The ALMA Observing Tool

Suzanna Randall
Andy Biggs
ESO ARC

The ALMA Observing Tool

- The OT is used for
 - preparation of ALMA proposals
 - the resultant observing programs (not covered in this talk)
- Two design goals
 - Detailed knowledge of radio/submm interferometry should not be necessary to apply for ALMA time
 - Expert users and observatory staff should be able to create any kind of observing program
- Solution
 - Scientific requirements are captured in Science Goals (SGs)
 - Technical information contained in Scheduling Blocks (SBs)
 - OT automatically converts Science Goals into Scheduling Blocks

Installation

- The OT is a Java-based application
 - Must be downloaded to one's computer
 - User must have at least Java 7 installed
- Java Web Start is recommended
 - One-click installation (from Science Portal)
 - Updates automatically
 - Tarball also available (inc. Linux version with own Java)
- Troubleshooting guide available in Science Portal
- Detailed documentation including video tutorials also available
- Help function within the OT

Proposal Creation

- Proposal preparation and submission is referred to as Phase 1
- Include usual proposal details
 - PI and co-I names, abstract, scientific category, keywords, ...
 - Attach scientific justification as PDF
- Science Goals describe the scientific requirements
 - Angular resolution, largest angular scale -> required configurations
 - Desired sensitivity, frequency, bandwidth -> required time
- No limit on number of SGs per proposal

Spectral Concepts: Bands

- Each receiver can potentially detect a fixed range of frequencies
 - Band 3: 84-116 GHz
 - Band 9: 602-720 GHz

Spectral Concepts: Sidebands

- At any one time, a receiver can only detect a fraction of a band
- The available frequency space is restricted to two sidebands
- Their location within the band is set using v_{LO1}
 - v_{LO1} = first local oscillator frequency
- Sideband widths and separations depend on band
 - Band 3: width = 4 GHz, separation = 8 GHz
 - Band 9: width = 8 GHz, separation = 8 GHz

Spectral concepts: Basebands

- Basebands then select a desired fraction of a sideband
- Up to four basebands are available
- Each baseband
 - has a fixed width of 2 GHz (max bandwidth = 8 GHz)
 - can be placed anywhere within a sideband (must fit completely)
 - can overlap
- Baseband signals are fed into the correlator

Spectral concepts: Spectral windows

- Finally...
- The correlator samples each baseband using spectral windows
- Each spectral window (spw)
 - has a variable width (59 MHz 2 GHz)
 - has a fixed number of channels (trade bandwidth / spectral resolution)
 - can be placed anywhere within a baseband (must fit completely)
 - can overlap (wouldn't normally do this)
 - can be split into multiple regions

Multi-region modes

- Each Baseband can use a single correlator mode
 - For example: 937.5 MHz / 244.141 kHz (4096 channels)
- Each mode can be split into up to 4 spws
 - Each must have the same spectral resolution
 - Must set the "Fraction" parameter for each
 - For example:
 - 1 x 468.75 MHz / 244.141 kHz / fraction=½ (2048 channels)
 - 2 x 234.375 MHz / 244.141 kHz / fraction=¼ (1024 channels)
- Usually only need to use these when >5 spws are required

Polarization selection

Polarization selection	Products	Spectral channels/pol. (FDM TDM)
Single	XX	8192 256
Dual	XX, YY	4096 128
Full	XX, YY, XY, YX	2048 64

- Dual polarization is usually selected
 - Single: hardly ever required
 - Dual: maximum sensitivity (default)
 - Full: for detecting linear polarization
- The polarization selection applies to each spectral window

Antenna Beamsize / FOV

- Each antenna has an approximately Gaussian beam
 - OT assumes FWHM = $1.13 \lambda / D$ where D is dish diameter
 - ≈ 1 arcmin at Band 3, ≈10 arcsec at Band 9
 - Sets the field of view of the observation
 - Only achieve requested sensitivity at centre of pointing
 - Dashed circle on spatial visualizer shows 1/3 FWHM

Control & Performance

- Interferometry array characteristics
 - Longest baseline (L_{max}) sets angular resolution
 - Shortest baseline (L_{min}) sets max recoverable scale
 - An object of this size can be reliably imaged
- Configurations are chosen such that
 - $-\lambda/L_{max}$ < requested angular resolution
 - $-\lambda/L_{min}$ > requested largest angular scale
- Up to 2 12-m configurations are possible
- If ACA is required, get 7-m and TP arrays
 - TP not available for Band 9, 10 or single continuum

Source angular scales

Hot spots and core are compact – "seen" by all baselines

Lobes are much larger – only shorter baselines see this emission

If the short baselines were missing, the lobes would be completely invisible!