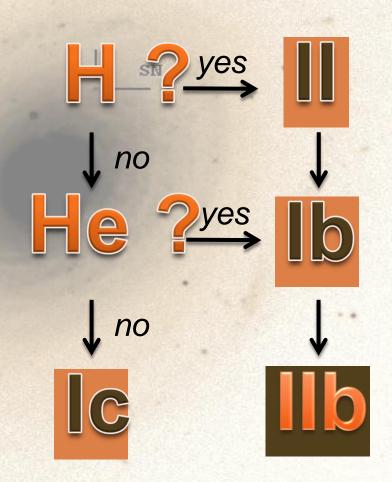
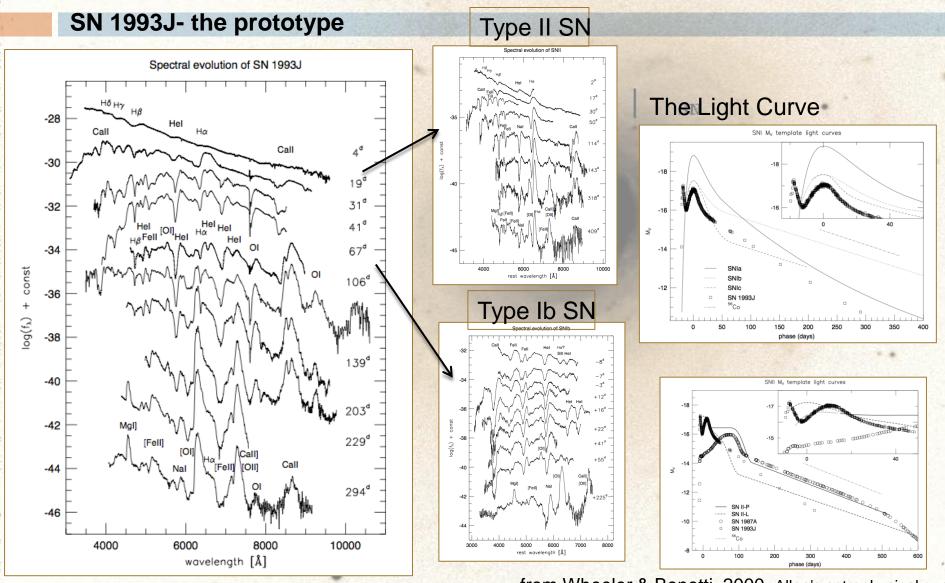
"The deaths of stars and the lives of galaxies" - ESO Conference

UNVEILING TYPE IIb SN PROGENITORS: the case of the fast and faint SN2011hs.


What's a Type IIb SN?

CORE COLLAPSE SNe


are the final phases of massive stars with mass (> 8 Msun)

Classification based on spectroscopic feutures:

some CC SNe undergo a peculiar spectral metamorphosis during their early evolution, changing their spectral aspect from Type II to Type Ib

What's a Type IIb SN?

from Wheeler & Benetti, 2000, Allen's astrophysical quar

What's a Type IIb SN progenitor?

Their progenitor kept only a thin hydrogen layer (~ 0.01 Msun, Nomoto 1993, Nature 364, 507 at the time of the explosion, but the mechanism is still under debate.

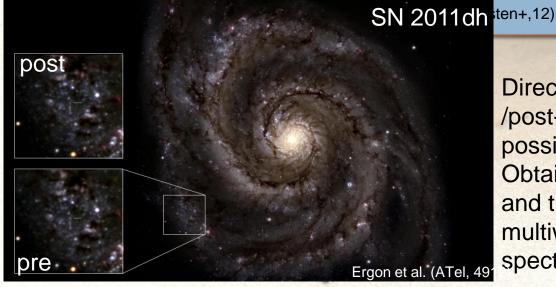
stellar winds in a massive SINGLE star (M ≥ 25-30M⊙; Heger+03; Georgy+09) or eruptive episodes (Smith&Owocki 06)

MASS LOSS MECHANISM :

mass transfer in a close BINARY SYSTEM (Podsiadlowski+93; Yoon+10)

What's a Type IIb SN progenitor?

COMPACT star like a Wolf Rayet star (similarly to SNe lbc,


Georgy+12)

Rotation plays an important rule in the evolution of the star (Maeder&Maynet 11)

PROGENITOR ? LBV a possible pre-explosion scenario (20-25 Msun, Groh+12).

EXTENDED star like a RSG/YSG

SN 1993J progenitor star detected in pre-explosion images (Maund+, 04) SN 2011dh, pre-explosion imaging and numerical modeling compatible to a

Direct detection of the progenitor in pre-/post-explosion images is <u>not</u> always possible.

Obtain information about the progenitor and the geometry of the explosion from multiwavelength observational data and spectral lines and the light curve fitting.

SN 2011hs:

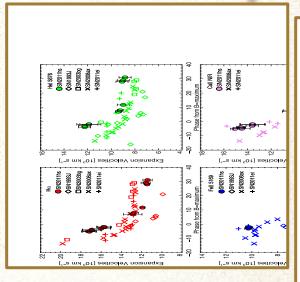
E ↓ SN — SN

R.A.=22h57m11s.77, Decl.=-43°23'04".08 (J2000

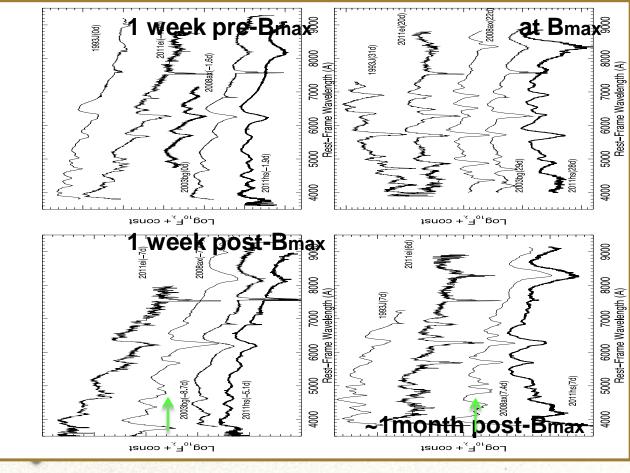
- Discovered at very early phase (on Nov. 12.5 UT; Milisavljevic+CBET 2902)
- Nearby SN: **z=0.0064** \pm 0.0001(from host galaxy H_{α} emission line) \rightarrow μ = 32.11 \pm 0.03 mag (H₀=73 km s⁻¹Mpc⁻¹, Ω_{Λ} =0.73 and Ω_{M} =0.27)
- $E(B-V)_{Milky Way} = 0.011 \text{ mag (Schlegel+98)}$
- E(B-V)_{Host} = 0.159 ± 0.075 mag (using EW(NaID) relation from Poznanski+12)
- Very high line velocities, resembles the fast expanding SN IIb, SN2003bg (Hamuy+09; Mazzali+09)
- No significant X-ray emission is detected at the SN position (Margutti, Atel 3678).

Results will be published in Bufano+13 (in pre

Spectral Evolution


- EARLY SPECTRA:
 Balmer Lines at 1.7-1.4 x 10⁴ km/s
 Hel lines λλ4472 and 5876
 (the latest likely blended with Nal)
 Call both H&K and NIR triplet
- AFTER MAXIMUM LIGHT:
 Dominant Hel λλ6678, 7065 and 7281
 Fe lines emerge in the blue range
- NEBULAR SPECTRA:
 prominent emission lines from
 MgI] λ4571,
 [OI] λ5577, [OI] λλ6300, 6364 and
 [Call] λλ7291,7324

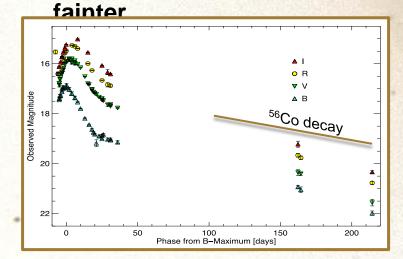
Spectral Comparison

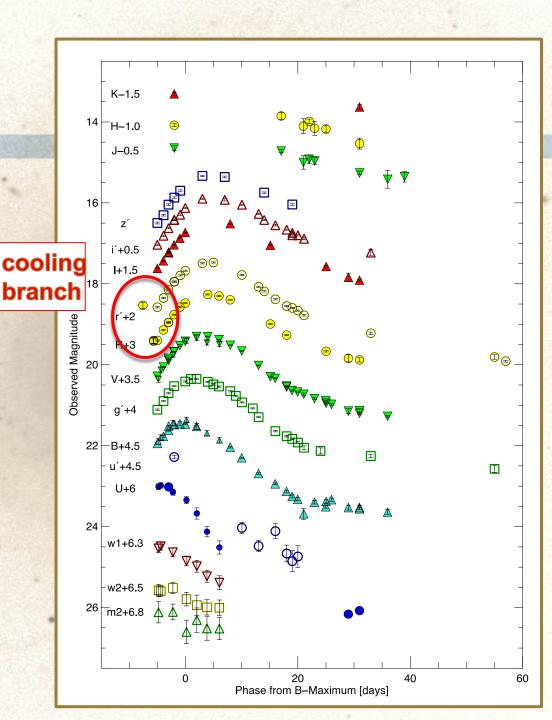

Expansion Velocities minimum position measuraments

SN2011hs line velocities are similar to those of SN2011ei (Milisavljevic+13) but different line profiles, spectral shape resembles more fast-expanding IIb SN2003bg (Hamuy+09, Mazzali+09)

High Ek/Mej

Sill at ~12,000 km/s or HI high velocity features (outer fast moving shell at ~20,000 km/s)?

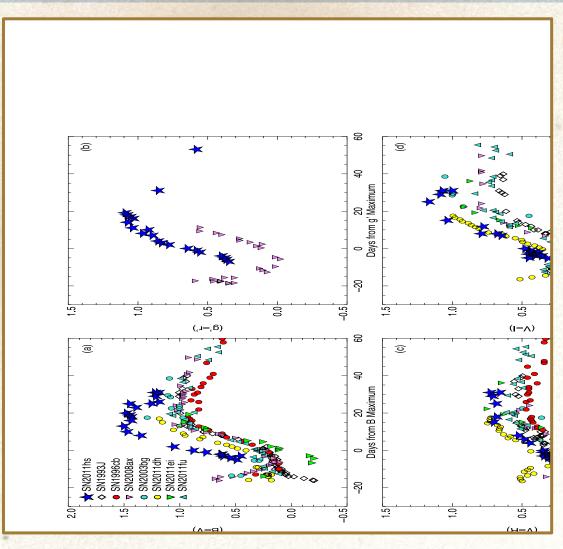



Light Curves

Filter	Peak Day JD+2,400,000	Peak Observed mag	Rise Rate ^{a} mag/100d	Decline Rate b mag/100d
U	$55,881.5\pm1.0$	17.00 ± 0.02	_	16.2±1.7
В	$55,885.5\pm1.0$	16.93 ± 0.01	-9.2 ± 0.4	9.0 ± 0.1
V	$55,888.5\pm1.0$	15.80 ± 0.01	-7.9 ± 0.2	9.0 ± 0.1
R	$55,889.5\pm1.0$	15.28 ± 0.01	-5.9 ± 0.3	7.4 ± 0.1
I	$55,890.5\pm1.0$	15.01 ± 0.01	-5.4 ± 0.2	$7.4 {\pm} 0.2$
g'	$55,887.5\pm1.0$	16.35±0.01	-6.8±0.4	9.2±0.1
r'	$55,889.5\pm1.0$	15.46 ± 0.01	-6.3 ± 0.3	8.5 ± 0.1
i'	$55,890.5\pm1.0$	15.36 ± 0.01	-5.1 ± 0.4	7.7 ± 0.1
z'	$55,890.5\pm1.0$	15.30 ± 0.02	_	$5.6 {\pm} 0.2$

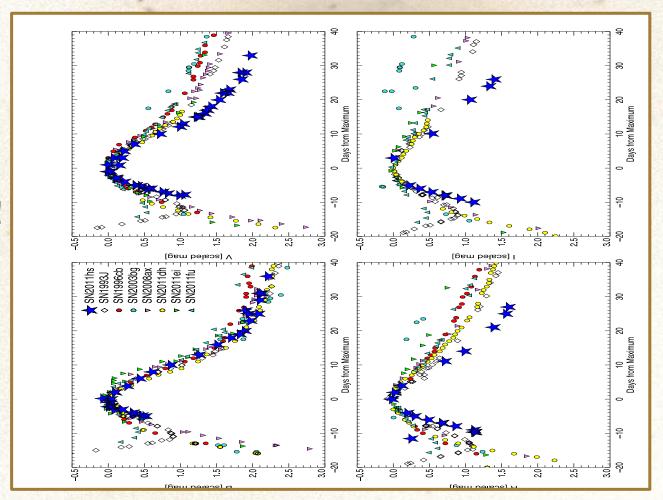
a Decline within 5 d before peak.

Blue band light curves peak very early and much



 $[^]b$ Decline within 15 d from peak.

Color Curves


- SN 2011hs color generally REDDER than most of the previously observed Type IIb SNe
- (B-V) evolution resembles SN 2011ei
- Similar RED colors evolution

Reddening effects or Intrinsic color difference?

Light Curve Shape Comparison

Fast Evolution!

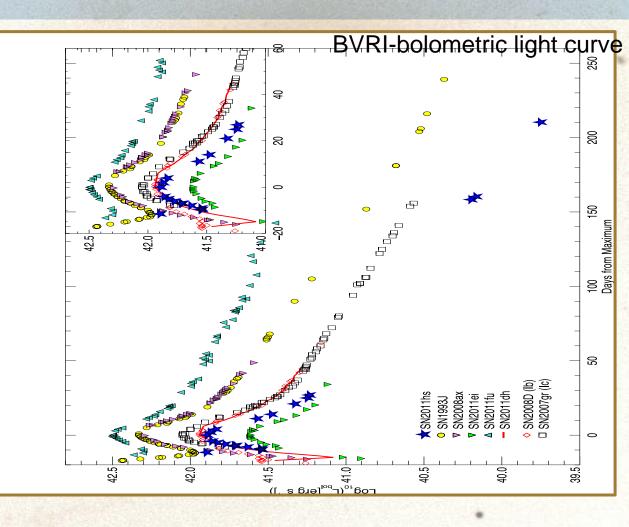
Bolometric Light Curve and Explosion Parameters

narrow and faint!

 $\sim 0.03 \, \mathrm{M}_{\odot} \leq \mathrm{M}_{56 \mathrm{Ni}} \leq 0.06$

Arnett's relations

$$au_{peak} \propto M_{ej}^{+3/4} E_k^{-1/4} \ v_{ph} \propto M_{ej}^{-1/2} E_k^{+1/2}$$


Pseudo-bolometric light curve shape_

+ expansion velocity of FeII @ max

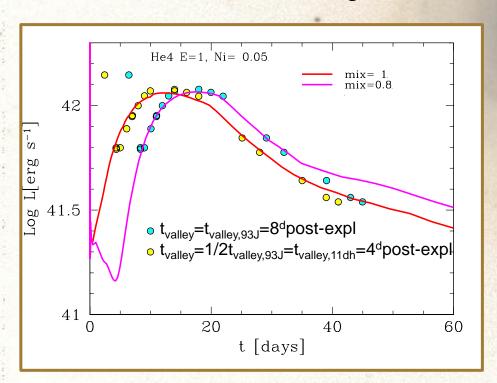
compared with previous SE-SNe

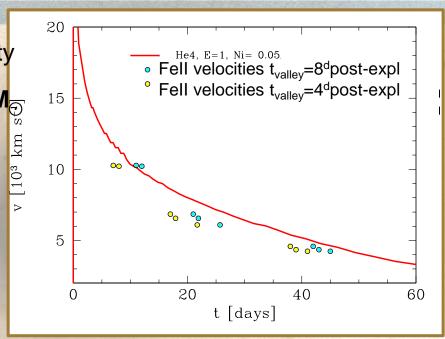
 ${\sf M}_{\odot}$

E_k~ 0.8-1.8 foe

Numerical modeling needed...

Hydrodynamic modeling:


light curve + expansion velocity (Bersten+11)

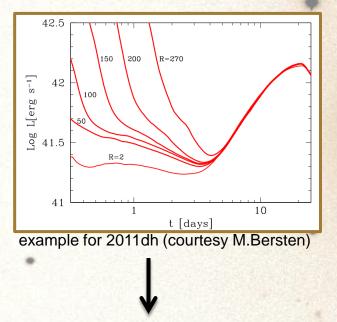

Modeling LC second peak + Fell line velocity

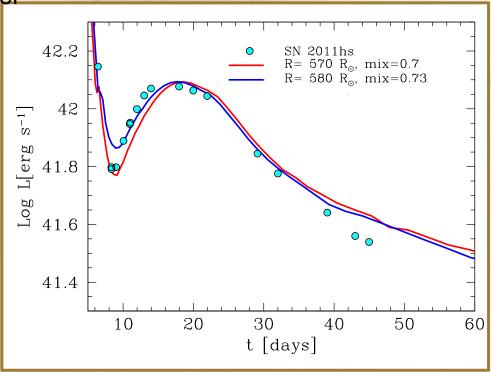
 $M_{He} = 4 M_{\odot} \rightarrow M_{ej} = 2.5 M_{\odot}$ and $M_{ZAMS} = 15 M_{\odot}$

 $E=1 \times 10^{51} \text{ ergs}$

 $M_{Ni} = 0.05 M_{\odot}$

Uncertainities on the explosion epoch requidifferent mixing of ⁵⁶Ni


(mix=0.8 ⁵⁶Ni linearly mixed out to 80% of initial mass mix=1 mixing out to the He envelope)


Hydrodynamic modeling:

size of the progenitor (Bersten+11)

From the **cooling phase** (decline after

the shock break-out and before the reheating by radioactive decay)

PROGENITOR RADIUS

R≈ 550-600 R → Extended progenitor

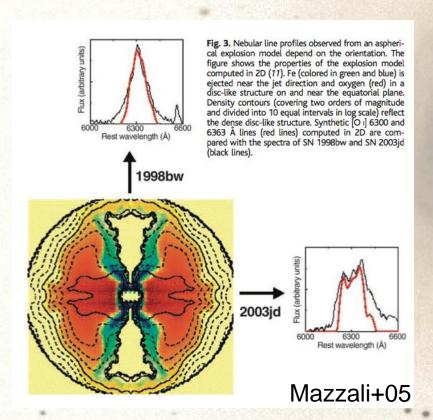
Conclusions

SN 2011hs:

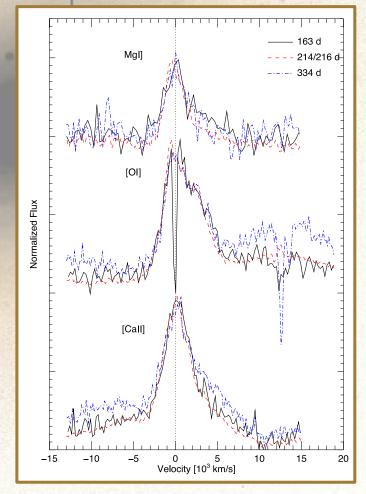
and

- -- Evidences for an EXTENDED progenitor star;
- -- Possible progenitor star with a 4 M_☉(15 M_☉ on the ZAMS);
- -- Explosion energy 1 x 10⁵¹ ergs;
- -- Very low $M_{56Ni} \cong 0.05 M_{\odot}$
- Importance of observational campaign @
- -- Very Early Phases to catch the adiabatic cooling phase and avoid spectroscopic misclassifications;
 - -- Late Phases to get information on the explosion geometry structure of the environment
- Importance of multiwavelenght coverage

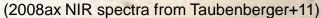
X-ray and Radio obs. help in understanding if a dence CSM is present and its structure (binary system?)

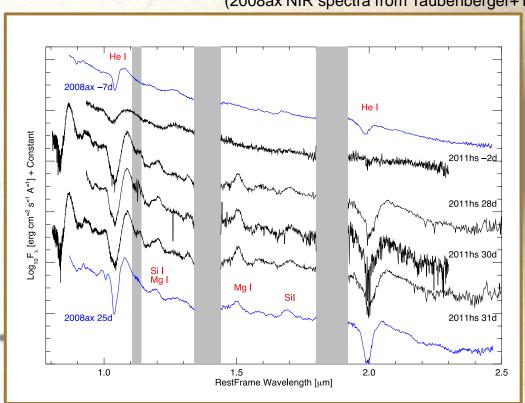

Stay Tuned...

SN


..thank you!

SN


Asymmetries?



No Asymmetric Nebular Lines Profile

NIR spectroscopy

SN

Binary System?

SN

No Modulation in the Radio Light Curves

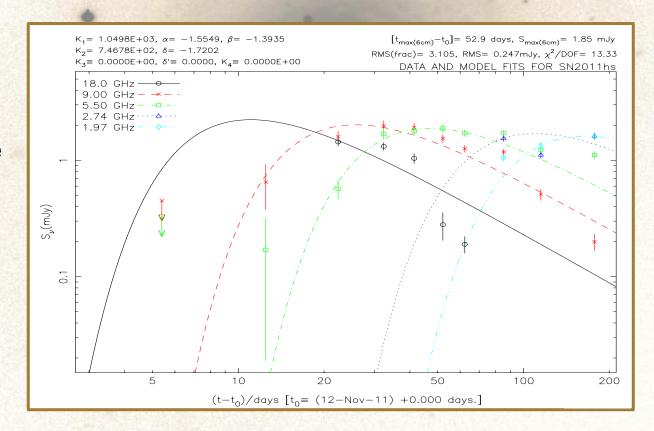
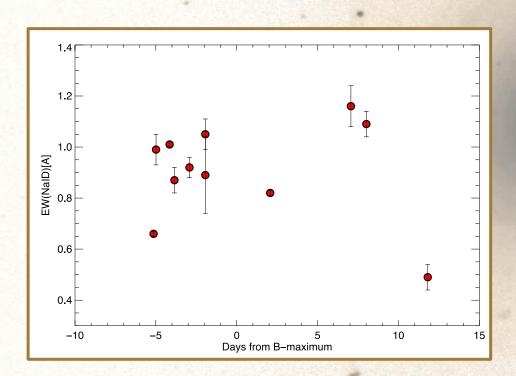



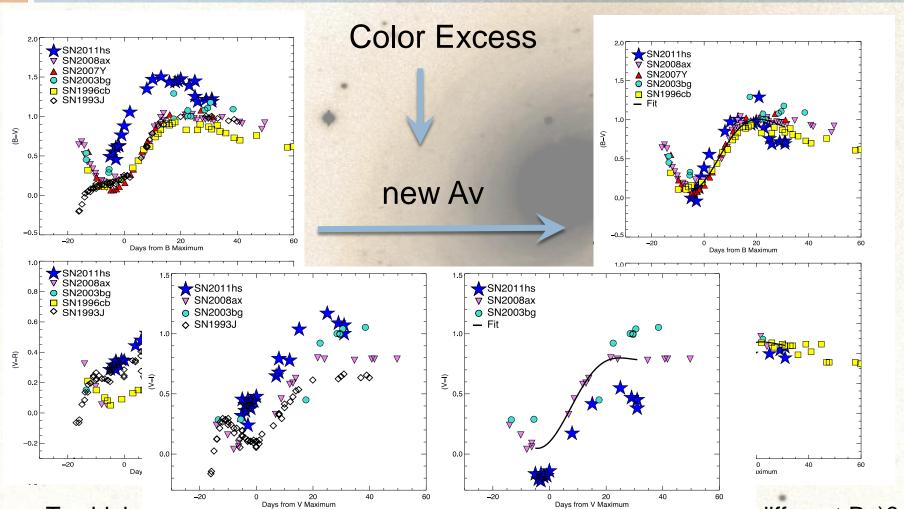
Table 5. Properties of various SE-SNe.

SN	Туре	${ m M}_{B,{ m max}}$	$\mu^a \pmod{\max}$	$E(B-V)_{ m tot}$ (mag)	$^{56}{ m Ni~mass} \ (M_{\odot})$	Ejecta mass (M_{\odot})	$\frac{E_{\mathrm{kin}}}{(10^{51}\ \mathrm{erg})}$	Reference
2008ax	IIb	-17.32 ± 0.50	29.92 ± 0.29	0.4 ± 0.1	0.07-0.15	2-5	1–6	This work
		-17.32 ± 0.50	29.92 ± 0.29	0.4 ± 0.1	0.07 - 0.15	1.9 - 4.0	0.7 - 2.1	Maurer et al. (2010a)
		-16.87	29.92 ± 0.29	0.3	0.06	2.9	0.5	Roming et al. (2009)
		-17.06	29.92 ± 0.29	0.3	0.11	2.3	1.5	Tsvetkov et al. (2009)
2008D	Ib	-16.30	32.16	0.6 ± 0.2	0.05 - 0.10	3-5	2-4	Soderberg et al. (2008)
			32.45	0.65	0.09	7	6	Mazzali et al. (2008)
2007 gr	\mathbf{Ic}	-16.75	29.84 ± 0.16	0.09 ± 0.02	0.06 - 0.10	2.0 - 3.5	1-4	Hunter et al. (2009)
2007Y	Ib/IIb	-16.20	31.43 ± 0.55	0.11	0.06	1-2	0.5 - 2.0	Stritzinger et al. (2009)
1999ex	Ib/c	-17.42	33.54 ± 0.23	0.30 ± 0.04	0.16	5–6	2.7	Stritzinger et al. (2002)
1993J	IIb	-17.23	27.80 ± 0.08	0.2	0.10 - 0.14	1.9 - 3.5	1.0 - 1.4	Young et al. (1995)
			27.80 ± 0.08	0.2	0.10	1.3	0.7	Richardson et al. (2006)

ISM/CSM?

EW of NaID evolution with time

SN


Time-variability of the EW NaID features

interpreted as originating in the CSM (SN2006X, Patat+07): variations are ionization changes in CSM within the progenitor system due to the radiation from the SN.

Call H&K <u>not</u> detectable

Geometrical effects cannot be ruled out.

Color Excess

Too high correction: intrinsic difference or different dust properties (different Rv)? Their effects cannot be disentangled!