Studying circumstellar environm ent of intermediate -mass stars

Yufang Wu1,
Collaborators: Jing-Hua Yuan2, Tie Liu1

1. Astronomy Department, Peking University
2. National Astronomical Observatories, Chinese Academy of Sciences

Outline

1. Introduction

- How do Herbig Ae/Be stars link low- and high-mass stars

Formation
Feedback

- Our investigation:

A search for their surrounding gas with 2-1, 3-2 lines of CO and 13CO
Mapping with J=1-0 of CO, 13CO and C18O
3. General conditions of surrounding molecular gas:

- Observation
- SED for envelopes and stars
- Gas properties: Parameters from CO lines

Parameter changes
5. Structures of surrounding gas - Effects of central stars
6. Summary

1. Introduction

- How do Herbig Ae/Be stars link low- and

High-mass star formation
Two basic processes in surrounding gas:

Formation:

low-mass stars: accretion-disk-outflow
High - mass stars: Problem:
when forming stars with $10 \mathrm{M} \odot$ radiation
pressure can halt spherical infall
(Wolfire \& Cassinelli 1987)
Two opposing views:
Still via infall -outflow-accretion
Collision- coalescence of less massive stellar objects
These years observational evidences found mostly support the accretion model, but to detect high-mass young stellar system is difficult.
Herbig Ae/Be: Mass < $10 \mathrm{M} \odot$
Their formation -- same with low-mass stars
Great superiority to investigate high -mass star forming -a bridge of the two kind star fOrmation

Shu, Adams \& Lizano 1987; Backwith \& Sargent 1996

Whitney 2005

Do HAe/Be stars link low- and high-mass star feed back?

Feed back is different for the two kinds of stars:
Surrounding regions: Structure molecular outflow HH object* Water masers* Trigg ered SF

Low-mass stars no evidence	simple	common	90%	rare
high-mass stars found	clusters	common	rare	61%
* compare with molecular outflows				

- Our investigation:

A search for their surrounding molecular gas
Mapping gas regions - so far 12 sources were mapped

2. Statius of surrounding molecular gas

- A survey for $54 \mathrm{H} \mathrm{Ae} / \mathrm{Be}$ stars
- KOSMA 2-1, 3-2 lines of CO

2-1, 3-2 lines of 13CO (28)

- Sample: Chosen from Thé et al (1994)

$$
\begin{aligned}
& \text { Dec }>-20 \mathrm{o} \\
& \text { Age: } 104 \text { to } 107 \mathrm{yr} \\
& 24 \mathrm{Be}, 27 \mathrm{Ae}, 3 \mathrm{Fe}
\end{aligned}
$$

- Results:_ Physical parameters were derived _ Systematic velocity., line widths, NH2

Derived Parameters of the Lines

Name	$\begin{gathered} V_{\mathrm{LSR}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{aligned} & \hline \frac{12}{} \frac{\cos (2-1)}{13} \cos (2-1) \end{aligned}$	$\tau_{1300(2-1)}$	$\tau_{12 \cos (2-1)}$	$\begin{gathered} T_{\mathrm{ex}} \\ (\mathrm{~K}) \\ \hline \end{gathered}$	$\begin{aligned} & \Theta_{s} \\ & \left({ }^{\prime \prime}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline \frac{12}{} \frac{\operatorname{coc}(3-2)}{12 \cos (2-1)} \end{aligned}$	$\begin{gathered} N_{\mathrm{H}_{2}} \\ \left(10^{21} \mathrm{~cm}^{-2}\right) \\ \hline \end{gathered}$
MacC H12	-4.7	3.6	0.33	28.96	20.93	179	0.95	5.49
LkHA 198	-0.2	3.1	0.39	34.66	15.76	530	0.68	5.89
RNO 6	-36.0	2.8	0.44	39.32	10.20	230	0.77	3.06
XY Per	-4.2	7.4	0.15	12.92	11.24	133	0.64	1.55
V892 Tau	7.2	4.2	0.27	24.20	12.05	310	0.64	2.76
AB Aur	6.1			26.60	15.29	188	0.72	1.40
T Ori	7.5	4.4	0.26	22.95	86.79	74	0.87	39.81
	11.0	6.4	0.17	15.12	44.65	141	0.87	13.47
	13.2	8.9	0.12	10.61	32.99	162	0.92	6.16
V380 Ori	7.0			26.60				
	9.0	2.2	0.61	53.95	16.36	800	0.69	12.83
V586 Ori	6.5			26.60	8.36	300	0.72	1.23
	8.7			26.60	24.12	153	0.82	3.68
BF Ori	6.2	4.1	0.28	24.88	17.12	285	0.72	4.42
	9.2	3.4	0.35	31.00	14.57	164	1.00	3.59
	10.9	2.6	0.49	43.21	7.55	300	0.54	1.66
Haro 13A	5.6	4.3	0.26	23.56	14.25	600	0.68	4.11
V599 Ori	5.0	5.2	0.21	19.01	11.43		0.70	2.66
	7.2			26.60				
RR Tau	-5.4	4.5	0.25	22.37	21.09	126	0.90	3.43
V350 Ori	4.4	6.3	0.17	15.38	6.84		0.60	1.20
MWC 789	2.6	3.8	0.31	27.18	7.06		0.50	1.33
LkHA 208	-0.1	2.9	0.42	37.63	10.05	290	0.45	2.28
LkHA 339	11.3	3.8	0.31	27.18	>12.7			>7.53
LkHA 215	2.5	5.1	0.22	19.42	20.66	170	0.86	4.08
R Mon	9.6	10.1	0.10	9.28	12.58	250	0.61	0.91
V590 Mon	5.2	6.2	0.18	15.65	10.16			1.08
	8.9	11.8	0.09	7.88	18.24	207	0.83	1.09
	11.4	7.9	0.14	12.05	17.88	152	0.82	1.26
VV Ser	5.4			26.60	6.23	270	0.44	0.98

- SED of 53 sources were obtained

Except MWC 614 for un-complete data
Archive data : UBV, JHK,
IRAC and MIPS
MSX, AKARI
SCUBA 450 and $850 \mu \mathrm{~m}$
1.3 mm wavelength
(Liu et al. 2012 and the references therein)
2D radiation transfer Robitaille et al. $(2006,2007)$
■ Parameters of envelopes, disks, stars

SED Fitting Results

	$\begin{gathered} A_{v} \\ \text { (mag) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \log (\text { Age }) \\ & (\log (\mathrm{yr})) \\ & \hline \end{aligned}$	$\begin{gathered} M_{+} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} R_{+} \\ \left(R_{\mathcal{O}}\right) \\ \hline \end{gathered}$	$\begin{gathered} \log \left(L_{+}\right) \\ \left(\log \left(L_{\odot}\right)\right) \end{gathered}$	$\begin{gathered} \log \left(T_{+}\right) \\ (\log (\mathrm{K})) \end{gathered}$	$\begin{aligned} & \log \left(M_{\text {crw }}\right) \\ & \left(\log \left(M_{\mathcal{O}}\right)\right) \\ & \hline \end{aligned}$	$\begin{gathered} \log \left(\dot{M}_{\text {erv }}\right) \\ \left(\log \left(M_{\mathrm{O}} \mathrm{yr}^{-1}\right)\right) \end{gathered}$	$\begin{aligned} & \begin{array}{l} \log \left(M_{\text {disk }}\right) \\ \left(\log \left(M_{\odot}\right)\right) \end{array} \\ & \hline \end{aligned}$	Incl (${ }^{\circ}$)	$\begin{gathered} \log \left(R_{\text {out }}\right) \\ (\log (\mathrm{AU})) \end{gathered}$	$\begin{gathered} \log \left(\dot{M}_{\text {disk }}\right) \\ \left(\log \left(M_{\odot} \mathrm{yr}^{-1}\right)\right) \end{gathered}$
H12	0.61 ± 0.57	3.73 ± 0.32	1.84 ± 0.16	14.96 ± 2.44	1.79 ± 0.13	3.62	0.32 ± 0.16	-4.88 ± 0.07	-1.74 ± 0.10	18.19	1.21 ± 0.32	-6.55 ± 0.35
198	0.00	3.07 ± 0.06	3.84 ± 0.38	29.95 ± 5.60	2.42 ± 0.14	3.62	0.06 ± 0.35	-4.56 ± 0.13	-2.12 ± 0.63	57.17 ± 24.78	0.54 ± 0.16	-5.33 ± 0.12
	1.48 ± 0.30	6.66 ± 0.25	3.62 ± 0.24	2.22 ± 0.08	2.17 ± 0.11	4.13 ± 0.02	-4.30 ± 0.54		-2.55 ± 0.13	41.80 ± 19.87	3.00 ± 0.32	-7.89 ± 0.46
	0.71 ± 0.65	6.03 ± 0.07	5.10 ± 0.42	2.76 ± 0.08	2.75 ± 0.12	4.23 ± 0.02	1.08 ± 0.10	-8.47 ± 0.31	-1.78 ± 0.23	78.59 ± 2.92	2.40 ± 0.21	-6.79 ± 0.94
	0.00 ± 0.01	5.71 ± 0.09	2.17 ± 0.47	5.03 ± 0.50	1.09 ± 0.09	3.67 ± 0.01	-1.64 ± 0.44	-5.62 ± 0.41	-1.49 ± 0.35	28.66 ± 9.47	2.45 ± 0.25	-6.85 ± 0.78
au	6.44 ± 1.95	6.50 ± 0.37	2.50 ± 0.88	4.04 ± 2.84	1.81 ± 0.24	3.98 ± 0.18	-0.88 ± 0.38	-5.62 ± 0.38	-1.29 ± 0.30	30.50 ± 9.53	2.69 ± 0.35	-7.14 ± 0.15
	3.06 ± 0.09	6.99	2.81	1.93	1.75	4.06	-5.71		-2.02	78.61 ± 2.92	2.77	-8.81
	1.04	5.14	1.10	6.73	1.10	3.62	-1.33	-5.65	-2.12	31.79	2.15	-7.34
480	0.33 ± 0.35	6.33 ± 0.16	3.04 ± 0.33	4.47 ± 1.10	1.78 ± 0.92	3.86 ± 0.19	-6.13 ± 0.35		-1.29 ± 0.25	54.75 ± 19.35	2.38 ± 0.25	-6.36 ± 0.67
929	0.24 ± 0.16	6.36 ± 0.19	3.10 ± 0.47	5.19 ± 0.95	1.81 ± 0.23	3.85 ± 0.03	-2.87 ± 0.36		-4.87 ± 0.63	56.30 ± 19.64	3.61 ± 0.72	-10.66 ± 0.71
112	0.60 ± 0.04	6.96 ± 0.05	1.95 ± 0.05	1.83 ± 0.05	1.11 ± 0.02	3.91	-5.86 ± 0.44		-1.78 ± 0.49	35.05 ± 11.45	2.58 ± 0.33	-8.23 ± 0.14
5185	0.00	6.13	3.74	5.68	2.17	3.93	-6.84		-1.41	81.37	2.29	-7.19
	1.47 ± 0.16	6.69 ± 0.28	3.72 ± 0.51	2.33 ± 0.31	2.27 ± 0.18	4.13 ± 0.04	-5.42 ± 0.46		-1.26 ± 0.51	53.80 ± 15.54	2.60 ± 0.71	-6.54 ± 0.43
	2.31 ± 0.13	6.85 ± 0.15	2.82 ± 0.27	2.07 ± 0.03	1.78 ± 0.16	4.04 ± 0.04	-4.50 ± 0.32		-2.03 ± 0.47	47.41 ± 31.50	2.67 ± 0.23	-7.47 ± 0.54
Ori	2.87 ± 1.42	5.87 ± 0.11	4.68 ± 0.05	6.62 ± 2.95	2.62 ± 0.21	4.03 ± 0.13	0.88 ± 0.21	-5.66 ± 0.43	-3.51 ± 0.29	45.12 ± 18.54	2.88 ± 0.39	-8.52 ± 0.48
Ori	1.00	6.01	3.86	7.62	1.93	3.80	-0.06	-7.56	-1.60	81.37	2.24	-6.86
	1.81 ± 0.31	6.72 ± 0.17	3.09 ± 0.31	2.19 ± 0.29	1.94 ± 0.16	4.07 ± 0.04	-4.60 ± 0.98		-2.94 ± 0.57	49.03 ± 21.24	2.58 ± 0.53	-8.08 ± 0.59
11	11.65	6.63	0.35	1.04	-0.15	3.55	-8.77		-2.33	63.26	2.09	-7.18
3A	0.00	3.02	3.47	24.48	1.34 ± 0.32	3.63	-0.25 ± 0.65	-4.71	-1.84	64.16 ± 21.08	0.67	-5.62 ± 0.36
Ori	2.94 ± 1.62	5.64 ± 0.30	1.83 ± 1.19	5.29 ± 1.59	1.20 ± 0.31	3.65 ± 0.06	-1.36 ± 0.52	-5.76 ± 0.35	-1.24 ± 0.27	42.47 ± 24.22	2.59 ± 0.46	-6.71 ± 0.37
	1.82 ± 0.27	6.53 ± 0.28	3.68 ± 0.42	2.60 ± 0.49	2.30 ± 0.17	4.12 ± 0.03	-5.71 ± 0.46		-1.12 ± 0.24	43.72 ± 19.52	2.60 ± 0.32	-6.41 ± 0.32
Ori	1.69 ± 0.47	6.73 ± 0.16	2.73 ± 0.39	2.05 ± 0.31	1.75 ± 0.19	4.03 ± 0.06	-3.48 ± 0.39		-2.52 ± 0.50	43.21 ± 19.30	3.39 ± 0.32	-7.29 ± 0.73
789	2.42 ± 0.77	6.24 ± 0.17	3.90 ± 0.37	2.81 ± 0.29	2.36 ± 0.10	4.12 ± 0.02	-6.47 ± 0.18		-1.02 ± 0.13	22.65 ± 6.39	2.43 ± 0.05	-6.49 ± 0.37
208	5.39 ± 0.09	5.97	4.23	6.69	2.32	3.93	-0.93	-7.33	-1.00	55.80 ± 14.37	3.06	-7.71
339	2.96 ± 0.12	6.60 ± 0.31	3.42 ± 0.60	2.25 ± 0.25	2.17 ± 0.28	4.11 ± 0.05	-2.38 ± 0.76		-1.78 ± 0.36	40.20 ± 21.08	3.73 ± 0.52	-8.67 ± 0.38
215	1.34 ± 0.35	5.74	5.13	8.46	2.59	3.95	1.05	-5.01	-2.15	46.40 ± 21.09	3.65	-9.19

- Column density:
$4.9 \times 1021 \mathrm{~cm}-2 \quad$ Age<106 yr
$2.5 \times 1021 \mathrm{~cm}-2$ Age>106 yr
- Low-mass cores:
~ $1022 \mathrm{~cm}-2$ (Myers et al. 1983)
- High-mass cores: --

Except Planck Clumps in the right Figure.
> $1022 \mathrm{~cm}-2$

lless dense than low- and high -mass cores
Line width: 1.87 km/s
\square between those of low- and high mass cores (1.3 and $3.5 \mathrm{~km} / \mathrm{s}$, My ers et al 1983, Wu et al. 2001)

- CO gas seems to be correlated with envelope ma ss:
- $\log \left(I _C O(2-1) / K \mathrm{~km} \mathrm{s-1}\right)=(1.129 \pm 0.052)+(0.076 \pm 0.017) \log ($ Men v/M®)

- Envelope: masses, accretion rates decrease with age after 105 yr
- Disk accretion rates decrease with age, but more slow than that of envelopes

3. Structures of surrounding gas - Effects of central stars

Observations:

- Mapping with J=1-0 lines of CO, 13CO and C18O
- 13.7 m telescope

Purple Mountain Observatory
HD200775 observed with CO 3-2 and 13CO 2-1 at KOSMA

- Mapped sources: 12
- One of them observed with $\mathrm{H} \alpha$ emission
2.16 m telescope

National Astronomical Observatories
Results: divided into 6 groups:

Group I: 3 sources: core+ star(s) MWC 789

- Channel maps of 12CO 1-0

MWC 789

LkH 208

- Channel maps of 12CO 1-0

LkH 208

- Velocity integrated intensity map of 13CO 1-0 overlaid on that of 12CO 1-0.

LkH $\alpha 215$

- Channel maps of 12CO 1-0

LkH $\alpha 215$

(White star: Lkha 215a
] Blue stars: emissionline stars, Variable Stars of Orion Type, Be Stars, or Ae Stars. Triangles: (sub) mm sources

- Velocity integrated intensity map of 13CO 1-0 overlaid on that of 12CO 1-0.

Group II: 2 sources Core+outflow, jet + star(s) LkH 198

- Channel maps of 12CO 1-0

- Velocity integrated intensity map of 13CO 1-0 overlaid on that of 12CO 1-0.

BD 46

- Channel maps of 12CO 1-0

- Velocity integrated intensity map of 13CO 1-0 overlaid on that of 12CO 1-0.

Group III: 3 sources, Core + jets +star(s) MacC H12

- Channel maps of 12CO 1-0

Par 22

$20^{\mathrm{h}} 25^{\mathrm{m}} 0^{s} 45^{s} 30^{s} 15{ }^{\mathrm{s}} 4^{\mathrm{m}} 0^{s}$

- Channel maps of 12CO 1-0
 "+" symbols: HH objects
- Velocity integrated intensity map of 13CO 1-0 overlaid on that of 12CO 1-0.

V375Lac

Channel maps of 12CO 1-0

V375Lac

Group IV: 1 source VI: diffuse core+ optical line chang e
 MWC 790

- Ha in three epochs

MWC 790

- Channel maps of 12CO 1-0

MWC 790

- Velocity integrated intensity map of 13CO 1-0 overlaid on that of 12CO 1-0.

Group V: 3 sources, core+semi-cavity or cavity+stars
LkH 234 -also +HH jet

- Channel maps of 12CO 1-0

- Velocity integrated intensity map of 13CO 1-0 overlaid on that of 12CO 1-0.

ILcep

1

ILcep

- Velocity integrated intensity map of 13CO 1-0 overlaid on that of 12CO 1-0.

HD200775

$$
\stackrel{10}{\Delta R . A .(\operatorname{arcmin})}
$$

(a)

HD200775

HD200775

- Outflow of Core 1

HD200775

- 17 YSOs identified based on 2MASS colors
- $\alpha=\frac{[J-H]}{1.8[H-K s]-0.1035}$
- Black Dashed Line:

$$
>\alpha=(-0.049 \pm 0.024)+(1.034 \pm 0.072) d, \quad R^{2}=0.38
$$

- Blue Solid line:

$$
>\alpha=(-0.023 \pm 0.007)+(0.995 \pm 0.021) d, R^{2}=0.62
$$

Cores 3

```
Core +outflow + HH jets 2
Core + HH jets 3
diffuse core, single star, optical change 1
```

Single star 3
Two stars 2
Groups stars 7

```
core, half cavity 2 , one with HH Jet cores, outflow, infall, cavity 1
```


4. Summary

- Gas: less dense comparing with low- and high mass cores
- Line width: between that of low - and high mass cores
- CO represents surrounding gas and related envelope gas Envelope and disk accretion rates change with age
- Gas cores dense or diffuse, isolate or a number coexist
- Outflow: mm outflow: detection rate: low, consistent with a statistics using large sample (Wu et al. 2004)
Optical jet: with high detection rate- similar to low-mass regions but usually appear as a string

- Group stars >50\%, including isolated and clustered
- Cavity exists- similar to high-mass stars, possible triggered star formation was found but without strong HII region
- For feed back HAe/Be stars also link low- and high-mass stars
- Further: Map more samples

Probe typical sources such as disk in MWC 789 with high resolution observation

Thank You for

 Your Attention!