Stokes parameters on the basis of Lee & Draine 1985, Padoan 2011

200

0

0

100

0

Δa [arcsec]

22.5

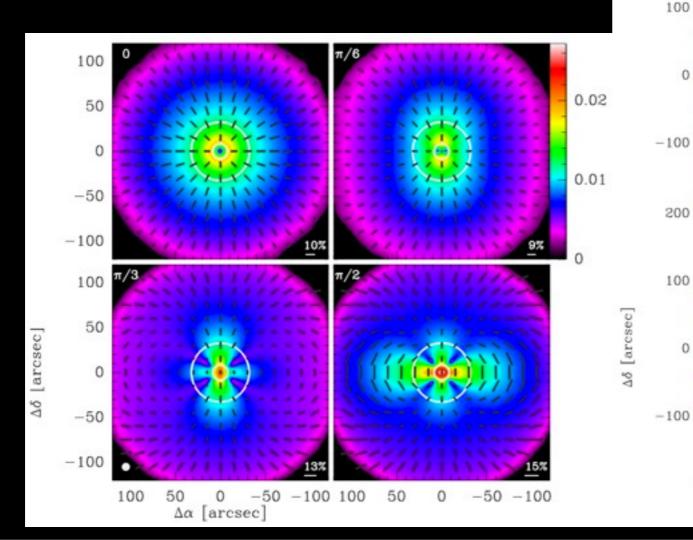
22

21.5

0.5

0

11%


-100

 $[N/cm^{-2}]$

0810

Grain alignment efficiency (function of density/temperature) 3D magnetic field structure

=> Synthetic stokes vectors

Line polarization (Kuiper et al. in prep) is in the testing/benchmarking phase

Full stokes radiative transfer using a modified version of LIME

Goldreich-Kylafis effect (Unequal population of magnetic-substates in an anisotropic velocity/radiation field)

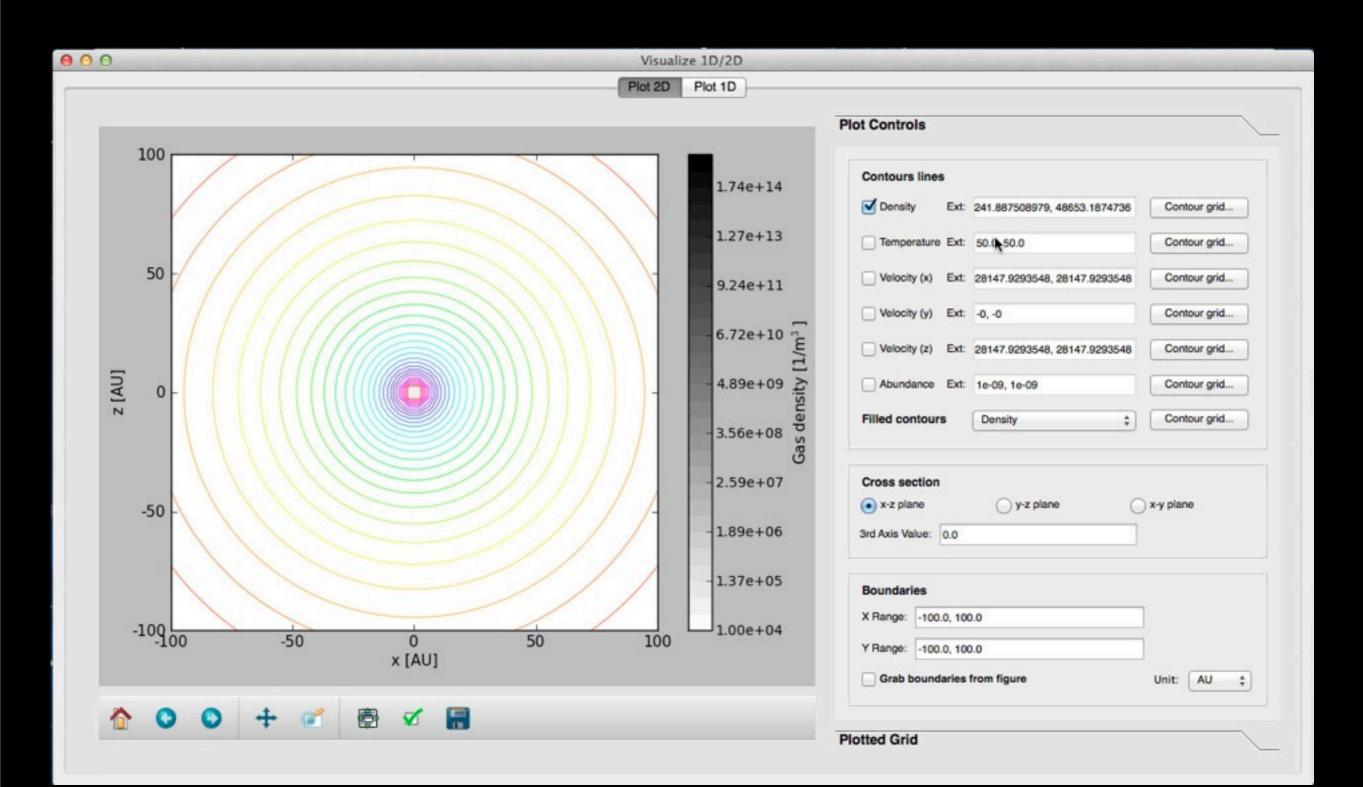
Two level interface

- Command line tools (Python/C++)
- Graphical User Interface (Python) (see demo)

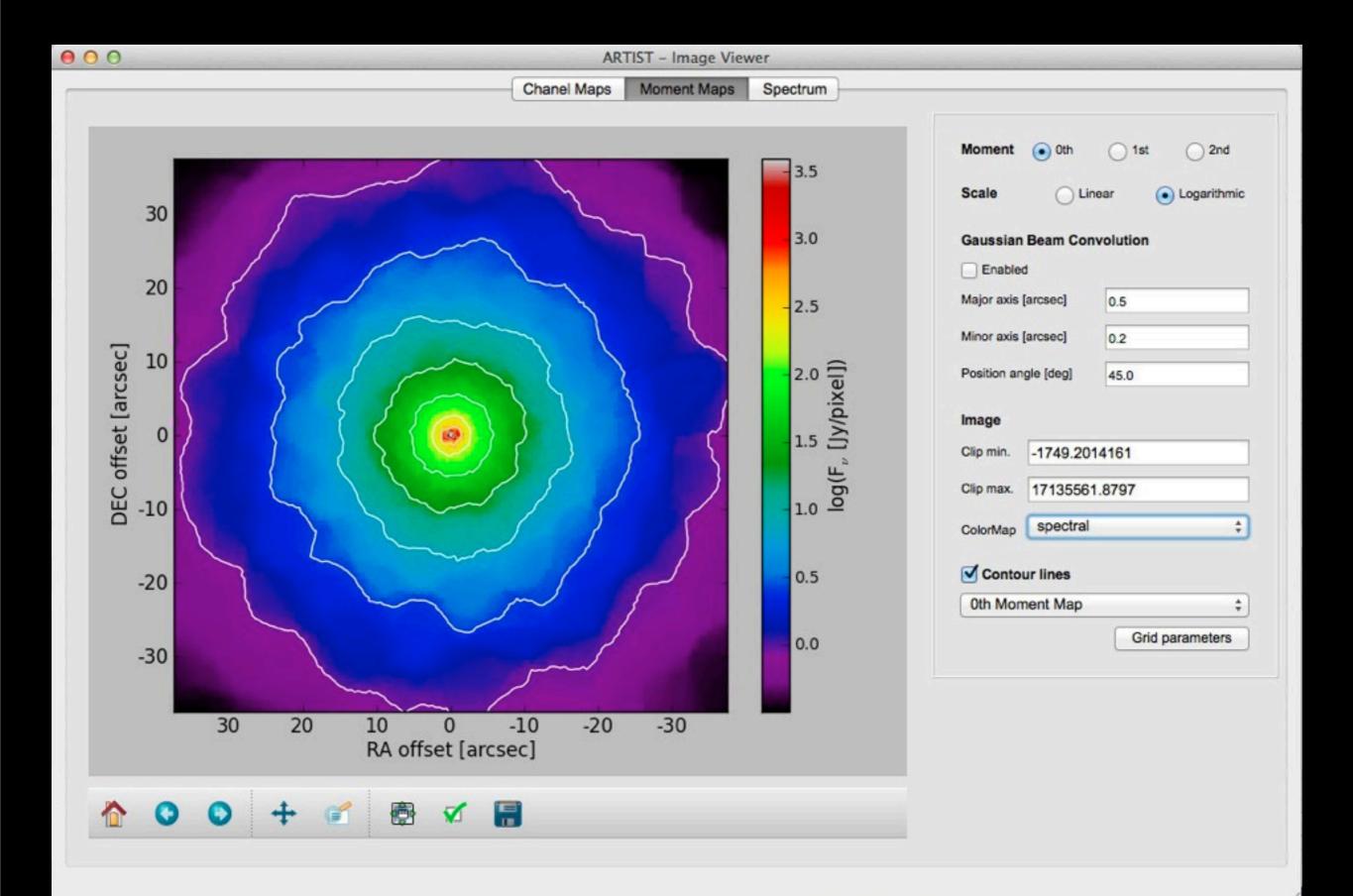
Model setup

- Set physical variables (density, abundance, velocity, etc) Simple polynomial user-defined functions Library of analytical models Tabulated output of external numerical codes (e.g. RADMC-3D, StarFormat)
- Set grid properties (number of grid points, point distribution, etc)
- Set image properties (image size, pixel size, velocity resolution,etc)

Visual inspection of model (1D/2D within the interface, 3D requires external software - Paraview)

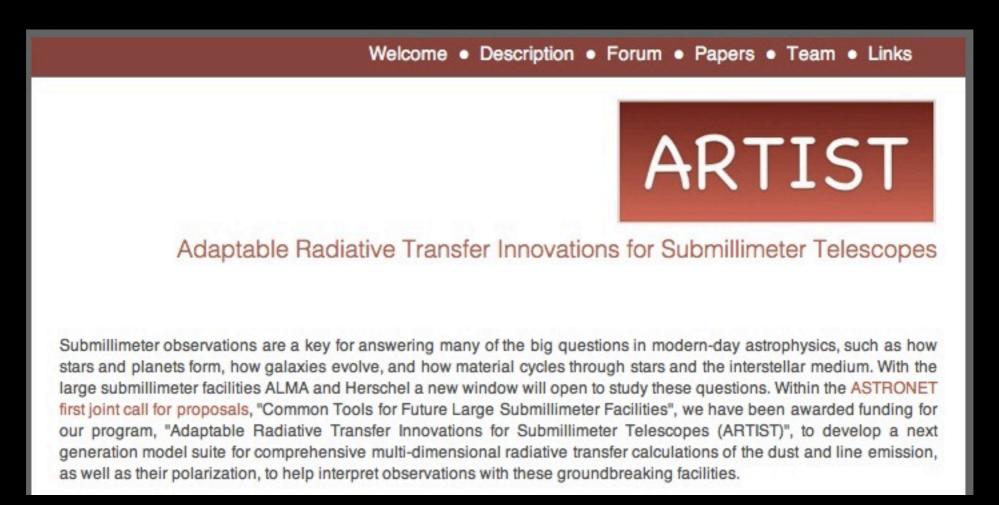

Excitation calculation / raytracing

Post-processing


(e.g. image convolution, moment maps)

00	ARTIST GUI V0.0		
	Model Input Excitation/Grid Raytracing/Images		
Browse models Model: BonnorEbert56 T [K] 10.0 rhoc [1/cm^3] 100000	Velocity	Model	\$
	Doppler b	Constant Value [m/s]: 100	•
Density Model	Magnetic field	Model	*
	Abundance(s)	Constant	•
Gas temperature Constant T [K]: 50.0	* Mol. datafile ./hco+.dat	Value: 1e-9	Browse
Dust temperature Equal to gas t	temperature \$		
Opacity file: _/jena_thin_e6_interp.tab	Browse		
Visualization 1D/2D Visualization	zation 3D Run line R	T View Image)

00	ARTIST GUI		
	O O Model library bro	owser	
	Model Name	Available models:	
Browse models Model: BonnorE	BonnorEbert56 Description Isotherm hydrostatic molecular cloud core by Bonnor 1956 & Ebert 1955 Bibliographic reference: Bonnor 1956, MNRAS, 116, 351 ; Ebert 1955, ZA (Zeitschrift fuer Astrophysik), 37, 217 Parameters:	BonnorEbert56 DDN01 LiShu96 Mendoza09 Ratran Shu77 Ulrich76 allen03a shuCollapseAnalytic	Model +
Density	T [K] Temperature of the core rhoc [1/cm ⁴ 3] Central volume density of the core		Model +
Gas temperature			Erowse Browse
Dust temperature			
Opacity file: /jena_thin_e6_interp.tab			
Visualization 1D/2D		Select Cancel	View Image


00		ART	ST GUI V0.0				
		Model Input Excitation	n/Grid Raytracing/Imag	es			
Browse models Model: Shu77 T [K] 30.0	time (year)	100000.0	Velocity			Model	\$
			Doppler b			Constant	\$
	000	Lime status displa	ły		Value [m/s]:	100	
	Building Grid Smoothing Grid		D	one		Model	\$
Density	Iterations Min. SNR: Median SNR:	13 0.000000 0.000000				Constant	\$
Gas temperature	Photon Propagation Ray Tracing			p/ARTIST m	Value: odels (*.mdl).mdl/hc		Browse
		None					
Dust temperature							
Opacity file: /Users/jes/Desktop/ARTIST mo	c						
Visualization 1D/2D						View Image	

ARTIS - contact

ARTIST website :

http://youngstars.nbi.dk/artist

ARTIS - contact

ARTIST website :

http://youngstars.nbi.dk/artist

ARTIST Forum Adaptable Radiative Transfer Innovations for Submillimet	er Telescopes			
ARTIST website Index User list Rules Search Profile Administration Logou	ut			
Logged in as brinch.		New posts Active topics Unanswered topics		
ARTIST				
Forums	Topics	Posts	Last post	
Download and installation	1	1	2012-04-11 14:19:08 by jeskj	
	1	1	2012-04-11 14:23:53 by jeskj	
DustPol	0	0	Never	
LinePol	0	0	Never	
Model library	0	0	Never	
GUI	1	3	2012-05-23 19:09:38 by juhasz	