

Spiral arms in the disk of HD 142527 Output with ALMA (Triptych on HD 142527 - part III)

Valentin Christiaens PhD student, Universidad de Chile Supervisor: Prof. Simon Casassus

Simon Casassus, Sebastian Perez, Gerrit van der Plas, François Ménard

Outline

Moment maps and detection of spiral arms
 Description of the spiral arms
 Geometrical modelling
 Discussion on their origin

1. Moment maps

Extended diffuse cloud absorbs signal in the South (Casassus et al. 2013)
 Spiral structures in I_{int} and I_{peak} maps; best seen in CO J=2-1 I_{peak} map
 Keplerian vel. + no significant vel. dispersion under the spirals
 Outer disk too faint to reveal structures in ¹³CO J=2-1

2. Spiral arms description

★ S1 in NIR: diamonds (Fukagawa+ 06) and squares (e.g. Casassus+ 12)
★ Very large scale: R>300 au for S1, R>500 au for S2 and △PA ~100°
★ S3 signal absorbed by an intervening cloud (Casassus+ 13)

2. Spiral arms description

★ T(S2) < 18K => CO should freeze-out (e.g. Leger 83; Qi+ 11)
 => dust depleted or settled (e.g. Dubrulle+ 95; Dullemond & Dominik 04)
 and/or CO desorbed (e.g. Hersant 09)
 ★ T(gap)~42K (Fukagawa+ 13; Perez+ 14 submitted) => T∝r^{-q} with T_b(CO2-1): q~0.5

2. Spiral arms description

* If $i \sim 28^\circ$ (Perez+ 14, submitted) => H~20au at the wall (h~0.10-0.15; Avenhaus+ 14)

★ 20 Points with: 1st derivative null (S2,S3) in radial I_{peak} profile OR 2nd derivative null (S1)

3. Spiral arm modelling (Muto+ 12)

 $\theta(r) = \theta_c + \frac{\operatorname{sgn}(r - r_c)}{h_c} \times \left\{ \left(\frac{r}{r_c}\right)^{1+\beta} \left[\frac{1}{1+\beta} - \frac{1}{1-\alpha+\beta} \left(\frac{r}{r_c}\right)^{-\alpha}\right] - \left(\frac{1}{1+\beta} - \frac{1}{1-\alpha+\beta}\right) \right\}$

★ 5 parameters: θ_c, r_c, h_c, α and β (with Ω∝r^{-α} and c_s∝r^{-β})
★ The parameters are degenerate (also noted by Muto+ 12, Grady+ 13, Boccaletti+ 13).
★ α := 1.5 (Keplerian rotation)
β := 0.25 (T∝r^{-0.5})

 $h_c := 0.14$ (best fit value for S1 if set as free parameter)

χ^2	S1	52	53
CO 2-1	2.38	18.0	4.67
CO 3-2	2.06	36.0	/

 $\star \sigma$ not independently determined => S1 is better fit than S2 and S3

3. Spiral arm modelling (Muto+ 12)

Inflection point in the curves: best fit location of the planet
 S1 + S3 ~ Point-symmetric of S2

3. Spiral arm modelling (Kim 11)

 $r = a\theta + b$

 \star 2 parameters: a and b (Archimedean spiral)

* $a = r_p/M_p$ with $r_p = planet's$ orbital distance; $M_p = planet's$ Mach number b = cte

χ^2	S1	S2	53
CO 2-1	0.16	0.30	0.40
CO 3-2	0.18	2.94	/

=> S1 is also better fit than S2 and S3.

3. Spiral arm modelling (Kim 11)

NIR H-band spiral (diamonds, Fukagawa+ 06), Ks-band spiral root (squares, Casassus+ 12), and S1 => trace the same spiral structure?
 * S3 ~ point-symmetric of S2 => two-armed spiral structure?

4. Discussion: Origin of the spirals 1/ Late envelope infall? (Tang+ 12)

• AB Aur: Herbig star, large gap, only TD with known sub-mm spirals

• AB Aur spiral arms have a larger pitch angle.

AB Aur spiral arms seem to counter-rotate with the disk (vel. disp.).
=> Late envelope infall above or below the mid-plane of the disk.

For HD 142527? NO

4. Discussion: Origin of the spirals

2/ Planetary companion?

★ S1 is better fit with Muto and Kim equations than S2 and S3.

* The very large scale of S2 and S3 argue against a planetary origin.

* Object (stellar companion?) detected at \sim 12 au (Biller+ 12, Close+ 14)

Companion origin? Maybe for S1, less likely for S2 and S3

4. Discussion: Origin of the spirals

3/ Tidal interaction? (e.g. Larwood & Kalas 01, Quillen+ 05)

a) Past stellar encounter

* Galaxy encounters are able to create m=2 spiral structures (Toomre 1972)

* Stellar encounters with pp. disks too (Larwood & Kalas 01, Quillen+ 05)

Transient (~10³ yrs) => very recent encounter
 culpit still in the neighbourhood.
 No such object in a FOV of 20" (Fukagawa+ 06).

Past stellar encounter? Requires larger FOV; cannot be ruled out.

M51

Quillen+ 05

4. Discussion: Origin of the spirals

3/ Tidal interaction? (e.g. Augereau & Papaloizou 04, Quillen+ 05)

b) Bound external companion

* Large scale (~325 au) tightly wound spiral in the disk of HD 141569A due to one of its M-dwarf companions (Augereau & Papaloizou 04, Quillen+ 05)

* For HD 142527, no external companion of M > 4MJ (Casassus+ 13)

Bound external companion? Not likely

4. Discussion: Origin of the spirals 4/ Gravitational instability (GI)? (e.g. Boss 1998, talk by G. Lodato)

 Disk self-gravity can lead to multi-arm spiral pattern (with perhaps some unresolved modes here)

* The stability of a disk against self-gravity is characterized by:

$Q = \frac{c_s \Omega}{\pi G \Sigma}$	(Toomre 1964
$pprox rac{M_{*}}{M_{d}}h$	(Gammie 200

 \star If Q \lesssim 1 : disk instability

 $\begin{array}{l} \star \begin{cases} M_{*} \sim 2^{+0.2}_{-0.1} M_{\odot} & \text{(Fukagawa+ 06, Verhoeff+ 2011)} \\ M_{d} \sim 0.1 M_{\odot} & \text{(Verhoeff+ 2011)} & = & \mathbb{Q} \sim 2 & \text{(similar to Fukagawa+ 13)} \\ h = h_{\rm S} \sim 0.1 \end{cases} \end{array}$

GI? Marginal stability, but very rough estimated

Summary

* Three CO spiral arms in the disk of HD 142527:

- S1 is radially shifted outward w.r.t. NIR spirals
- S2 and S3 are new and at larger scale (> 500au)
- ***** S2 has T \lesssim 18K: dust is depleted or settled or CO is desorbed.
- \star h \sim 0.11–0.13 in the outer disk
- S1 better fit than S2 and S3 to eqs. assuming embedded companion.
 Other possible origins: past stellar encounter
 gravitational instability

* Paper: Christiaens, Casassus, Perez, van der Plas & Menard 2014, ApJL, 785, L12

Thank you for your attention!

★ S1 in NIR: diamonds (Fukagawa+ 06) and squares (e.g. Casassus+ 12)
★ Very large scale: R>300 au for S1, R>500 au for S2 and △PA ~100°
★ S3 signal absorbed by an intervening cloud (Casassus+ 13)