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Theoretical definition of “Intermediate” Mass

• Upper limit: 8

• evolution: SN, winds

• formation: no PMS, 
importance of radiation 
pressure, formation of HII 
region

• Lower limit: 1.5-3

• evolution: significant mass 
loss

• formation: multiplicity, 
radiative PMS

FIGURE 2. Revised PMS models for low- and intermediate-mass stars with protostellar initial condi-
tions. Selected isochrones are also shown. (From [23])

found by Hayashi, Iben and others can be summarized as follows:

• Protostars move from the forbidden zone to the border for quasi-static equilibrium:
yes, but the HR diagram is much more reduced, especially for high luminosity stars.

• PMS stars descend along the vertical Hayashi tracks: yes & not, since not all of
them have an initial fully convective phase. Stars with mass >∼ 3 M⊙ begin the
PMS phase as fully radiative objects.

• PMS stars join radiative tracks: yes, all stars go through a radiative phase, apart
from stars less massive than ∼0.4 M⊙ that remain fully convective.

• PMS stars reach the Main Sequence: indeed, all of them do, but massive ones
(M∗ >∼ 10 M⊙) are born on the main sequence. The main reason is that the Kelvin-
Helmoltz time scale is a sensitive function of mass and decreases quite rapidly for
more massive objects, becoming shorter than the accretion time scale. Thus, such
massive stars have no PMS phase at all and appear directly on the main sequence
once they are optically revealed.

These important properties can be appreciated in the HR diagram shown in Figure 2.
A full account of the observational and theoretical properties of young stars and tests on
the HR diagram can be found in [18] [19].

SOME OBSERVATIONAL TESTS

As indicated before, the distribution of stars in the color-magnitude diagram of the
cluster NGC 2264 provided the first evidence of the existence of a population of young
stars in the contraction phase. Similar results were obtained by Merle Walker on the
brighter members of other clusters, such as NGC 6530, IC 5146, and NGC 6611.
Interestingly, the original measurements of NGC 2264 by Walker have been recently
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Intermediate Mass Stars are in the Transition Zone

• Luminosities: transition zone in stellar structure on the PMS (or the end of 
the PMS)

• Accretion rates onto cores: transition zone between non-turbulent and 
turbulent initial conditions

• Ionization: transition zone between irrelevance and HII region dominated 
feedback

• Disks and Planets: the last (but easier to image) place for planets?

Does transition imply a break in formation process?



Do we need more than one mode of star 
formation: CMF vs IMF

Fig. 1.— IMF functional forms proposed by various au-
thors from fits to Galactic stellar data. With the exception
of the Salpeter slope, the curves are normalized such that
the integral over mass is unity. When comparing with ob-
servational data, the normalization is set by the total number
of objects as shown in Figure 2.

analytically different, is to represent the full mass range of
the IMF as a series of power-laws, such as in Kroupa (2001,
2002). Above ⇠ 0.2M�, the multiple-power-law segments
and log-normal with a power-law tail at high masses agree
very well as shown by Figure 1. However, the form of the
IMF at the low mass end is still relatively uncertain and sub-
ject to ongoing debate (e.g., Thies and Kroupa 2007, 2008;
Kroupa et al. 2013). The philosophical difference between
these two forms reduces to whether one believes that star-
formation is a continuous process or whether there are dis-
tinct physical processes that dominate in certain regimes,
such as at the stellar/sub-stellar boundary.

Other proposed functional forms include a truncated ex-
ponential where dN / M�↵

(1 � exp[(�M/M
p

)

��

])dM
(de Marchi and Paresce, 2001; Parravano et al., 2011), the
Pareto-Levy family of stable distributions, which includes
the Gaussian (Cartwright and Whitworth, 2012), and a log-
normal joined with power laws at both low and high masses
(Maschberger, 2013). It is usually not possible to discrim-
inate between these forms on the basis of observations due
to significant uncertainties. We note that Figure 1 shows
only the proposed IMF functions and not the error associ-
ated with the derivations of these fits from the data. In all
cases shown, the authors fit the galactic field IMF over a re-
stricted mass range and then extrapolated their functional fit
to the whole mass range. Observers and theoreticians now
use these functional forms without any error bars to eval-
uate how well their data (or models) are consistent within
their uncertainties.

2.2. IMF Universality in the Milky Way
2.2.1. Uncertainties in the IMF Determination From Re-

solved Populations

The basic observational method to derive the IMF con-
sists of three steps. First, observers measure the luminosity
function (LF) of a complete sample of stars that lie within
some defined volume. Next, the LF is converted into a
present day mass function (PDMF) using a mass-magnitude
relationship. Finally, the PDMF is corrected for the star for-
mation history, stellar evolution, galactic structure, cluster
dynamical evolution and binarity to obtain the individual-
star IMF. None of these steps is straightforward, and many
biases and systematic uncertainties may be introduced dur-
ing the process. A detailed discussion of these limitations at
low masses and in the substellar regime is given by Jeffries
(2012) and Luhman (2012).

When obtaining the LF, defining a complete sample of
stars for a given volume can be challenging. Studies of field
stars from photometric surveys, either wide and relatively
shallow (e.g. Bochanski et al., 2010) or narrow but deep
(e.g. Schultheis et al., 2006), are magnitude limited and
need to be corrected for the Malmquist bias. Indeed, when
distances are estimated from photometric or spectroscopic
parallax, the volume limited sample inferred will be pol-
luted by more distant bright stars due to observational un-
certainties and intrinsic dispersion in the color-magnitude
relation. This effect can be fairly significant and change the
slope of the luminosity function by more than 10%. Stud-
ies of nearby stars, for which the distance is determined
from trigonometric parallax, are not affected by this bias,
but they are affected by the Lutz and Kelker (1973) bias, in
which the averaged measured parallax is larger than the true
parallax, if the parallax uncertainties exceed 10%. These
issues reduce the studies within 20 pc to a completeness
level of ⇠80% (Reid et al., 2007), which results in small
number statistics, especially at low masses. Cluster stud-
ies do not have these problems since a complete sample can
in principle be obtained from the complete cluster census.
However, secure membership cannot be assessed from pho-
tometry alone and proper motion measurements as well as
spectroscopic follow-up are often necessary. In addition,
the remaining contamination by field stars may be large if
cluster properties such as age and proper motion are similar
to the field.

For young star forming regions, differential extinction
may be a significant problem. This is usually taken into
account by limiting the sample up to a given A

V

. How-
ever, imposing a limit may exclude the more central regions,
which are often more extincted, from the determination of
the LF. If the stellar spatial distribution is not the same at all
masses and, in particular, if mass segregation is present, ex-
cluding high A

V

sources may introduce a strong bias. Such
an effect can be tested by simulating a fake cluster as in
Parker et al. (2012).

Even with no extinction, mass segregation must be taken
into account because the cluster LF may be different in the

3

ings as a function of scale). This would allow observations
and theory to compare the entire dynamic range of turbulent
fragmentation using all the information in the field rather
than focusing on some, ultimately arbitrary, definition of a
“core” and a “cloud.”

In summary, these theories provide a natural link be-
tween the CMF, GMC mass function, and star cluster mass
function for a wide range of systems. This link derives
from the inherently scale free physics of turbulent fluctua-
tions plus gravity. The most robust features of these models
are the Salpeter-like slope (↵ ⇠ 2.2� 2.4), which emerges
generically from scale-free processes, and the log-normal-
like turnover, which emerges from the central limit theo-
rem. The location of the turnover, in any model where tur-
bulent density fluctuations are important, is closely tied to
the sonic length, which is the scale, R

s

, below which ther-
mal or magnetic support dominates over turbulence. Be-
low this scale density fluctuations become rapidly damped
and cannot produce new cores. As a result, the location of
the peak, and the rapidity of the CMF turnover below it,
depend dramatically on the gas thermodynamics (Larson,
2005; Jappsen et al., 2005). Unlike what is often assumed,
however, the dependence on thermodynamics displayed by
turbulent models and simulations with driven turbulence is
not the same as a Jeans-mass dependence (see Hennebelle
and Chabrier 2009). The difference between the scaling of
the Jeans mass, M

J

' c3
s

/(⇢1/2 G3/2
), and the sonic mass,

M
s

' v2turb Rs

/G, can be dramatic when extrapolating to
extreme regions such as starbursts where the turbulent ve-
locity, vturb, is large (Hopkins, 2013c). Consequently, a
better understanding of the role of thermodynamics in ex-
treme environments is needed.

Other processes such as magnetic fields, feedback from
protostars, and intermittency of turbulence may also be im-
portant and are not always considered in these models (see
§5 and the PPVI review by Krumholz et al.). For exam-
ple, supersonic turbulence is intermittent and spatially cor-
related, so both velocity and density structures can exhibit
coherency and non-Gaussian features, including significant
deviations from log-normal density distributions (Feder-
rath et al., 2010; Hopkins, 2013b). In addition, the mod-
els above generally assume a steady-state system, where in
fact time-dependent effects may be critical (see §5). Cer-
tainly these effects are necessary to consider when trans-
lating the CMF models into predictions of star formation
rates (Clark et al. 2007; Federrath and Klessen 2012; PPVI
review by Padoan et al.). Preliminary attempts to incor-
porate time-dependence into the models (Hennebelle and
Chabrier, 2011, 2013; Hopkins, 2013a) are worth explor-
ing in more detail in future work.

3.3. The CMF Inferred from Numerical Simulations
A variety of numerical simulations have been performed

to study the origin of the CMF and the IMF (see §5 for a dis-
cussion of cluster simulations). Here, we consider a sub-set
of numerical simulations that focus on modeling turbulence
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Fig. 3.— Core mass spectrum and GMC mass spectrum cal-
culated by (Hopkins, 2012b) as a function of stellar mass
and sonic mass. The grey dotted curve shows the CMF
inferred by (Hennebelle and Chabrier, 2008), while the
lines indicate structures defined by the last (grey dashed)
and first crossing (dot-dashed) of the self-gravitating bar-
rier. The Chabrier (2005) and Kroupa (2001) fits to the
observed IMF are shown by the grey dashed and light-grey
dot-dashed lines, respectively. Observed Milky Way GMCs
are indicated by the solid grey line with circles.

and the formation of cores. The most important assump-
tions in these simulations are the explicit treatment of self-
gravity and turbulent driving, since these two processes lie
at the very heart of the analytic models described above.
Other physical processes such as magnetic fields and the
equation of state are also very important but we temporar-
ily ignore these for the purpose of comparing the analytic
models to simulations. A more technical but severe issue is
the definition of the object mass used to compute the mass
spectrum. First, the exact definition of a core can be impor-
tant, and second, “sink” particles are often used to mimic
protostars or cores that accrete from the surrounding gas.
Given that these sinks cannot self-consistently model all the
relevant physical processes, they are usually intermediate
between a core and a star, although when feedback is prop-
erly accounted for, they may more closely resemble a star
(see §5.2). Another crucial issue is numerical resolution.
Broadly speaking, the IMF covers about four orders of mag-
nitude in mass, which corresponds to five to seven orders of
magnitude in spatial scales assuming a typical mass-size re-
lation M

CORE
/ L1�2 (e.g., Larson 1981). Since most nu-

merical simulations span less than five orders of magnitude,
the mass spectrum they compute is necessarily limited.

The CMF has been determined in driven turbulence
simulations without self-gravity, where prestellar cores are
identified as regions that would have been gravitationally
bound if gravity had been included. The exact cores iden-
tified depend on the types of support considered. Padoan
et al. (2007) performed both hydrodynamical and magne-
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Fig. 4.— At the beginning of section 4, we discuss the con-
ditions that are necessary for the CMF to map to the IMF.
These schematics illustrate what would happen if each of
these conditions were to be violated.

and excitation conditions, finite resolution, superposition of
emission from disparate regions along the line of sight, or
optical-thickness (concealment of regions along the line of
sight). In addition, spectra only probe the radial component
of the velocity. These uncertainties aside, the line-widths
measured from observations of N2H+, NH3, and HCO+

towards dense cores in Perseus and Ophiuchus suggest that
the internal velocities, while generally sub-sonic, can con-
tribute a significant amount of energy (André et al., 2007;
Johnstone et al., 2010; Schnee et al., 2012). Consequently,
some of the cores identified purely on the basis of dust emis-
sion or extinction may actually be unbound, transient ob-
jects. Enoch et al. (2008) demonstrated that this is likely
to affect only the lowest mass-bins of their CMF, and then
only by a small amount, but they note that the statistics are
still small.

Similar constraints pertain to estimates of the magnetic
field in cores. Field estimates are obtained using either the
Zeeman effect, which only probes the line-of-sight compo-
nent, or the Chandrasekhar-Fermi conjecture, which can be
used to estimate the transverse component. Crutcher et al.
(2009) presented statistical arguments to suggest that mag-
netic fields are not able to support prestellar cores against
gravity. However, observing magnetic field strengths in
cores is challenging (see PPVI chapter by Li et al. for more
discussion).

4.1.3. Extracting Cores from Column Density Maps

Any evaluation of the CMF inherently depends on the
procedure used to identify cores and map their boundaries.
Different algorithms (e.g., GAUSSCLUMPS, Stutzki and
Guesten 1990; CLUMPFIND, Williams et al. 1994; dendro-
grams, Rosolowsky et al. 2008b), even when applied to the
same observations, do not always identify the same cores,
and when they do, they sometimes assign widely different
masses. Interestingly, different methods for extracting cores
usually find similar CMFs even though there may be a poor
correspondence between individual cores (for example, the
CMFs derived for Ophiuchus by Motte et al. 1998 and by
Johnstone et al. 2000). A similar problem arises in the
analysis of simulations (Smith et al., 2008). Pineda et al.
(2009) have shown that the number and properties of cores
extracted often depend critically on the values of algorith-
mic parameters. Therefore, the very existence of the cores
that contribute to an observed CMF should be viewed with
caution, particularly at the low-mass end where the sample
may be incomplete (André et al., 2010).

4.2. Phenomenology of Core Growth, Collapse and
Fragmentation

In the theory of turbulent fragmentation, cores form in
layers assembled at the convergence of large-scale flows or
in shells swept up by expanding nebulae such as HII re-
gions, stellar wind bubbles and supernova remnants. Nu-
merical simulations indicate that these cores are delivered
by a complex interplay between shocks, thermal instabil-
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and excitation conditions, finite resolution, superposition of
emission from disparate regions along the line of sight, or
optical-thickness (concealment of regions along the line of
sight). In addition, spectra only probe the radial component
of the velocity. These uncertainties aside, the line-widths
measured from observations of N2H+, NH3, and HCO+

towards dense cores in Perseus and Ophiuchus suggest that
the internal velocities, while generally sub-sonic, can con-
tribute a significant amount of energy (André et al., 2007;
Johnstone et al., 2010; Schnee et al., 2012). Consequently,
some of the cores identified purely on the basis of dust emis-
sion or extinction may actually be unbound, transient ob-
jects. Enoch et al. (2008) demonstrated that this is likely
to affect only the lowest mass-bins of their CMF, and then
only by a small amount, but they note that the statistics are
still small.

Similar constraints pertain to estimates of the magnetic
field in cores. Field estimates are obtained using either the
Zeeman effect, which only probes the line-of-sight compo-
nent, or the Chandrasekhar-Fermi conjecture, which can be
used to estimate the transverse component. Crutcher et al.
(2009) presented statistical arguments to suggest that mag-
netic fields are not able to support prestellar cores against
gravity. However, observing magnetic field strengths in
cores is challenging (see PPVI chapter by Li et al. for more
discussion).

4.1.3. Extracting Cores from Column Density Maps

Any evaluation of the CMF inherently depends on the
procedure used to identify cores and map their boundaries.
Different algorithms (e.g., GAUSSCLUMPS, Stutzki and
Guesten 1990; CLUMPFIND, Williams et al. 1994; dendro-
grams, Rosolowsky et al. 2008b), even when applied to the
same observations, do not always identify the same cores,
and when they do, they sometimes assign widely different
masses. Interestingly, different methods for extracting cores
usually find similar CMFs even though there may be a poor
correspondence between individual cores (for example, the
CMFs derived for Ophiuchus by Motte et al. 1998 and by
Johnstone et al. 2000). A similar problem arises in the
analysis of simulations (Smith et al., 2008). Pineda et al.
(2009) have shown that the number and properties of cores
extracted often depend critically on the values of algorith-
mic parameters. Therefore, the very existence of the cores
that contribute to an observed CMF should be viewed with
caution, particularly at the low-mass end where the sample
may be incomplete (André et al., 2010).

4.2. Phenomenology of Core Growth, Collapse and
Fragmentation

In the theory of turbulent fragmentation, cores form in
layers assembled at the convergence of large-scale flows or
in shells swept up by expanding nebulae such as HII re-
gions, stellar wind bubbles and supernova remnants. Nu-
merical simulations indicate that these cores are delivered
by a complex interplay between shocks, thermal instabil-
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Multiplicity is Mass Dependent

30 RAGHAVAN ET AL. Vol. 190

Figure 12. Multiplicity statistics by spectral type. The thin solid lines represent
stars and brown dwarfs beyond the spectral range of this study, and their sources
are listed in the text. For the FGK stars studied here, the thick dashed lines show
our observed multiplicity fractions, i.e., the percentage of stars with confirmed
stellar or brown dwarf companions, for spectral types F6–G2 and G2–K3. The
thick solid lines show the incompleteness-adjusted fraction for the entire F6–K3
sample. The uncertainties of the multiplicity fractions are estimated by bootstrap
analysis as explained in Section 5.2.

publications, when available. Otherwise, they are estimated
using mass ratios for double-lined spectroscopic binaries, or
from multi-color photometry from catalogs, or using the ∆mag
measures in the WDS along with the primary’s spectral type.
Metallicity and chromospheric activity estimates of the primary
are adopted for all components of the system.

5.3.2. Multiplicity by Spectral Type and Color

Figure 12 shows the multiplicity fraction for stars and brown
dwarfs. Most O-type stars seem to form in binary or multiple
systems, with an estimated lower limit of 75% in clusters and
associations having companions (Mason et al. 1998a, 2009).
Studies of OB-associations also show that over 70% of B and
A type stars have companions (Shatsky & Tokovinin 2002;
Kobulnicky & Fryer 2007; Kouwenhoven et al. 2007). In sharp
contrast, M-dwarfs have companions in significantly fewer
numbers, with estimates ranging from 11% for companions
14–825 AU away (Reid & Gizis 1997) to 34%–42% (Henry
& McCarthy 1990; Fischer & Marcy 1992). Finally, estimates
for the lowest mass stars and brown dwarfs suggest that only
10%–30% have companions (Burgasser et al. 2003; Siegler et al.
2005; Allen et al. 2007; Maxted et al. 2008; Joergens 2008).
Our results for F6–K3 stars are consistent with this overall
trend, as seen by the thick solid lines for the incompleteness-
corrected fraction. Moreover, the thick dashed lines for two
subsamples of our study show that this overall trend is present
even within the range of solar-type stars. Of the blue subsample
(0.5 ! B − V ! 0.625, F6–G2, N = 131), 50% ± 4%
have companions, compared with only 41% ± 3% for the red
subsample (0.625 < B − V ! 1.0, G2–K3, N = 323).

5.3.3. Period Distribution

Figure 13 shows the period distribution of all 259 confirmed
pairs, with an identification of the technique used to discover
and/or characterize the system. To provide context, the axis
at the top shows the semimajor axis corresponding to the pe-
riod on the x-axis assuming a mass sum of 1.5 M⊙, the aver-
age value of all the confirmed pairs. When period estimates

Figure 13. Period distribution for the 259 confirmed companions. The data
are plotted by the companion detection method. Unresolved companions
such as proper-motion accelerations are identified by horizontal line shading,
spectroscopic binaries by positively sloped lines, visual binaries by negatively
sloped lines, companions found by both spectroscopic and visual techniques by
crosshatching, and CPM pairs by vertical lines. The semimajor axes shown in
AU at the top correspond to the periods on the x-axis for a system with a mass
sum of 1.5 M⊙, the average value for all the pairs. The dashed curve shows
a Gaussian fit to the distribution, with a peak at log P = 5.03 and standard
deviation of σlog P = 2.28.

are not available from spectroscopic or visual orbits, we esti-
mate them as follows. For CPM companions with separation
measurements, we estimate semimajor axes using the statistical
relation log a′′ = log ρ ′′ + 0.13 from DM91, where a is the
angular semimajor axis and ρ is the projected angular separa-
tion, both in arcseconds. This, along with mass estimates as de-
scribed in Section 5.3.1 and Newton’s generalization of Kepler’s
Third Law yields the period. For the remaining few unresolved
pairs, we assume periods of 30–200 years for radial-velocity
variables and 10–25 years for proper-motion accelerations. The
period distribution follows a roughly log-normal Gaussian pro-
file with a mean of log P = 5.03 and σlog P = 2.28, where
P is in days. This average period is equivalent to 293 years,
somewhat larger than Pluto’s orbital period around the Sun. The
median of the period distribution is 252 years, similar to the
Gaussian peak. This compares with corrected mean and me-
dian values of 180 years from DM91. The larger value of the
current survey is a result of more robust companion informa-
tion for wide CPM companions. The similarity of the overall
profile with the incompleteness-corrected DM91 plot suggests
that most companions they estimated as missed have now been
found. The shading in the figure shows the expected trend—the
shortest period systems are spectroscopic, followed by com-
bined spectroscopic/visual orbits, then by visual binaries, and
finally by CPM pairs. The robust overlap between the various
techniques in all but the longest period bins underscores the
absence of significant detection gaps in companion space and
supports our earlier statements about the completeness of this
survey. Binaries with periods longer than log P = 8 are rare,
and only 10 of the 259 confirmed pairs (4%) have estimated
separations larger than 10,000 AU. Although separations wider
than this limit were not searched comprehensively, Figure 8
shows that separations of up to 14,000 AU were searched for
some systems, and 56% of the primaries were searched beyond
the 10,000 AU limit. The drop in the number of systems with
companions thus appears to occur within our search space and

Raghavan 2010
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Figure 12. Multiplicity statistics by spectral type. The thin solid lines represent
stars and brown dwarfs beyond the spectral range of this study, and their sources
are listed in the text. For the FGK stars studied here, the thick dashed lines show
our observed multiplicity fractions, i.e., the percentage of stars with confirmed
stellar or brown dwarf companions, for spectral types F6–G2 and G2–K3. The
thick solid lines show the incompleteness-adjusted fraction for the entire F6–K3
sample. The uncertainties of the multiplicity fractions are estimated by bootstrap
analysis as explained in Section 5.2.

publications, when available. Otherwise, they are estimated
using mass ratios for double-lined spectroscopic binaries, or
from multi-color photometry from catalogs, or using the ∆mag
measures in the WDS along with the primary’s spectral type.
Metallicity and chromospheric activity estimates of the primary
are adopted for all components of the system.

5.3.2. Multiplicity by Spectral Type and Color

Figure 12 shows the multiplicity fraction for stars and brown
dwarfs. Most O-type stars seem to form in binary or multiple
systems, with an estimated lower limit of 75% in clusters and
associations having companions (Mason et al. 1998a, 2009).
Studies of OB-associations also show that over 70% of B and
A type stars have companions (Shatsky & Tokovinin 2002;
Kobulnicky & Fryer 2007; Kouwenhoven et al. 2007). In sharp
contrast, M-dwarfs have companions in significantly fewer
numbers, with estimates ranging from 11% for companions
14–825 AU away (Reid & Gizis 1997) to 34%–42% (Henry
& McCarthy 1990; Fischer & Marcy 1992). Finally, estimates
for the lowest mass stars and brown dwarfs suggest that only
10%–30% have companions (Burgasser et al. 2003; Siegler et al.
2005; Allen et al. 2007; Maxted et al. 2008; Joergens 2008).
Our results for F6–K3 stars are consistent with this overall
trend, as seen by the thick solid lines for the incompleteness-
corrected fraction. Moreover, the thick dashed lines for two
subsamples of our study show that this overall trend is present
even within the range of solar-type stars. Of the blue subsample
(0.5 ! B − V ! 0.625, F6–G2, N = 131), 50% ± 4%
have companions, compared with only 41% ± 3% for the red
subsample (0.625 < B − V ! 1.0, G2–K3, N = 323).

5.3.3. Period Distribution

Figure 13 shows the period distribution of all 259 confirmed
pairs, with an identification of the technique used to discover
and/or characterize the system. To provide context, the axis
at the top shows the semimajor axis corresponding to the pe-
riod on the x-axis assuming a mass sum of 1.5 M⊙, the aver-
age value of all the confirmed pairs. When period estimates

Figure 13. Period distribution for the 259 confirmed companions. The data
are plotted by the companion detection method. Unresolved companions
such as proper-motion accelerations are identified by horizontal line shading,
spectroscopic binaries by positively sloped lines, visual binaries by negatively
sloped lines, companions found by both spectroscopic and visual techniques by
crosshatching, and CPM pairs by vertical lines. The semimajor axes shown in
AU at the top correspond to the periods on the x-axis for a system with a mass
sum of 1.5 M⊙, the average value for all the pairs. The dashed curve shows
a Gaussian fit to the distribution, with a peak at log P = 5.03 and standard
deviation of σlog P = 2.28.

are not available from spectroscopic or visual orbits, we esti-
mate them as follows. For CPM companions with separation
measurements, we estimate semimajor axes using the statistical
relation log a′′ = log ρ ′′ + 0.13 from DM91, where a is the
angular semimajor axis and ρ is the projected angular separa-
tion, both in arcseconds. This, along with mass estimates as de-
scribed in Section 5.3.1 and Newton’s generalization of Kepler’s
Third Law yields the period. For the remaining few unresolved
pairs, we assume periods of 30–200 years for radial-velocity
variables and 10–25 years for proper-motion accelerations. The
period distribution follows a roughly log-normal Gaussian pro-
file with a mean of log P = 5.03 and σlog P = 2.28, where
P is in days. This average period is equivalent to 293 years,
somewhat larger than Pluto’s orbital period around the Sun. The
median of the period distribution is 252 years, similar to the
Gaussian peak. This compares with corrected mean and me-
dian values of 180 years from DM91. The larger value of the
current survey is a result of more robust companion informa-
tion for wide CPM companions. The similarity of the overall
profile with the incompleteness-corrected DM91 plot suggests
that most companions they estimated as missed have now been
found. The shading in the figure shows the expected trend—the
shortest period systems are spectroscopic, followed by com-
bined spectroscopic/visual orbits, then by visual binaries, and
finally by CPM pairs. The robust overlap between the various
techniques in all but the longest period bins underscores the
absence of significant detection gaps in companion space and
supports our earlier statements about the completeness of this
survey. Binaries with periods longer than log P = 8 are rare,
and only 10 of the 259 confirmed pairs (4%) have estimated
separations larger than 10,000 AU. Although separations wider
than this limit were not searched comprehensively, Figure 8
shows that separations of up to 14,000 AU were searched for
some systems, and 56% of the primaries were searched beyond
the 10,000 AU limit. The drop in the number of systems with
companions thus appears to occur within our search space and

Raghavan 2010

Binaries are the 
norm for A and B 

stars



Two Star Formation Models

• Competitive Accretion

• Turbulent Core Fragmentation



Two Star Formation Models

• Competitive Accretion

• Turbulent Core Fragmentation

Two “camps” are 
converging. Elements of 
both cartoons are likely 

correct.



Turbulent Core Accretion

• Scaling up from A to O changes 
contribution of thermal core

• This causes change in accretion 
rate with core mass

rtherm

Rturb

core

rtherm

Rturb

Padoan 1995, 
McKee & Tan 2004

lower mass

higher mass



Competitive Accretion

initial cores

differential growth 

Bonnell et al 1997



Do we need more than one formation model 
theoretically?

• Competitive Accretion: No. All stars start the same, and 
intermediate mass ones grow more, but not as much as 
massive ones

• Turbulent Core Model: No. There exists a spectrum of 
density perturbations that seed stars of different masses



Comparing two numerical models that create 
intermediate mass stars

numerical differences
CA TC

turbulent spectrum
density

Feedback

k�4 k�2

8.6⇥ 10�181.2⇥ 10�19 r0 r�1.5

M 7.513

radiation radiation, winds

8 M.R. Bate

Figure 2. The global evolution of column density in the radiation hydrodynamical calculation. Shocks lead to the dissipation of the turbulent energy that
initially supports the cloud, allowing parts of the cloud to collapse. Star formation begins at t = 0.727 t↵ in a collapsing dense core. By t = 1.10t↵ the
cloud has produced six main sub-clusters, and by the end of the calculation these sub-clusters started to merge and dissolve. Each panel is 0.6 pc (123,500 AU)
across. Time is given in units of the initial free-fall time, t↵ = 1.90 ⇥ 10

5 yr. The panels show the logarithm of column density, N , through the cloud, with
the scale covering �1.4 < logN < 1.0 with N measured in g cm�2. White dots represent the stars and brown dwarfs.
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Competitive Accretion: Source for Herbig Ae/Be
• Low mass end only (consistent with 

cluster mass)

• Tend to be in the center of the potential 
well

• Good agreement with field multiplicity 
and IMF

Stellar and multiple star properties 3133

Table 2. The numbers of single and multiple systems for dif-
ferent primary mass ranges at the end of the radiation hydrody-
namical calculation.

Mass range (M⊙) Single Binary Triple Quadruple

M < 0.03 7 0 0 0
0.03 ≤ M < 0.07 20 0 0 0
0.07 ≤ M < 0.10 8 3 0 0
0.10 ≤ M < 0.20 17 7 1 0
0.20 ≤ M < 0.50 21 9 2 2
0.50 ≤ M < 0.80 5 2 0 1
0.80 ≤ M < 1.2 2 1 1 0

M > 1.2 4 6 1 4

All masses 84 28 5 7

excludes those that are components of triples or quadruples. The
number of triples excludes those that are members of quadruples.
However, higher-order systems are ignored (e.g. a quintuple system
may consist of a triple and a binary in orbit around each other, but
this would be counted as one binary and one triple). We choose
quadruple systems as a convenient point to stop as it is likely that
most higher order systems will not be stable in the long term and
would decay if the cluster was evolved for many millions of years.
The numbers of single and multiple stars produced by the radiation
hydrodynamical calculation are given in Table 2 following these
definitions. In Table 3, we give the properties of the 40 multiple
systems.

In the left-hand panel of Fig. 17, we compare the multiplicity
fraction of the stars and brown dwarfs as a function of stellar mass
obtained from the radiation hydrodynamical calculation with obser-
vations. The results from a variety of observational surveys (see the
figure caption) are plotted using black open boxes with associated
error bars and/or upper/lower limits. The data point from the survey
of Duquennoy & Mayor (1991) is plotted using dashed lines for the
error bars since this survey has been recently superseded by that
of Raghavan et al. (2010). The results from the radiation hydrody-
namical simulation have been plotted in two ways. First, using the
numbers given in Table 2 we compute the multiplicity in six mass
ranges: low-mass brown dwarfs (masses <0.03 M⊙), VLM objects
excluding the low-mass brown dwarfs (masses 0.03–0.10 M⊙),
low-mass M-dwarfs (masses 0.10–0.20 M⊙), high-mass M-dwarfs
(masses 0.20–0.50 M⊙), K-dwarfs and solar-type stars (masses
0.50–1.20 M⊙), and intermediate-mass stars (masses >1.2 M⊙).
The filled blue squares give the multiplicity fractions in these mass
ranges, while the surrounding blue hatched regions give the range
in stellar masses over which the fraction is calculated and the 1σ

(68 per cent) uncertainty on the multiplicity fraction. In addition, a
thick solid line gives the continuous multiplicity fraction computed
using a boxcar average of the results from the radiation hydrody-
namical simulation. The width of the boxcar average is one order
of magnitude in stellar mass.

The radiation hydrodynamical calculation clearly produces a
multiplicity fraction that strongly increases with increasing primary
mass. Furthermore, the values in each mass range are in agreement
with observation. In the right-hand panel of Fig. 17, we provide the
equivalent quantities obtained from the main barotropic calculation
of Bate (2009a) at the same time as the end of the radiation hy-
drodynamical calculation. Those readers who wish to examine the
multiplicity at the end of the barotropic calculation can find this
in Bate (2009a). The barotropic calculations also produce a mul-
tiplicity that is a strongly increasing function of mass. In fact, the

results using radiation hydrodynamics and a barotopic equation of
state are very similar. The main barotropic calculation gives mul-
tiplicities that are somewhat higher for primary masses >0.2 M⊙
than those given by the radiation hydrodynamical calculation, but
the results are consistent within the statistical uncertainties.

It is important to note that the surveys with which we are compar-
ing the multiplicities are primarily of field stars rather than young
stars. This is necessary because surveys of young stars either do not
sample a large range of separations and mass ratios, or the statistics
are too poor. However, there may be considerable evolution of the
multiplicities between the age of the stars when the calculations
were stopped (∼105 yr) and a field population. This question of
the subsequent evolution of the clusters produced by hydrodynam-
ical simulations was recently tackled by Moeckel & Bate (2010)
who took the end point of the main barotropic calculation of Bate
(2009a) and evolved it to an age of 107 yr using an N-body code
under a variety of assumptions regarding the dispersal of the molec-
ular cloud. Moeckel & Bate found that the multiplicity distribution
evolved very little during dispersal of the molecular cloud and was
surprisingly robust to different assumptions regarding gas dispersal.
Even under the assumption of no gas removal at 107 yr, although
the multiplicities were found to have decreased slightly compared
with those at the end of the hydrodynamical calculation, they were
still formally consistent. They concluded that when star forma-
tion occurs in a clustered environment, the multiple systems that
are produced are quite robust against dynamical disruption during
continued evolution. Therefore, we do not expect the multiplicities
presented in Fig. 17 to evolve significantly as the stars evolve into
a field population.

In detail, we find the following.

Solar-type stars: Duquennoy & Mayor (1991) found an ob-
served multiplicity fraction of mf = 0.58 ± 0.1. However, the
recent larger survey carried out by Raghavan et al. (2010) revised
this downwards to 0.44 ± 0.02 and they concluded that the higher
value obtained by Duquennoy & Mayor was due to them overesti-
mating their incompleteness correction. The radiation hydrodynam-
ical calculation gives a multiplicity fraction of 0.42 ± 0.08 over the
mass range 0.5–1.2 M⊙ which is in good agreement with the result
of Raghavan et al. (2010).

M-dwarfs: Fischer & Marcy (1992) found an observed multi-
plicity fraction of 0.42 ± 0.09. In the mass range 0.1–0.5 M⊙ we
obtain 0.36 ± 0.05. Fischer & Marcy’s sample contains stars with
masses between 0.1 and 0.57 solar masses, but the vast majority
have masses in the range 0.2–0.5 M⊙ whereas in the simulation
almost half of the low-mass stars have masses less than 0.2 M⊙. In
the 0.2–0.5 M⊙ mass range we obtain 0.38±0.06. All these values
are consistent with the statistical uncertainties.

VLM objects: there has been much interest in the multiplicity
of VLM objects in recent years (Martı́n et al. 2000, 2003; Bouy
et al. 2003, 2006; Burgasser et al. 2003, 2006; Close et al. 2003,
2007; Gizis et al. 2003; Pinfield et al. 2003; Siegler et al. 2003, 2005;
Luhman 2004; Maxted & Jeffries 2005; Kraus, White & Hillenbrand
2005, 2006; Basri & Reiners 2006; Reid et al. 2006; Ahmic et al.
2007; Allen et al. 2007; Artigau et al. 2007; Konopacky et al. 2007;
Law, Hodgkin & Mackay 2008; Maxted et al. 2008; Reid et al. 2008;
Burgasser, Dhital & West 2009; Luhman et al. 2009a; Radigan et al.
2009; Faherty et al. 2011). For a recent review, see Burgasser et al.
(2007). Over the entire mass range of 0.018–0.10 M⊙, we find a
very low multiplicity of just 0.08 ± 0.05, although this is twice the
value found from the main barotropic calculation of Bate (2009a).
However, the multiplicity drops rapidly with decreasing primary
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Figure 7. Histograms giving the IMF of the 590 stars and brown dwarfs at t = 1.20tff from the main barotropic calculation of Bate (2009a) (left), and the
183 objects formed at the same time in the radiation hydrodynamical calculation (right). The double hatched histograms are used to denote those objects that
have stopped accreting, while those objects that are still accreting are plotted using single hatching. The radiation hydrodynamical calculation produces far
fewer brown dwarfs and low-mass stars and more stars with masses !1.5 M⊙ and is in good agreement with the Chabrier (2005) fit to the observed IMF for
individual objects. Two other parametrizations of the IMF are also plotted: Salpeter (1955) and Kroupa (2001).

observational constraints, but the statistical uncertainty is large.
Here we obtain a ratio of N (0.08–1.0)/N (0.03–0.08) = 117/31 ≈
3.8. Eight of the 31 low-mass objects and 84 of the 117 stars
were still accreting when the calculation was stopped, so there
is some uncertainty in this figure due to unknown future evolution.
But the value is well within observational uncertainties. For the
main barotropic calculation of Bate (2009a), this ratio was much
lower: 212/146 ≈ 1.45 at t = 1.20tff and 408/326 = 1.25 at
t = 1.50tff .

Below 0.03 M⊙, the IMF is very poorly constrained, both obser-
vationally and from the calculation presented here. The radiation
hydrodynamical calculation produced six objects with masses in
this range, with a minimum mass of 17.6 MJ. All of these objects
had stopped accreting when the calculation was stopped. This is
very different to the main barotropic calculation. At the same time
(1.20tff ), the barotropic calculation had produced 217 brown dwarfs
(40 still accreting) with masses less than 30 MJ with a minimum
mass of only 5.6 MJ. Even discounting objects that were still ac-
creting, the inclusion of radiative feedback has cut the production
of these VLM brown dwarfs by a factor of ≈30 and significantly in-
creased the minimum mass. It is interesting to note that the minimum
mass is substantially higher than the opacity limit for fragmenta-
tion (Low & Lynden-Bell 1976; Rees 1976; Silk 1977a,b; Boyd &
Whitworth 2005). This is because the opacity limit provides a min-
imum mass, but generally objects will accrete from their surround-
ings to greater masses. Perhaps more importantly, the minimum
mass is also greater than the estimated masses of some objects ob-
served in star-forming regions (Zapatero Osorio et al. 2000, 2002;
Kirkpatrick et al. 2001, 2006; Lodieu et al. 2008; Luhman et al.
2008, 2009b; Bihain et al. 2009; Burgess et al. 2009; Weights et al.
2009; Quanz et al. 2010). While an exact cut-off is difficult to
determine from either numerical simulations or observations, the
results of the radiation hydrodynamical calculation presented here
do imply that brown dwarfs with masses !15 MJ should be very
rare.

3.2.1 The origin of the initial mass function

Bate & Bonnell (2005) analysed two barotropic star cluster for-
mation simulations that began with clouds of different densities to
determine the origin of the IMF in those calculations (see also Bate
2005). They found that the IMF resulted from competition between

accretion and ‘ejection’. There was no significant dependence of
the mean accretion rate of an object on its final mass. Rather, there
was a roughly linear correlation between an object’s final mass and
the time between its formation and the termination of its accretion.
Furthermore, the accretion on to an object was usually terminated
by a dynamical interaction between the object and another system.
Note that such an interaction does not necessarily require that the
object is ejected from the cluster. Many times this is the case, but
moving an object into a lower density part of the cloud (e.g. out of
its natal core) or substantially increasing the object’s speed without
it becoming unbound can also dramatically reduce its accretion rate
[cf. the Bondi–Hoyle accretion formula Ṁ ∝ ρ/(c2

s +v2)3/2, where
v is the velocity of the object relative to the gas]. Thus, Bate & Bon-
nell found that objects formed with very low masses (a few Jupiter
masses) and accreted to higher masses until their accretion was
terminated, usually, by a dynamical encounter. This combination
of competitive accretion and stochastic dynamical interactions pro-
duced the mass distributions, and Bate & Bonnell (2005) presented
a simple semi-analytic model which could describe the numerical
results in which the characteristic stellar mass was given by the
product of the typical accretion rate and the typical time between an
object forming and having a dynamical interaction that terminated
its accretion. Bate (2009a) found the IMF in their larger barotropic
calculations also originated in this manner. They found the mean
accretion rate of a low-mass star did not depend on its final mass, but
that objects that accreted for longer ended up with greater masses
and that protostellar accretion was usually terminated by dynam-
ical interactions. Here we analyse the radiation hydrodynamical
calculation using the same methods.

In Fig. 8, we plot the final mass of an object versus the time
at which it formed (i.e. the time of insertion of a sink particle). It
is clear that the most massive stars at the end of the calculation
were some of the first to begin forming. During the calculation,
as other lower-mass stars have formed and some have had their
accretion terminated, these stars have continued to grow to higher
and higher masses. Maschberger et al. (2010) have argued that such
a cluster formation process naturally produces a relation between
cluster mass and maximum stellar mass similar to that which is
observed (Weidner & Kroupa 2006; Weidner, Kroupa & Bonnell
2010), although others argue that the observations are also consistent
with random sampling from a universal IMF (Lamb et al. 2010;
Fumagalli, da Silva & Krumholz 2011).
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Figure 2. The global evolution of column density in the radiation hydrodynamical calculation. Shocks lead to the dissipation of the turbulent energy that
initially supports the cloud, allowing parts of the cloud to collapse. Star formation begins at t = 0.727 t↵ in a collapsing dense core. By t = 1.10t↵ the
cloud has produced six main sub-clusters, and by the end of the calculation these sub-clusters started to merge and dissolve. Each panel is 0.6 pc (123,500 AU)
across. Time is given in units of the initial free-fall time, t↵ = 1.90 ⇥ 10

5 yr. The panels show the logarithm of column density, N , through the cloud, with
the scale covering �1.4 < logN < 1.0 with N measured in g cm�2. White dots represent the stars and brown dwarfs.
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Turbulent Core with winds, radiation
• Feedback reduces SFE (not enough)

• Massive cores don’t all fragment

• Sub fragmentation not visible even 
when occurring (see Schnee et al 
2009, Offner et al 2012)
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Fig. 11.— Images of the initial cores that produced the four most massive stars in simulation TuW. In each column, the upper image
shows the column density distribution, centered on the ⇠ 0.05 M� protostars that will grow to be massive stars. The lower image shows
the same column density distribution, smeared with a 1700 AU Gaussian beam. In the upper panels we indicate the mass of the core
(defined as the projected mass within a radius of 0.01 pc, as indicated by the dashed circles) and the time at which the snapshot is taken.
In the lower panels we indicate the core mass that would be inferred from the beam-smeared image and the final mass of the resulting star.
Note that the second and fourth columns are nearly identical because two of the final massive stars both form in the same core.

Fig. 12.— Same as Figure 11, but for the four stars closest to the median of the final mass distribution.

fragmented. There are at most one or two density max-
ima in each one, not many density maxima. These struc-
tures look much like the turbulent cores posited in the
McKee & Tan (2003) theory for massive star forma-
tion. When smeared on a resolution of 1700 AU, distinct
centrally-condensed structures remain visible for three
of the four massive stars, indicating that these objects
would be detectable as massive cores in an observation.
It is important to understand that our analysis says

nothing about the Lagrangian trajectories of the fluid
elements that eventually coalesce to form the massive
stars in our simulations, a topic that has previously re-

ceived extensive investigation by Bonnell et al. (2004)
and Smith et al. (2009a,b), among others. It may well
be that particular fluid elements that are present in the
cores at the time shown in Figure 11 do not accrete onto
the final star and are instead accreted by other stars or
torn o↵ by turbulent motions, while fluid elements not
present in the core at the time shown are eventually ac-
creted into the final star. Indeed, McKee & Tan (2003)
predicted in their analytic model that turbulent cores
should over the course of their lives interact with a sur-
rounding gas mass comparable to that which eventually
ends up in their central stars. However, the fact that

Krumholz et al 2012
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Fig. 13.— Accretion rate versus stellar mass for the four most
massive stars present at the end of run TuW. Colored unbroken
lines indicate the measured simulation accretion rates, while the
dashed black line is the prediction of the McKee & Tan (2003)
model (Equation 15). The simulation accretion rates have been
smoothed over 500 yr timescales to reduce scatter.

the Lagrangian elements making up a core change with
time is irrelevant to the question of whether, as a mas-
sive star forms, it sits at the center of a gravitationally
bound Eulerian structure. Figure 11 shows that it does.
We can make the link between the massive cores and

the stars they form more quantitative by comparing to
the massive core evolution model of McKee & Tan (2002,
2003) and Tan & McKee (2004). This model predicts
that the accretion rate onto a star as a function of its
mass should be

ṁ⇤ = 1.2⇥10�3

✓
m⇤f

30M�

◆
3/4

⌃3/4
cl

✓
m⇤
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1/2

M� yr�1

,

(15)
where m⇤ is the star’s instantaneous mass, m⇤f is its
final mass, ⌃

cl

is the surface density of the molecular
clump from which it forms, and we have used McKee &
Tan’s fiducial parameter choices, with the exception that
we have increased the accretion rate by a factor of 2.6
to include subsonic contraction, following Tan & McKee
(2004). To evaluate this equation and compare it to our
simulations, we take m⇤f ⇡ 10 M�, since this is roughly
the mass of our four most massive stars at the end of
the simulation. For ⌃

cl

, we note that, in the simulation,
the core is better-defined than the clump, so we adopt
McKee & Tan’s result with ⌃

cl

replaced by ⌃
core

. In
their fiducial model these agree to within a factor ' 1.2,
so this does not significantly a↵ect the accretion rate.
As shown in Figure 11, our cores have masses of order
10 M� in radii of order 0.01 pc, which corresponds to
⌃

cl

= 6.6 g cm�2. With these parameter choices, in
Figure 13 we plot the accretion rate as a function of
stellar mass for the four most massive stars at the end
of the simulation, whose cores are shown in Figure 11,
and compare to the McKee & Tan prediction. As the
plot shows, the simulation accretion rates agree quite
well with the analytic predictions.
In contrast, the cores that give rise to low mass cores

(Figure 12) are quite noticeably di↵erent from the high
mass ones. In three of the four cases (the first, third, and
fourth columns in the Figure) they are also centrally-
condensed lumps of gas. However, unlike the massive
cores they are highly sub-fragmented and show many
density maxima. Clearly these objects are not single

cores, but instead tightly-packed agglomerations of many
smaller cores. For the final low mass core (shown in the
second column of Figure 12) the point at which the star
forms is a slight overdensity in the middle of a filament,
and there is no centrally-concentrated object at all. Thus
massive cores and low mass cores have clearly distinct
properties. However, we also find that these di↵erences
are completely indistinguishable in the smeared images,
indicating that it is not possible to distinguish true high
mass cores from agglomerations of low mass ones with
the resolution available in pre-ALMA telescopes, at least
for objects at the ⇠kpc distances typical of massive star-
forming regions. This conclusion is consistent with that
of O↵ner et al. (2012).
It is important to note that the di↵erences between

high and low mass stars is not simply a function of for-
mation time. It is certainly true that the most massive
stars at the end of the simulation preferentially began
forming early. However, their greater masses are far less
a reflection of this than it is of their di↵erent forma-
tion environments. The four massive stars grow at time-
averaged rates of 3.6 � 4.6 ⇥ 10�4

M� yr�1, compared
to 1.7� 8.8⇥ 10�5

M� yr�1 for the low mass stars. At
the accretion rates typical of the low mass stars, it would
require ⇠ 10t

↵

for one of them to grow to the ⇠ 10 M�
typical of the massive stars. The massive stars are not
simply those that form first; they are those that form sur-
rounded by coherent, bound, non-subfragmented struc-
tures that provide high accretion rates. This is somewhat
similar to the competitive accretion model in that mas-
sive stars’ preferred locations at the centers of collapsing
regions that provides their high accretion rates. How-
ever, it di↵ers from competitive accretion in that these
cores are non-subgfragmented and have masses at the
same order of magnitude as the final stars, ⇠ 10 M�,
and therefore intermediate between that of the entire
star cluster, ⇠ 103 M� and the thermal Jeans mass, ⇠ 1
M�. In the competitive accretion model such structures
should be absent, because everything fragments down to
the thermal Jeans mass (Bonnell et al. 2004; Bate & Bon-
nell 2005) and some objects subsequently grow to larger
masses by Bondi-Hoyle accretion. There are no ⇠ 10
M� objects that do not subfragment in competitive ac-
cretion.
Finally, we note that both the high mass and the low

mass cores are above the column density threshold ⌃ > 1
g cm�2 for massive star formation posited analytically by
Krumholz & McKee (2008) and confirmed numerically by
Krumholz et al. (2010). This means that both the high
mass and low mass cores have the potential to form mas-
sive stars; indeed, in one of the four cases shown in Figure
12, the low mass star is in fact forming in a core that puts
most of its mass into a single high mass star. That does
not appear to be the case for the other three low mass
stars shown in the Figure, however. Thus a high column
density is clearly a necessary but not a su�cient condi-
tion for massive star formation. A high column density
allows radiative heating to suppress the growth of grav-
itational instabilities that would lead to fragmentation
and prevent a massive star from forming. However, if
the turbulent density field present before a star begins
radiating is already highly non-linearly fragmented, as
is the case for several of the low mass cores shown in
Figure 12, radiative heating will not undo this fragmen-
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lines indicate the measured simulation accretion rates, while the
dashed black line is the prediction of the McKee & Tan (2003)
model (Equation 15). The simulation accretion rates have been
smoothed over 500 yr timescales to reduce scatter.

the Lagrangian elements making up a core change with
time is irrelevant to the question of whether, as a mas-
sive star forms, it sits at the center of a gravitationally
bound Eulerian structure. Figure 11 shows that it does.
We can make the link between the massive cores and

the stars they form more quantitative by comparing to
the massive core evolution model of McKee & Tan (2002,
2003) and Tan & McKee (2004). This model predicts
that the accretion rate onto a star as a function of its
mass should be
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where m⇤ is the star’s instantaneous mass, m⇤f is its
final mass, ⌃

cl

is the surface density of the molecular
clump from which it forms, and we have used McKee &
Tan’s fiducial parameter choices, with the exception that
we have increased the accretion rate by a factor of 2.6
to include subsonic contraction, following Tan & McKee
(2004). To evaluate this equation and compare it to our
simulations, we take m⇤f ⇡ 10 M�, since this is roughly
the mass of our four most massive stars at the end of
the simulation. For ⌃

cl

, we note that, in the simulation,
the core is better-defined than the clump, so we adopt
McKee & Tan’s result with ⌃

cl

replaced by ⌃
core

. In
their fiducial model these agree to within a factor ' 1.2,
so this does not significantly a↵ect the accretion rate.
As shown in Figure 11, our cores have masses of order
10 M� in radii of order 0.01 pc, which corresponds to
⌃

cl

= 6.6 g cm�2. With these parameter choices, in
Figure 13 we plot the accretion rate as a function of
stellar mass for the four most massive stars at the end
of the simulation, whose cores are shown in Figure 11,
and compare to the McKee & Tan prediction. As the
plot shows, the simulation accretion rates agree quite
well with the analytic predictions.
In contrast, the cores that give rise to low mass cores

(Figure 12) are quite noticeably di↵erent from the high
mass ones. In three of the four cases (the first, third, and
fourth columns in the Figure) they are also centrally-
condensed lumps of gas. However, unlike the massive
cores they are highly sub-fragmented and show many
density maxima. Clearly these objects are not single

cores, but instead tightly-packed agglomerations of many
smaller cores. For the final low mass core (shown in the
second column of Figure 12) the point at which the star
forms is a slight overdensity in the middle of a filament,
and there is no centrally-concentrated object at all. Thus
massive cores and low mass cores have clearly distinct
properties. However, we also find that these di↵erences
are completely indistinguishable in the smeared images,
indicating that it is not possible to distinguish true high
mass cores from agglomerations of low mass ones with
the resolution available in pre-ALMA telescopes, at least
for objects at the ⇠kpc distances typical of massive star-
forming regions. This conclusion is consistent with that
of O↵ner et al. (2012).
It is important to note that the di↵erences between

high and low mass stars is not simply a function of for-
mation time. It is certainly true that the most massive
stars at the end of the simulation preferentially began
forming early. However, their greater masses are far less
a reflection of this than it is of their di↵erent forma-
tion environments. The four massive stars grow at time-
averaged rates of 3.6 � 4.6 ⇥ 10�4

M� yr�1, compared
to 1.7� 8.8⇥ 10�5

M� yr�1 for the low mass stars. At
the accretion rates typical of the low mass stars, it would
require ⇠ 10t
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for one of them to grow to the ⇠ 10 M�
typical of the massive stars. The massive stars are not
simply those that form first; they are those that form sur-
rounded by coherent, bound, non-subfragmented struc-
tures that provide high accretion rates. This is somewhat
similar to the competitive accretion model in that mas-
sive stars’ preferred locations at the centers of collapsing
regions that provides their high accretion rates. How-
ever, it di↵ers from competitive accretion in that these
cores are non-subgfragmented and have masses at the
same order of magnitude as the final stars, ⇠ 10 M�,
and therefore intermediate between that of the entire
star cluster, ⇠ 103 M� and the thermal Jeans mass, ⇠ 1
M�. In the competitive accretion model such structures
should be absent, because everything fragments down to
the thermal Jeans mass (Bonnell et al. 2004; Bate & Bon-
nell 2005) and some objects subsequently grow to larger
masses by Bondi-Hoyle accretion. There are no ⇠ 10
M� objects that do not subfragment in competitive ac-
cretion.
Finally, we note that both the high mass and the low

mass cores are above the column density threshold ⌃ > 1
g cm�2 for massive star formation posited analytically by
Krumholz & McKee (2008) and confirmed numerically by
Krumholz et al. (2010). This means that both the high
mass and low mass cores have the potential to form mas-
sive stars; indeed, in one of the four cases shown in Figure
12, the low mass star is in fact forming in a core that puts
most of its mass into a single high mass star. That does
not appear to be the case for the other three low mass
stars shown in the Figure, however. Thus a high column
density is clearly a necessary but not a su�cient condi-
tion for massive star formation. A high column density
allows radiative heating to suppress the growth of grav-
itational instabilities that would lead to fragmentation
and prevent a massive star from forming. However, if
the turbulent density field present before a star begins
radiating is already highly non-linearly fragmented, as
is the case for several of the low mass cores shown in
Figure 12, radiative heating will not undo this fragmen-
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Fig. 11.— Images of the initial cores that produced the four most massive stars in simulation TuW. In each column, the upper image
shows the column density distribution, centered on the ⇠ 0.05 M� protostars that will grow to be massive stars. The lower image shows
the same column density distribution, smeared with a 1700 AU Gaussian beam. In the upper panels we indicate the mass of the core
(defined as the projected mass within a radius of 0.01 pc, as indicated by the dashed circles) and the time at which the snapshot is taken.
In the lower panels we indicate the core mass that would be inferred from the beam-smeared image and the final mass of the resulting star.
Note that the second and fourth columns are nearly identical because two of the final massive stars both form in the same core.

Fig. 12.— Same as Figure 11, but for the four stars closest to the median of the final mass distribution.

fragmented. There are at most one or two density max-
ima in each one, not many density maxima. These struc-
tures look much like the turbulent cores posited in the
McKee & Tan (2003) theory for massive star forma-
tion. When smeared on a resolution of 1700 AU, distinct
centrally-condensed structures remain visible for three
of the four massive stars, indicating that these objects
would be detectable as massive cores in an observation.
It is important to understand that our analysis says

nothing about the Lagrangian trajectories of the fluid
elements that eventually coalesce to form the massive
stars in our simulations, a topic that has previously re-

ceived extensive investigation by Bonnell et al. (2004)
and Smith et al. (2009a,b), among others. It may well
be that particular fluid elements that are present in the
cores at the time shown in Figure 11 do not accrete onto
the final star and are instead accreted by other stars or
torn o↵ by turbulent motions, while fluid elements not
present in the core at the time shown are eventually ac-
creted into the final star. Indeed, McKee & Tan (2003)
predicted in their analytic model that turbulent cores
should over the course of their lives interact with a sur-
rounding gas mass comparable to that which eventually
ends up in their central stars. However, the fact that
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stars in our simulations, a topic that has previously re-
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be that particular fluid elements that are present in the
cores at the time shown in Figure 11 do not accrete onto
the final star and are instead accreted by other stars or
torn o↵ by turbulent motions, while fluid elements not
present in the core at the time shown are eventually ac-
creted into the final star. Indeed, McKee & Tan (2003)
predicted in their analytic model that turbulent cores
should over the course of their lives interact with a sur-
rounding gas mass comparable to that which eventually
ends up in their central stars. However, the fact that
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FIG. 1.— Schematic diagram of the dendrogram process. The left panel shows a one-dimensional emission profile with three distinct local maxima. The
dendrogram of the region is shown in blue and repeated in the right panel where the components of the dendrogram are labeled. The left-hand panel indicates
three characteristic contour levels through the data. Thresholding at I1 produces a single object whereas thresholding at I2 produces two. The level separating
these two regimes is indicated as Icrit .
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FIG. 2.— Dendrograms of 13CO emission in L1448. The top panel shows
the dendrogram of L1448 using the standard algorithm parameters. The bot-
tom panel shows the dendrogram after relaxing the conditions for noise sup-
pression resulting in more independent leaves in the dendrogram (see the end
of §3.1). However, the basic structure of the dendrogram remains the same;
the isosurfaces used in the top plot are a subset of those used in the bottom.
Each leaf of the dendrogram is labeled in the top plot and the corresponding
leaf is identified in the bottom figure. Leaves appearing in both dendrogram
also have a circle at their tip in the bottom plot.

of the isosurfaces that contain only that maximum is less than
some minimum number of pixels (Nmin, usually taken to be
4). Furthermore, we only recognize a significant bifurcation
in structure when both local maxima are more than a given
interval ∆Tmax above the highest contour level that contains
both of the maxima, i.e. the level at which the objects merge.
Such a criterion has been used previously in data cube analy-
sis (Brunt et al. 2003; Rosolowsky & Blitz 2005): noise fluc-
tuations will typically only produce maxima with characteris-
tic height σrms so variations significantly larger than this are
nominally real. If this criterion is not fulfilled, we reject the
lower of the two local maxima and consider the emission pro-
file to represent only a single object. We note that the resulting
dendrogram using a decimated set of local maxima represents
a set of isosurfaces that are a subset of the isosurfaces that
would be considered including all local maxima (see Figure
2).

Hence, the initial leaves of the dendrogram are determined
by four free parameters: Dmax, ∆Vmax, ∆Tmax and the Nmin.
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FIG. 3.— Schematic diagram of the parameters that determine the deci-
mation of local maxima. The same profile as in Figure 1 is used. The local
maximum indicated with the white point would be considered a valid lo-
cal maximum if (a) it is the highest point in a window Dmax on either side
of it (and an analogous width ∆Vmax in velocity space), (b) the interval be-
tween the maximum and the highest merger level with a valid local maximum
∆T1 > ∆Tmax and if the number of pixels associated with the shaded region
is larger than Nmin. These criteria restrict the analysis to the subset of local
maxima that are most distinct.

By default, these are set to be Dmax = 3 and ∆Vmax = 7 resolu-
tion elements, ∆Tmax = 4σrms and Nmin = 4 pixels for indepen-
dent pixels. The bottom panel of Figure 2 shows the resulting
dendrogram for Dmax = 1 and ∆Vmax = 3 resolution elements
and ∆Tmax = 0. Figure 3 is a schematic diagram illustrating
the definition of these parameters. Changing ∆Tmax results in
the largest changes in the dendrograms for typical radio line
data since a larger fraction of the local maxima fail the check
against the contrast than any other noise suppression criterion.
The default values represent a compromise between sensitiv-
ity to dendrogram structure and algorithm performance.

Noise has an additional affect on the dendrogram, namely
intensity fluctuations can alter the levels at which two isosur-
faces merge. A positive fluctuation can join two surfaces at
a higher level than the surfaces would join in the absence of
noise. We have modeled the influence of the noise by com-
paring the merge levels of surfaces in a model cube in the
absence of noise to those with noise added. We find, in gen-
eral, that the merge levels are uncertain on a scale of ∼ 2σrms
with some variation based on algorithm parameters and the
precise model used. In addition, there is a bias towards merg-
ing ∼ 1σrms higher than the surfaces would merge in the ab-
sence of noise. The structure of the tree can only be con-
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Binaries form from filaments on these scales, then 
evolve

• Both low and high mass star form 
binaries and interact at early times

• Lower mass star form in highly 
fragmented cores start out in very 
hierarchical multiples, but likely decay

• Higher mass stars form as multiples in 
centrally condensed regions, and may 
keep a higher fraction of bond 
companions

Offner, Kratter et al 2010, 
Krumholz et al 2012
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Fig. 14.— Multiplicity fraction f as a function of system primary
mass m

prim

in run TuW. The thick red line shows f as a running
average. The light red boxes show f computed over discrete bins in
m

prim

. In each case, the width of the box shows the primary mass
range for that bin, the asterisk shows the mean multiplicity fraction
for stars in that bin, and the vertical extent of the box shows the
statistical uncertainty on that value, computed as described in the
text. Finally, black crosses indicate observational results, with the
horizontal width indicating the mass range for the observations
and the vertical range showing the stated uncertainty. The two
highest mass observational data points are lower limits, indicated
by the upward arrows. The data shown are taken from, from left
to right, Basri & Reiners (2006) and Allen (2007) (shown as a
single combined point), Fischer & Marcy (1992), Raghavan et al.
(2010), Preibisch et al. (1999), and Mason et al. (2009); the data
compilation shown here is the same as that in Bate (2012).

Fig. 15.— Semi-major axis versus primary star mass for all the
binaries in our simulations. For triple and quadruple systems, we
plot them only once, showing the properties of the most bound pair
of stars. Points are coded by the mass ratio of the system: purple
stars for q < 0.1, red squares for q = 0.1� 0.25, green triangles for
q = 0.25� 0.5, and blue circles for q > 0.5.

tation and prevent the core from forming a small cluster
of low mass stars rather than a few massive ones.

3.6. Stellar Multiples

It is also illuminating to consider the properties of the
stellar multiples that form in run TuW, since producing
the correct multiplicity fraction has been proposed as
test for star formation models in addition to producing
the correct IMF (e.g. Bonnell et al. 2007). We therefore
examine the final time slice for this run.9 Extracting

9 In this section of the paper alone we do not exclude stars
smaller than 0.05 M� from consideration, but we consider them
only as companions to larger stars. We allow them to count in this

the fraction of stars in multiple systems from the simula-
tion requires some care, as pointed out by Bate (2009a).
Many of the stars in our simulation form a bound clus-
ter, and thus many stars are bound to many other stars,
often in hierarchical structures consisting of dozens of in-
dividual stars; for example a binary and a triple system
may orbit one another, and these in turn may have ad-
ditional stars orbiting them. Such agglomerations would
be extremely unlikely to survive dynamically even for the
lifetime of a massive star, and would break up if we could
continue the simulation further.
Thus we follow Bate in defining stellar multiplicity

via the following algorithm. We first compute the total
energy (gravitational plus kinetic in the center of mass
frame) pairwise for each pair of stars in the simulation.
We find the most bound system and replace it with a
single point mass, with a mass equal to the sum of the
two components, a position located at their center of
mass, and a momentum equal to the sum of their two
momenta. We then continually repeat this process, with
the exception that we do not create aggregates consist-
ing of more than four individual stars; should the most
bound system contain five our more stars, we proceed to
the next most bound pair with fewer than five members
instead.10 We terminate the process once there are no
more bound pairs consisting of fewer than five individual
stars. At the end we are left with a list of star systems,
some single and some containing up to four individual
stars.
Given this list, we can compute the fraction of multiple

systems as a function of primary star mass. For a set of
star systems, we define the multiplicity fraction

f =
B + T +Q

S +B + T +Q

, (16)

where S, B, T , and Q and the numbers of single, binary,
triple, and quadruple systems, respectively.11 We choose
our sets of star systems in two ways. The first is as a
running average; for a primary mass m

prim

, we compute
f considering all systems for which the primary mass is
within half a dex of m

prim

. The second is in discrete
bins, chosen to roughly match the mass ranges selected
in observational surveys. We consider primary mass bins
in the range 0.05� 0.1 M�, 0.1� 0.2 M�, 0.2� 0.5 M�,
0.5�0.8 M�, 0.8�1.2 M�, 1.2�3 M�, and > 3 M�. In
addition to the mean value, we compute the statistical
uncertainty in this value for each bin.12

capacity because to omit them would artificially make it impossible
for stars near our 0.05 M� cut to have companions.

10 The results are not particularly sensitive to the choice of four
as the maximum size of a system, as long as we stop at some point
well short of allowing the entire cluster to be considered a single
large star system.

11 Following Bate (2009a) and Hubber & Whitworth (2005),
we measure this quantity rather than either the companion star
fraction (B+2T +3Q)/(S+B+ T +Q) or the fraction of stars in
multiple systems (2B + 3T + 4Q)/(S + 2B + 3T + 4Q) because it
is more robustly determined observationally. If a new member of
a multiple system is found, for example leading to a binary being
reclassified as a triple, f does not change, while the companion star
fraction and the fraction of stars in multiple systems does.

12 We determine the statistical uncertainty by assuming that
there is a true multiplicity fraction f

true

for stars in that bin, and
that our sample of systems in that bin represent a series of random
drawings that follow a binomial distribution. From these assump-
tions, we can compute the probability distribution for f

true

given



Disk Fragmentation becomes alternate binary 
formation mechanism for more massive stars
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How do we know if disks fragment?

µ =
Md

Md + M�

Environment Derived 

set by core/ turbulence: 
orbital time / mass 

doubling time 

purely local disk 
quantity

set by core and 
disk 

thermodynamics
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3.6. Summary of Model
We summarize our model via the flowchart shown in

figure 2, which illustrates a simplified version of the
code’s decision tree. At a given time t we know the
current disk and star mass, and the current angular mo-
mentum and mass infall rates as prescribed in §2.1 and
§2.2. We can calculate Rd and �d directly, and find the
appropriate stellar luminosity based on its evolution, cur-
rent mass, and accretion rate. Using these variables we
self-consistently solve for the appropriate temperature,
Q, and disk accretion rate as described in §3.2. With
this information in hand, we determine whether the disk
is stable, locally fragmenting, or forming a binary. If
the disk is stable, we proceed to the next iteration. If
Q < 1, then the disk puts mass into fragments according
to equation [23]. If µ > 0.5 we consider binary forma-
tion to have occurred, and the net angular momentum
and disk mass over the critical threshold is placed into
a binary (see §3.5). The simulation is halted at either
5 Myr, or if the entire disk turns into fragments. We
choose 5 Myr as a stopping time for two reasons: first,
the most massive stars in our parameter space are signif-
icantly evolved and have exploded by 5 Myr, and so our
stellar evolution models are no longer su⌃cient; and sec-
ond, because many other e⇤ects begin to dominate the
disks appearance at late stages due to gas-dust interac-
tion and photo-evaporation.

4. EXPECTED TRENDS

Before examining the numerical evolution, it is useful
to make a couple analytical predictions for comparison.

First, can we constrain where disks ought to wander in
the plane of Q and µ? This turns out to depend critically
on the dimensionless system accretion rate

⌥in ⇥
Ṁin

M�d⇥(Rcirc)
=

Ṁinj3
in

G2M3
�d

(26)

which is the ratio of the mass accreted per radian of disk
rotation (at the circularization radius Rcirc) to the total
system mass M�d = M� + Md. Since the active inner
disk has a radius comparable to Rcirc, this controls how
rapidly the disk gains mass via infall.

The importance of ⌥in is apparent in the equation gov-
erning the evolution of the disk mass ratio µ:

µ̇

µ⇥
=

Ṁin

M�d⇥

⇤
1
µ
� 1

⌅
� Ṁ�

Md⇥

=
⇥(Rcirc)

⇥d

⇤
1
µ
� 1

⌅
⌥in �

Ṁ�
Md⇥

. (27)

Since we consider Ṁ�/(Md⇥) to be a function of µ and
Q, we must know the disk temperature to solve for µ(t).
Regardless, equation (27) shows that larger values of ⌥in
tend to cause the disk mass to increase as a fraction of
the total mass. We may therefore view ⌥in and Q as the
two parameters that define disk evolution – of which ⌥in
is imposed externally and Q is determined locally.

Moreover, ⌥in takes characteristic values in broad
classes of accretion flows, such as the turbulent core mod-
els we employ. Suppose the rotational speed in the pre-
collapse region is a fraction fK of the Kepler speed, so
that jin = fKrvK(r) = fK [GrMc(r)]1/2, and suppose

also that the mass accretion rate is a fraction ⇧facc of
the characteristic rate vK(r)3/G. Then,

⌥in =
f3

Kfacc

⇧2
. (28)

(In this expression, negative three powers of ⇧ appear
because the binding mass is ⇧ times smaller for the disk
than for the core; one of these is compensated by the
reduction of the accretion rate.)

In § 2.1 we adopted the McKee & Tan (2003) model for
massive star formation due to core collapse of a singular,
turbulent, polytropic sphere in initial equilibrium. Their
equations (28), (35), and (36) imply

facc = 0.84(1� 0.30k�)
⇤

3� k�

1 + H0

⌅1/2

(29)

within 2%, where 1 + H0 ⌃ 2 represents the support due
to static magnetic fields (Li & Shu 1996). (Note, their
equation [28] is a fit made by McKee & Tan 2002 to the
results of McLaughlin & Pudritz 1997.)

KM06 predicted the turbulent angular momentum of
these cores; our parameter fK equals (⇥j⌅j)1/2 in their
paper. Their equations (25), (26), and (29) imply

fK =
0.49

⌅1/2
B

(1� k�/2)0.42

(k� � 1)1/2
, (30)

with excursions upward by about 50% and downward by
about a factor of three expected around this value; here
⌅B ⌃ 2.8 represents the magnetic enhancement of the
turbulent pressure. All together, we predict

⌥in =
0.10

⇧2⌅3/2
B

⇤
3� k�

1 + H0

⌅1/2

�
1� k�

2

⇥1.26

(k� � 1)3/2
(1� 0.30k�)

⇧ 0.02
⇤

0.5
⇧

⌅2

(31)

where the evaluation uses 1 + H0 ⇧ 2, ⌅B ⇧ 2.8, and
k� ⇧ 1.5.

Importantly, ⌥in is a function of (1 + H0), ⌅B , �, and
k�, but not the core mass. We therefore expect similar
values of ⌥in to describe all of present-day massive star
formation, at least insofar as these other parameters take
similar values. Suppose, for instance, that the formation
of 10M⇥ and 100M⇥ stars were both described by the
same ⌥in. According to equation (27), the di⇤erence in µ
between these two systems would be controlled entirely
by the thermal e⇤ects that cause them to take di⇤erent
values of Q.

A few additional expectations regarding Q itself can
be gleaned from the analytical work of Matzner & Levin
(2005) and KM06:

- The Toomre parameter remains higher than unity
for low-mass stars (� 2M⇥) in low-column cores
(�c,0 ⌅ 1), but falls to unity during accretion for
massive stars and for low-mass stars in high-column
cores;

- A given disk’s Q drops during accretion, reach-
ing unity when the disk extends to radii beyond
⇤ 150 AU (in the massive-star case), or to peri-
ods larger than ⇤460 yr (in the case of an optically
thick disk accreting from a low-mass, thermal core).

Q =
cs�

⇥G�

set by relative 
accretion rates

� = � =
ṀG

cs,disk3

Toomre, 1964, Kratter et al 2008, 2010
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Orbital properties are not fixed at birth

•Cluster Evolution

•Dynamical Interactions

•Disk interactions?

Kratter et al 
2010

Kroupa 1995



Diego Munoz

Disk-Disk interactions with moving 
mesh code, AREPO (Springel 2009)



Disk-Disk interactions

• Need high stellar densities for close enough interactions

• Disk-orbit misalignment aids in orbit change, but outcome is not well aligned

14 Muñoz et al.

Figure 11. Same as Figure 10, but now for the ‘PARA2’, ‘PARA3’, ‘PARA4’ and ‘PARA5’ configurations. As before, the color of the curves is chosen
according to the combined disk spin in each configuration

proper pericenter is not entirely captured by the simulation. This
is the case of ‘PARA4’ and ‘PARA5’, for which the tidal in-
teraction is expected to begin at wider separations than the ones
included in our initial conditions (see discussion on the fractional
error in orbital angular momentum in Section 2.3). Although it is
not possible to say without running simulations with much wider
initial separations D, it is possible that some of the notable differ-
ences between ‘PARA4’ and ‘PARA5’ with respect to the other
orbital tests (for example, that there is no steep jump in eccentricity
right before pericenter in Figure 13) could be due to an extremely
wide tidal interaction window and that ‘PARA4’ and ‘PARA5’
are simply “incompletete”, that is, their integration should have be-
gun at greater separations in order to cover the asymptotic interac-
tion in greater extent.

Figure 14 summarizes the energy change during first pericen-
ter passage (i.e., restricted only to the shaded region in Figure 13)
for all 35 simulations. Note that the energy change in the ‘PARA1’
and ‘PARA2’ is similar. However, these data include only first
passage. As it can be seen from Figure 13, the orbital energy in
the ‘PARA1’ simulations keeps chaining repeatedly as the stars
go through pericenter over and over. On the other hand, In the
‘PARA2’ examples, repeated pericenter passages are more rare,
since runaway decay of the binary orbit is not taking place.

3.5 Comparison to linear theory

The tidal interaction between a star+disk system and another stellar
flyby was studied in detail by Ostriker (1994). Although that work
focused on a simpler system containing only one disk, comparison
should be meaningful for our wide-separation simulations.

Assuming only one disk changes orientation (in our simula-

Figure 14. Energy change for during first pericenter passage for all sim-
ulations. Colors represent the orbital configurations ‘PARA1’ (blue) ,
‘PARA2’ (green), ‘PARA3’ (orange), ‘PARA4’ (cyan) and ‘PARA5’
(magenta), while symbols represent the different disk orientations:
‘PARA -1’ or S

z

= 2 (diamond), ‘PARA -2’ or S
z

= 1.7 (square),
‘PARA -3’ or S

z

= 1 (upright triangle), ‘PARA -4’ or S
z

= 0.3
(circle), ‘PARA -5’ or S

z

= 0 (pentagon), ‘PARA -6’ or S
z

= �2

(sideways triangle) and ‘PARA -7’ or S
z

= �1.7 (bowtie).

tions, the first five runs of each subset only differ in the value of ✓2)
the angular momentum loss suffered by the victim disk is, in the

c� 2014 RAS, MNRAS 000, 1–??

Munoz, Kratter et al, in prep



Disk Alignment in Binaries

A&A 532, A28 (2011)

Fig. 4. The distribution in the difference between spectropolarimetrically predicted disk PA and observed disk PA for the sample presented in
Table 3 (blue dashed). This is compared to a random distribution (black short dotted). On the left we show a distribution where polarisation
signatures are always orientated perpendicularly to circumstellar disks and on the right we present the distribution for a scenario where the
spectropolarimetric signatures can be either perpendicular or parallel to disks (see the text for more detail). Both model distributions have a
maximum error of 15◦. In both cases, a random orientation of disk and polarisation position angles can be discarded at the 3σ level.

1σ level and is thus consistent with the data. This confirms the
earlier finding that spectropolarimetric signatures trace disks and
demonstrates that this is not dependent on spectral type and clas-
sification (i.e. T Tauri star or HAe/Be star).

To summarise, we show that the spectropolarimetric data
presented in Table 3 do appear to trace circumstellar disks. This
would be expected if the polarisation is due to scattering in these
disks. However, Harrington & Kuhn (2009) claim many of the
HAe/Be stars in our sample have polarisation signatures which
require optical pumping and absorption in outflows (e.g. AB Aur
and MWC 480). We show here that regardless of the polarising
mechanism, spectropolarimetry can be employed to trace the ori-
entation of circumstellar disks.

4. Discussion and conclusion

4.1. On the use of spectropolarimetry to probe circumstellar
disks

The results presented in this paper indicate a direct correla-
tion between the spectropolarimetric signatures of pre-main-
sequence stars and the orientations of their circumstellar disks.
This is significant above the 3σ level and appears independent
of the classification of the young stellar objects. Therefore, we
conclude that spectropolarimetric signatures of young stellar ob-
jects do indeed trace the orientation of their circumstellar disks.
This is expected in the case of polarisation of stellar and ac-
cretion shock photons by disks (McLean & Clarke 1979; Vink
et al. 2002). In the case of polarisation via optical pumping and
absorption, the relationship between spectropolarimetric signa-
tures and disks is less clear.

We note that Kuhn et al. (2011) suggest that the polarisa-
tion signature of the Herbig Be star HD 200775 is due to op-
tical pumping and that the signature does trace the orientation
of an imaged disk. However, the spectropolarimetric signature
of this object is observed across a double-peaked emission line
profile, and might therefore be the result of depolarisation af-
ter all. Nevertheless, many Herbig Ae/Be stars, several of which
are in our sample, exhibit polarisation signatures associated with
P Cygni line profiles, i.e. outflowing gas (see e.g. Harrington
& Kuhn 2009). Here we show that the signatures still appear
to trace the orientation of circumstellar disks. This implies that,

if the spectropolarimetric signatures are due to optical pumping
and absorption in a wind, the wind geometry essentially mirrors
that of the disk, at least in the regions where the polarisation
occurs.

This is partly substantiated by recent observations of the
Hα emission of the Herbig Ae star AB Aur with the CHARA
array by Rousselet-Perraut et al. (2010). This object has been
proposed to exhibit polarisation due to optical pumping since it
displays polarisation across the P Cygni absorption component
of its Hα emission (Harrington & Kuhn 2007). Rousselet-Perraut
et al. (2010) resolved the Hα emitting region around AB Aur and
found that it could be modelled as the base of a wind represented
by a flattened torus encompassing a circumstellar disk. Provided
the inclination and the angle between the wind surface and disk
mid-plane is low (20◦ and 35◦ in the case of the disk-wind model
of Rousselet-Perraut et al. 2010), such a flattened torus might
well appear to have a similar morphology to the disk.

4.2. On the alignment between binary systems
and their circumprimary disks

To investigate the relative alignment of HAe/Be binary systems
and circumstellar disks we have used spectropolarimetry and
high spatial resolution data to determine the orientation of cir-
cumstellar disks around the primary components of such sys-
tems. We then combined these disk angles with binary param-
eters to assess whether HAe/Be circumstellar disks and binary
systems are co-planar. Studies of lower mass T Tauri stars have
found that the circumstellar disks in T Tauri star binary sys-
tems tend to be aligned, suggesting that such systems may form
via fragmentation (see e.g. Wolf et al. 2001; Jensen et al. 2004;
Monin et al. 2006). Here we investigate whether this is also the
case for HAe/Be systems. We note that Maheswar et al. (2002)
also compared HAe/Be binary and polarisation angles (although
these were calculated via broadband polarimetry and thus sub-
ject to uncertainties in the correction for the interstellar polari-
sation). These authors find that their data are inconsistent with
a random association of disk and binary position angles with a
significance of 84 per cent. This is not very conclusive and the
authors note that they do not account for projection effects and
thus the actual correlation may be stronger. We do account for

A28, page 8 of 10

Wheelwright et al 2011

does this shed light on formation?



Stellar Structure, Disks
• Early development of radiative zone means that 

internal luminosity gets more important

Palla & Stahler 2004, 2005
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Planet formation and accretion depends on radiation

Dullemond & Monnier 
2010
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Figure 14. Scatter plot of the total turbulent stress α and the plasma β at the
saturated state of the MRI turbulence from all our simulations. Simulations
with different field geometries are marked by different symbols and colors as
indicated in the legend, where Bφ/Bz = 0 and Bφ/Bz = ∞ correspond to pure
net vertical and pure net toroidal flux simulations, respectively. Dashed line
shows the fitting curve ⟨β⟩ = 1/2α.
(A color version of this figure is available in the online journal.)
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Figure 15. Scatter plot of AD coefficient Am and the plasma β at the saturated
state of the MRI turbulence from all our simulations. Simulations with different
field geometries are marked by different symbols and colors as indicated in the
legend. The dashed curve shows the fitting formula (26) as a lower bound of
⟨β⟩ ! βmin(Am).
(A color version of this figure is available in the online journal.)

both net vertical and toroidal fluxes and the actual βmin may be
somewhat smaller than obtained here. Nevertheless, this regime
is closer to ideal MHD and is less concerning. By combining all
the available simulations, we obtain a fitting formula for βmin
given by

βmin(Am) =
[(

50

Am1.2

)2

+
(

8

Am0.3 + 1
)2]1/2

, (26)

and is indicated in Figure 15. It asymptotes to 1 at Am → ∞ as
one expects, and approaches 50/Am1.2 for Am ! 1.

The constraint on βmin at a given Am allows us to identify
the regions in the Am–⟨β⟩ plane at which MRI can or cannot
operate. In the mean time the correlation between α and ⟨β⟩
provides the corresponding stress when MRI is permitted.
Combining them together, the main results from this paper are
best summarized in Figure 16. MRI permitted regions are in
the upper right with the boundary given by Equation (26). It
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Figure 16. Diagnostics of the MRI in the AD regime. At a given Am, MRI is
permitted when ⟨β⟩ ! βmin(Am) (see Equation (26)), and in the MRI permitted
region, the stress α can be inferred given the field strength at the saturated state
characterized by ⟨β⟩.
(A color version of this figure is available in the online journal.)

provides useful diagnostics on the properties of the MRI in the
AD regime in a concise fashion.

First, at a given Am, the ultimate strength of the MRI
turbulence (e.g., α and ⟨β⟩) depends on the field geometry
(including the net flux), but there exists a maximum α (or
minimum ⟨β⟩) at the most favorable field geometry (usually
contains both net vertical and toroidal fluxes). One way to think
about it is to start with a weak regular field as we perform our
simulations. As the system evolves and as the MRI amplifies the
field, the corresponding position of the system in the diagram
moves downward and until it stops at some ⟨β⟩ " βmin.

Second, MRI can be self-sustained for any value of Am even
for Am ≪ 1. Although we have explored the Am parameter
down to Am = 0.1, we believe that it can be extended further to
smaller Am because of the following reasons. Linear analysis
by Kunz & Balbus (2004) and Desch (2004) shows that in the
presence of both vertical and toroidal field, MRI can grow at an
appreciable rate (approximately 0.13 Ω−1 when Bφ/Bz = 4)
even in the limit of Am → 0+ provided that the field is
sufficiently weak. This means that MRI turbulence can always
be self-sustained. Meanwhile, we find that the linear dispersion
relation has already approached the small Am asymptote for
Am ! 0.3. Therefore, we expect the trend in Figure 15 on βmin
to hold to further smaller Am values.

Third, the boundary between the MRI permitted and pro-
hibited regions is only suggestive but it does not necessarily
imply sharp transitions. Our simulations are restricted by the
limited box height (H) since they are unstratified. In reality, as
one increases the field strength, the transition from sustained
MRI turbulence to its suppression involves the effect of vertical
stratification of gas density in the disks and may be a smooth
process. Before justified by stratified simulations, which is left
for our future work, this result should be taken with some cau-
tion. In particular, when vertical stratification is included, linear
analysis by Gammie & Balbus (1994) and Salmeron & Wardle
(2005) for ideal and non-ideal MHD has suggested the exis-
tence of global modes in the disk even in low β0 and a small
Elsasser number. On the other hand, in the case of Ohmic re-
sistivity, the criterion that the Ohmic Elsasser number equaling
one is the boundary between MRI permitted and suppressed
regions identified in unstratified simulations (Sano et al. 1998;
Fleming et al. 2000; Sano & Stone 2002b) does agree with

16

Bai & Stone 2011

Gammie 1996

What is the maximum mass planet host?



Conclusions

• Even theorists agree that one mechanism can mostly explain low, 
intermediate, and high mass star formation. And there aren’t even two very 
different theories.

• Observations (see next talk) agree with continuity, but very different physical 
systems look the same observationally

• Starting with Herbig Ae/Be’s, conditions are plausible for fragmentation of 
disks into low or equal mass companions

• Herbig Ae/Be’s can be interesting sites to study planet formation and disks, 
but may not be totally representative of solar analogs due to stellar structure 
on PMS


