Planet formation in action

The role of dust trapping in transitional disks

Nienke van der Marel,

Ewine van Dishoeck, Simon Bruderer, Til Birnstiel, Paola Pinilla, Kees Dullemond, Tim van Kempen, Markus Schmalzl, Geoff Mathews

Leiden Observatory

11th April 2014

Transitional disks

Dust hole: mechanisms Grain growth

Photoevaporation

Stellar companion Forming planet?

\Rightarrow What about the gas?

Strom & Najita

Transitional disks

Dust hole: mechanisms

Grain growth

Photoevaporation

Stellar companion Forming planet?

 \Rightarrow Need to know the gas distribution and mass < 50 AU \Rightarrow ALMA

Oph IRS 48

- Target Cycle 0: Oph IRS 48
- Dust ring (VISIR imaging)
- CO (v=1-0) gas hole (CRIRES)

 R_{h} =55 AU R_{h} =30 AU

R_h=14 AU

Ophiuchus (d~120 pc): 0.23" ⇔

 $i = 48^{\circ}$

Geers et al. 2007 Brown et al. 2012

- Band 9: ~690 GHz/0.44 mm
- Spatial resolution ~0.23" (Extended)
- Targets:
 - ¹²CO 6-5
 - C¹⁷O 6-5
 - 685 GHz continuum
- Observations taken June-July 2012

Integrated ¹²CO

Bruderer et al. 2014 Van der Marel et al. 2013

¹²CO 6-5 channels follow Keplerian motion (black) Bruderer et al. 2014

Initial conclusions:

- Full gas disk
- Keplerian motion
- 20 AU gas hole

Analysis gas distribution: DALI (Bruderer 2013)

Particularly useful for transition disks: complex heating

Input: axisymmetric density model with density drops

Bruderer et al. 2014

Profile

Comparison with data

Major axis cut

Spectrum

- ¹²CO optically thick, but...
 - Marginal C¹⁷O 6-5 detection
 - Spatially resolved: optical thickness varies
 - Large scale height
 - Low disk mass

 Analysis of gas density structure down to factor of a few!

 Instead of one gas hole, two density drops at 20 & 60 AU

Outer drop factor 12

Inner drop factor >10

Density drop points directly to planet clearing
 Indirect evidence for planets in disk

Total gas mass ~0.15 M_{Jup}

And what about the dust

A gigantic dust trap!

Missing dust

van der Marel et al. 2013

Large vs small dust

 Not only gas, but also small dust emission indicates a full ring

 Separation mm-dust and µm-dust

What can cause this structure?

FARGO model
Gas density: planet clearing

Pinilla et al. 2012

Pinilla et al. 2012

- Depth and shape of the gap depend on the planet mass
- Planet generates a radial pressure bump in gas

What happens to the dust? Pinilla et al. 2012

Dust evolution

 Micron-sized dust grains in protoplanetary disks

Growth >12 orders of magnitude

- Rocky planets (>1000 km)
 - => Growth by random motions, collisions, sticking

Dust evolution

Friction

Dust growth in a normal disk

- Coagulation and fragmentation
- Radial inward drift
- Dust can not grow beyond millimeter sizes?
- Two dust properties:
 - Large particles move towards high pressure
 - Small particles move with the gas

Combination dust dynamics and dust evolution

Pinilla et al. 2012

- What is the origin of the azimuthal asymmetry?
- Steep drop
 - \Rightarrow pressure bump becomes Rossby unstable

Pinilla et al 2012 Birnstiel et al. 2013 Ataiee et al. 2013

- What is the origin of the azimuthal asymmetry?
- Steep drop
 - \Rightarrow pressure bump becomes Rossby unstable:

Small gas asymmetry \Leftarge dust asymmetry

Birnstiel et al. 2013 Van der Marel et al. 2013

Vortex?

• Warm H_2CO ($E_U \sim 174$ K) detected

Hints gas asymmetry?
- H₂CO detected in south but not cospatial with dust
- Dust absorption?
- ¹²CO: less emission in south
- lower T (shielding)?

1.0

0.5

- Vortex dissipated?
- CO isotopologues in ALMA Cycle 2!

Van der Marel et al. 2014

625.

466.

306.

147.

-12.

-171.

-330.

Other ALMA dust traps?

• HD142527 (Band 7)

- Azimuthal asymmetry in dust
- CO present inside dust hole (¹²CO), but density decreased (isotopologues)

Casassus et al. 2013 Fukagawa et al. 2013

Other ALMA dust traps?

HD135344B/SAO206462

4

2

D

Jy/beam km/s

SR21

 Azimuthal asymmetry in dust

- ¹²CO inside hole
- Density drop not constrained, but ALMA Cycle 1 program on
 ¹³CO and C¹⁸O 3-2

Perez et al. 2014

- Millimeter dust rings
 => Radial trapping
- Asymmetric dust rings

 => Radial & azimuthal trapping
 => Radial trapping & eccentricity
- Evidence trapping
 - Millimeter dust not enough
 - Gas and dust observations!
 - Multi-wavelength

Williams & Cieza 2011

Trapping efficiency ~ dust particle size
 1) Compare large dust with small dust

1

0

-1

Dec. offset[arcsec]

HD142527

HD135344B/ SAO206462

Casassus et al. 2013 Muto et al. 2012 Perez et al. 2014

- Trapping efficiency ~ dust particle size
 - 2) Compare mm-dust at different wavelengths
 =>emission at longer wavelengths more concentrated azimuthally and radially!

spectral index α : F(v) ~ v^{- α}

Birnstiel et al. 2013

- Gas pressure bump: not necessarily density gradient
- Alternatives:
 - Dead zones (viscosity gradient)
 - Zonal flows (viscosity gradient)
 - Baroclinic instability (entropy gradient)
- Difficult to observe... (except excluding density)
- Other alternative: gravitational instability?

Conclusions

- Transitional disks with planets may all be dust traps
- Trapping in radial and azimuthal direction possible
- Evidence for dust trap in separation large & small dust
- Evidence for embedded planets in resolved gas!

- ALMA is the key for further studies of dust trapping in transitional disks
- Stay tuned for more results in Cycle 0, 1 and 2!