Dust processing in HAeBe disks

Roy van Boekel MPIA Heidelberg

Overview

- intro, silicates
- origin & initial composition
- main processes at play
- composition from IR spectroscopy
- observable dust in HAe disks:
 - Silicates
 - Carbonaceous species / PAHs

Diagnostics

"direct" analysis:

- Earth, Moon, Mars
- meteorites
- comets
- IDPs
- pre-solar grains ("stardust")

• Spectroscopy:

- optical: absorption
- near/mid/far-IR: many spectral features, absorption & emission
- mm: spectral slope

Scattering properties:

- Disk surfaces
- clouds/cores

Philae / Rosetta, ESA

Diagnostics

"direct" analysis:

- Earth, Moon, Mars
- meteorites
- comets
- IDPs
- pre-solar grains ("stardust")

• Spectroscopy:

- optical: absorption
- near/mid/far-IR: many spectral features, absorption & emission
- mm: spectral slope

Scattering properties:

- Disk surfaces
- clouds/cores

Philae / Rosetta, ESA

Main dust components

Silicates

- Mg/Fe, Si, O
- amorphous / crystalline forms

• Carbonaceous

- hydrogenated amorphous C
- "CHON" material (?)
- graphite, diamonds
- PAHs

Others

- Fe, FeS, NiS, SiC
- Al203, MgAl204

Enstatite

Main dust components

Silicates

- Mg/Fe, Si, O
- amorphous / crystalline forms

• Carbonaceous

- hydrogenated amorphous C
- "CHON" material (?)
- graphite, diamonds
 PAHs

Others

- Fe, FeS, NiS, SiC
- Al203, MgAl204

Enstatite

Olivine-type Mg_{2x}Fe_{2-2x}SiO₄

Pyroxene-type Mg_Fe1-xSiO3

Olivine-type Mg_{2x}Fe_{2-2x}SiO₄

Pyroxene-type Mg_Fe1-xSiO3

Olivine-type Mg_{2x}Fe_{2-2x}SiO₄

Pyroxene-type Mg_Fe1-xSiO3

Olivine-type Mg_{2x}Fe_{2-2x}SiO₄

Pyroxene-type Mg_Fe1-xSiO3

[Si0₄]⁴⁻

Olivine-type Mg_{2x}Fe_{2-2x}SiO₄

Pyroxene-type Mg_Fe1-xSiO3

Olivines x=1 forsterite (Mg only) x=0 fayalite (Fe only)

Pyroxenes

x=1 enstatite x=0 ferrosilite

Pyroxene-type Mg_Fe1-xSiO3 destruction & recondens. @ low T cosmic rays

Olivines x=1 forsterite (Mg only) x=0 fayalite (Fe only)

Pyroxenes x=1 enstatite x=0 ferrosilite

Origin & initial composition

image credit: Bill Saxton, NRAO/AUI/NSF

Origin & initial composition

image credit: Bill Saxton, NRAO/AUI/NSF

illustration by Kama

Spectral de-composition

Opacities of dust species

- lab measurements of λ -dependent opacities or optical constants
- optical constants \rightarrow opacities

Model to calculate spectra

- single/two temperature model (e.g. van Boekel et al. 2004, 2005; Bouwman et al. 2008)
- two-layer Temperature Distribution (Juhasz et al. 2007)
- full Radiative Transfer disk model (e.g. Mulders et al. 2013)

Spectral de-composition

Opacities of dust species

- lab measurements of λ -dependent opacities or optical constants
- optical constants \rightarrow opacities
- Model to calculate spectra
 - single/two temperature model (e.g. van Boekel et al. 2004, 2005; Bouwman et al. 2008)
 - two-layer Temperature Distribution (Juhasz et al. 2007)
 - full Radiative Transfer disk model (e.g. Mulders et al. 2013)

Lab measurements are important!

Opacities depend on

- exact composition / impurities
- particle size / shape / structure
- temperature

elaborate measurements!

- large wavelength range
- wide range of techniques
- representative conditions
- Heidelberg-Jena-St. Petersburg database (Huisken, Jaeger, Porschner, Mutschke, Henning, et al.)
- Koike, Suto, Sogawa, Murata, et al.

from Henning (2010, ARAA, 48, 21)

Composition from spectra: CAVEATS !!!

- Uncertainties in opacities
- Dust properties vary with location in disk
- Need to know/model density + Temperature Structure
- We "see" only minor fraction of dust mass

Silicates - grain growth

Acke et al. (2004, A&A, 422, 621)

Silicates - grain growth or porosity / shape irregularities ?

Acke et al. (2004, A&A, 422, 621)

mm slope, porosity, ice mantles

Porosity, ice mantles Ossenkopf & Henning (1994)

shape irregularities Min et al. (2006, 2014 in prep)

disk surface vs. midplane

surface layer: particles ≈ 1 µm

mid-plane: particles ≈ 10⁵ µm

Silicates - crystallisation

Min et al. (2007, A&A, 462, 667)

Murata et al. (2009, ApJ, 696, 1612)

ISO: "the big punch" Meeus et al. (2001, A&A, 365, 476)

group l

group II

Maaskant et al. (2013, A&A, 555, 64)

silicate emission zone

group l

group la: silicates visible

group II

group lb: no silicates visible

advancement from ground

van Boekel et al. (2003, 2005)

advancement from ground

van Boekel et al. (2003, 2005) 25

hammering it home with Spitzer Juhasz et al. (2010, ApJ, 721, 431)

warm enstatite & cool forsterite

- fit to 5-17 µm region: pyroxene dominates (enstatite)
- fit to 17-35 µm region: olivine dominates (forsterite)

- Very innermost region (sub-AU scale):
 - higher crystallinity
 - larger grains
 - forsterite-dominated
- Further out (≈1-10 AU)
 - lower crystallinity
 - smaller grains
 - enstatite-dominated

van Boekel et al. (2004)

Gail (2004, A&A, 413, 571)

 reaction of solid states with H₂ yields SiO gas and H₂O gas allowing inter-grain transport of Silicon and Oxygen; see Gail et al. (2004) for a detailed description

 reaction of solid states with H₂ yields SiO gas and H₂O gas allowing inter-grain transport of Silicon and Oxygen; see Gail et al. (2004) for a detailed description

* reaction of solid states with H₂ yields SiO gas and H₂O gas allowing inter-grain transport of Silicon and Oxygen; see Gail et al. (2004) for a detailed description

 reaction of solid states with H₂ yields SiO gas and H₂O gas allowing inter-grain transport of Silicon and Oxygen; see Gail et al. (2004) for a detailed description

even cooler stuff: Herschel

even cooler stuff: Herschel

69 µm olivine band Sturm et al. (2013, A&A, 533, 5) Maaskant et al. (2014, submitted)

69 μm band in HD 100546 Mulders et al. (2011, A&A, 531, 93)

Fe/(Fe+Mg) = 0.003

real-time crystallization Abraham et al. (Nature, 459, 224)

less/not relevant in HAEBEs because of high photospheric luminosity (cannot get factor 10-100 increase in Lbol in accretion outburst)

real-time crystallization Abraham et al. (Nature, 459, 224)

less/not relevant in HAEBEs because of high photospheric luminosity (cannot get factor 10-100 increase in Lbol in accretion outburst)

Parent-body processing?

- dust \rightarrow planetesimals \rightarrow large bodies
- high T / high P / differentiation / liq. water
- collisions $\rightarrow 2^{nd}$ gener. dust
- tracer: hydrous silicates
- tentative evidence from ISO
- not confirmed with Herschel
- no evidence for parent-body processing (so far ...)

Parent-body processing?

- dust → planetesimals → large bodies
- high T / high P / differentiation / liq. water
- collisions $\rightarrow 2^{nd}$ gener. dust
- tracer: hydrous silicates
- tentative evidence from ISO
- not confirmed with Herschel
- no evidence for parent-body processing (so far ...)

PAHs

- UV-excitation
- Stochastic heating
- Disk geometry important
 - "group I" strong PAHs
 - "group II" weak PAHs, mostly
 (e.g. Acke & van den Ancker, 2004, 426, 151; Acke et al. et al. 2010, ApJ, 718, 558)

group I

Abundant in ISM

- **Depleted/Absent in class O objects** (Van Dishoeck & van der Tak 2000; Geers et al. 2009)
- visible in most HAe stars, shapes from A to B' (Peeters, 2002, Acke & v/d Ancker 2004, Acke et al. 2010)

Peeters (2011)

Dependence on UV field Acke et al. (2010, ApJ, 718, 558)

PAHs in transition disks

Maaskant et al. (2014, A&A 563, A78)

Neutral PAHs, high electron density

ionised PAHs, low electron density

Conclusions

- Grain growth is ubiquitous ?
- Crystallization:
 - cold crystalline silicates very Fe-Poor, warm/hot ones probably as well
 - evaporation & re-condensation at inner disk edge
 - outward transport & gas-solid reaction \rightarrow radial transport important in central few AU!
 - non-equilibrium processes at large radii, likely evaporation & re-condensation
- no evidence for parent-body processing yet
- PAHs frozen in cores, partially released in disks?
- PAH Chemistry driven by stellar UV-field

Limitations

IR spectroscopy:

- composition: only species with spectral features
- growth: only limited range of particle sizes, or porosity?
- only "surface layer", small fraction of total dust

mm observations:

- no spectral features, no direct composition info
- grain size, porosity, ice mantles all affect spectral slope

END