Photoevaporating Disk Dispersal around Intermediate-Mass Stars

Masanobu Kunitomo, Taku Takeuchi, Shigeru Ida (*Tokyo Tech*)

"Herbig Ae/Be Stars"@Santiago Apr. 10, 2014

planets around intermediate-mass stars

more than 1000 planets have found so far

planets around intermediate-mass stars

more than 1000 planets have found so far

planets around intermediate-mass stars

more than 1000 planets have found so far

possible origins of the lack of close-in planets

possible origins of the lack of close-in planets

why close-in planets are not formed

■if the disk lifetime is shorter...

(Burkert+Ida'07,Currie'09)

the disk lifetime is important for the distribution of planets

dispersal of protoplanetary disks

photoevaporation rate (M_{PE}) is important for the disk lifetime

dispersal of protoplanetary disks

photoevaporation rate (M_{PE}) is important for the disk lifetime

Macc

Ŵре

time

Ḿ ▲

higher L_{XUV} (X-ray and UV luminosity) **and** then higher M_{PE} can make the disk lifetime shorter

disk lifetime around IM stars - Observation

o□△◇: low-mass stars(<~1M_☉)

•▲*: IM stars(~2–7M_☉)

the disk lifetime of IM stars is shorter than that of low-mass stars by Near-IR observation

(Hernandez et al. 2005)

disk lifetime around IM stars — Observation

(Hernandez et al. 2005)

o□△◇: low-mass stars(<~1M_☉)

• \bigstar *: IM stars(~2–7M_o)

the disk lifetime of IM stars is shorter than that of low-mass stars by Near-IR observation

disk lifetime around IM stars — **Theory**

Gorti et al. (2009): calculated the disk evolution including X, EUV & FUV

→ "the disk lifetime almost constant from low-mass to IM stars"

→inconsistent with observed feature

disk lifetime around IM stars — **Theory**

Gorti et al. (2009): calculated the disk evolution including X, EUV & FUV

→"the disk lifetime almost constant from low-mass to IM stars"

→inconsistent with observed feature

aim of this study

 \rightarrow L_X and then \dot{M}_{PE} can be very large at first and evolve

investigate the impact of the evolution of L_X on the P.E. rate and the disk evolution

method

Result: example of the disk evolution around $1\ensuremath{M_{\odot}}$

Result: example of the disk evolution around $1\ensuremath{M_{\odot}}$

- M★=1M⊙
- M_{disk,ini}=0.1M_☉
- α=1×10⁻³
- ▶ a gap opens at ~2Myr
- the disk completely dissipates in 0.2Myr after gap opens

Result: example of the disk evolution around $3M_{\odot}$

Result: example of the disk evolution

Near-IR emitting region

we define disk lifetime as "the surface density in the NIR emitting region falls below the detection limit"

■Lx=const. with time
$$L_x=10^{-3.5}L_{\bigstar}$$
, $L_{\bigstar}=2L_{\odot}(M_{\bigstar}/M_{\odot})^2$ • $M_{disk,ini}=0.1M_{\bigstar}$
• $\alpha=10^{-3} \times (M_{\bigstar}/M_{\odot})$

■L_x=const. with time
$$L_x=10^{-3.5}L_{\bigstar}$$
, $L_{\bigstar}=2L_{\odot}(M_{\bigstar}/M_{\odot})^2$ • $M_{disk,ini}=0.1M_{\bigstar}$
• $\alpha=10^{-3} \times (M_{\bigstar}/M_{\odot})$

If the L_X increases with M★, the disk lifetime decreases with M★ contrary to Gorti et al. (2009)

Lx=const. with time $L_x=10^{-3.5}L_{\star}$, $L_{\star}=2L_{\odot}(M_{\star}/M_{\odot})^2$ • $M_{disk,ini}=0.1M_{\star}$ Lx=Lx(t) • $\alpha=10^{-3} \times (M_{\star}/M_{\odot})$

- If the L_X increases with M_★, the disk lifetime decreases with M_★ contrary to Gorti et al. (2009)
- However, the evolution of L_X makes the disk lifetime longer on the high-mass side

■Lx=const. with time $L_X=10^{-3.5}L_{\bigstar}$, $L_{\bigstar}=2L_{\odot}(M_{\bigstar}/M_{\odot})^2$ ■Lx=Lx(t) • $\alpha=10^{-3} \times (M_{\bigstar}/M_{\odot})$

- If the L_X increases with M_★, the disk lifetime decreases with M_★ contrary to Gorti et al. (2009)
- However, the evolution of L_X makes the disk lifetime longer on the high-mass side
- this increase is caused by leaving the Hayashi track
- the large L_X at the beginning does not play an important role

Discussion: dependence on the initial disk mass

• α=1×10⁻³×M★

The disk lifetime of $2-4M_{\odot}$ stars can be sensitive to the initial condition

the qualitative behavior is not changed

Discussion: PMS evolution

Summary

The distribution of planets around IM stars may be affected by the disk lifetime.

We investigated the disk lifetime around IMs including the photoevaporation by X-rays and EUV photons.

In particular, we focused on the effect of L_X evolution.

As a result, we find

- the dominant source of P.E. can be changed to UV around IM stars
- \bullet the disk lifetime around IM stars can increase by the evolution of L_X
- \bullet only the evolution of L_X may not explain the observed disk lifetime

future work:

 including another effect (e.g., FUV P.E.) would be needed especially for the high-mass stars Supplement slides

Photoevaporation Model

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} \left(\sqrt{r} \frac{\partial}{\partial r} \left(\nu \Sigma \sqrt{r} \right) \right) - \dot{\Sigma}_{\rm PE}$$

$\bullet \dot{\Sigma}_{\text{PE}}$ can be the combination of the four $\dot{\Sigma}$

	w/o gap	w/ gap
EUV	Hollenbach+94	Alexander+06
Х	Owen+12	Owen+12

$$\dot{M}_w = 6.25 \times 10^{-9} \left(\frac{M_*}{1 \,\mathrm{M_{\odot}}}\right)^{-0.068} \left(\frac{L_{\mathrm{X}}}{10^{30} \,\mathrm{erg \, s^{-1}}}\right)^{1.14} \,\mathrm{M_{\odot} \, yr^{-1}}$$

 $\dot{M}_{\rm EUV} = 3.439 \times 10^{-10} \ [M_{\odot} \ {
m yr}^{-1}] \left(\frac{\Phi_{\rm EUV}}{10^{41} \ {
m s}^{-1}} \right)^{1/2} \left(\frac{M_{\star}}{M_{\odot}} \right)^{1/2}$

Lx

$$L_{\rm X} = \max\left(10^{-3.5}L_{\star}\left(\frac{M_{\rm conv}}{M_{\star}}\right), 10^{-6}\right) \qquad \text{before ZAMS}$$

$$L_{\rm X} = \max\left(10^{-3.5}L_{\star}\left(\frac{M_{\rm conv}}{M_{\star}}\right), 10^{-9}\right)$$
 after ZAMS

mass loss profile by photoevaporation

hole radius

direct P.E. EUV: Alexander+'06, X: Owen+'12

• R_{hole} : the radius where $\tau = \sigma N_0 = \sigma \int n_0 dr = 1$ (for EUV, $\tau = 4.61$)

σ_{EUV}=6.3×10⁻¹⁸cm², σ_X=10⁻²²cm²

•if R_{hole}>r_g, we change the photoevaporation rate into direct P.E.

Discussion: comparison with observation

■in the case $M_{disk,ini} = 0.1 M_{\bigstar}$, if the most of observed objects are lighter than

3M_☉, **only X-ray P.E. can explain** the observed feature. However, it is not promising. ■FUV is needed

Effect of limit of LX for BA-type MS stars

Effect of birthline

Effect of $L_X(M_{\bigstar})$

