

# AO for the ELTs Physical and Technological challenges

**Enrico Marchetti** 



# Outer scale: changing perspective





### Atmospheric turbulence spectrum





### From Kolmogorov to Von Karman

$$\Phi_{Kol}(\kappa) = 0.023 \, r_0^{-5/3} \kappa^{-11/3}$$

$$\sigma_{Kol}^2 = 1.03 \left(\frac{D}{r_0}\right)^{3/3}$$

$$\Phi_{Kol}(\kappa) = 0.023 \, r_0^{-5/3} \kappa^{-11/3} \qquad \sigma_{Kol}^2 = 1.03 \left(\frac{D}{r_0}\right)^{5/3}$$

$$\Phi_{VK}(\kappa) = 0.023 \, r_0^{-5/3} \left[\kappa^2 + \left(\frac{2\pi}{L_0}\right)^2\right]^{-11/6} \qquad \sigma_{VK}^2 = \alpha \left(\frac{D}{r_0}\right)^{5/3}$$







### How big is the Outer Scale?





Dali Ali et al, A&A 524, 573 (2010)



## Turbulence wavefront at larger scales





### Outer scale and telescope diameter

■ What matters is D/L<sub>0</sub> [Winker, JOSA A 8, 1568, (1991)]

0.8" seeing 
$$-$$
 2.2  $\mu$ m

| L <sub>0</sub> (m) | $lpha_{	extsf{VLT}}$ | $\alpha_{	extsf{E-ELT}}$ | $\sigma^2_{VLT}$ [rad <sup>2</sup> ] | $\sigma^2_{E-ELT}$ [rad <sup>2</sup> ] | σ <sub>tilt,VLT</sub> ["] | σ <sub>tilt,E-ELT</sub> ["] |
|--------------------|----------------------|--------------------------|--------------------------------------|----------------------------------------|---------------------------|-----------------------------|
| Inf                | 1.030                | 1.030                    | 52                                   | 664                                    | 0.171                     | 0.171                       |
| 1000               | 0.776                | 0.608                    | 39                                   | 392                                    | 0.145                     | 0.097                       |
| 100                | 0.485                | 0.206                    | 24                                   | 132                                    | 0.108                     | 0.046                       |
| 50                 | 0.357                | 0.101                    | 18                                   | 65                                     | 0.089                     | 0.026                       |
| 25                 | 0.249                | 0.039                    | 13                                   | 25                                     | 0.064                     | 0.011                       |



# Short exposure PSFs @ 0.8 µm

 $r_0$ =0.129 m –  $L_0$ =25 m – 2.23 mas/px – FoV 2.28" – ArcSinh LUT





# Long exposure PSFs @ 0.8 µm







Kolmogorov spectrum (D/L<sub>0</sub> $\rightarrow$ 0) – FWHM 0.71"



### Tilt and Strehl ratio





## Strehl vs. Ensquared Energy

■ EE less sensitive to image jitter than Strehl





### Outer scale is gentler with ELTs

- More uniform short exposure PSF (mostly HO spatial frequencies): reduced noise in TT measurement
- Much less tilt: EE benefits vs. Strehl
- Relaxed stroke requirements for DMs



### Deformable mirrors in the telescope





## Why?

- To compensate for the atmospheric disturbances
- To compensate for telescope disturbances
- Avoid complexity of post-focal optical relay
- Maximized throughput
- Minimized thermal emission

- Located at telescope pupil (or nearby)
- Installed and working at LBT and Magellan
- Soon installed at VLT (Adaptive Optics Facility)
- Baseline for E-ELT and GMT (not in TMT)



### Large DMs: voice coil actuators





# Deformable Secondary Mirror at VLT

DSM key characteristics:

1170 actuators

1.12 meter diameter

0.7 ms response time





AOF will use it with: MUSE - GALACSI HAWK-I - GRAAL ERIS



## AOF DSM assembly





### Hexapod and reference body



#### 6 legs Hexapod for positiong:

- Focus selection (Nas/Cas) and ±8mm
- Centering ±6 arcmin



#### Reference body for the thin shell

- Light Weighted Zerodur 8 mm thick
- 1170 holes with 17mm diameter
- Capacitive sensor inside each hole



### Cold plate and voice coil actuators



Cold plate in aluminum

- Mount the 1170 actuators
- Heat sink





#### Voice coil actuators

Bias magnet to hold the shell when it's off



### Thin shell

#### Thin shell mirror

1120 mm diameter

2 mm thickness





# Magnets



1170 permanent magnets manually glued on the back surface



### E-ELT M4 deformable mirror



2480 mm diameter5250 actuators6 Segmented thin mirrors2 mm shell thicknessResponse time: 0.7 ms





# M4 prototype













## M4 prototype tests



Two shells independently flattened

Shells cophased

Global tilt removed



### Interaction matrix calibration

The calibration is a core component of an AO system

$$c = R \cdot s R = IM^{-1}$$

- The interaction matrix *IM* links univocally the relation between the DM command *c* and WFS signals *s*
- The IM is obtained by staking the WFS signals obtained by applying the commands to the DM





## Example of IMs



Curvature system
WFS matching DM geometry
Radial → Radial



MACAO DM and SH Radial → Rectangular



Piezo-stack DM and SH Rectangular → Rectangular



### IM at ELTs

- Calibrate large number of degrees of freedom
- Keep the measurement noise low

#### Time consuming

Techniques for speeding up IM recording

# Absence of calibration devices (fiber at focal plane upstream the DM)

- Pseudo-synthetic IM
- Calibration on sky (i.e. with turbulence)



### Improving IM SNR

- The IM quality is limited by photon noise, detector noise, limited integration time and local turbulence
- The method of fast push-pull IM recording allows increasing the IM SNR





### Fast IM recording

- Actuate simultaneously all N modes: N times faster or  $\sqrt{N}$  times higher SNR for the same time
- Hadamard matrix (only 1s and -1s):  $H \rightarrow HH^{-1} = HH^{T} = 1$   $IM = IM_{Hadamard} H^{T}$





First 100x100 elements of the AOF Hadamard matrix



### Pseudo-synthetic IM

- Generate IM without direct measurement
- Synthetic: generated by a simulation model
- Pseudo: tune to quantities measured on the real system
  - DM influence functions
  - Pixel scale
  - Mis-registration
- Advantages: quick to compute, infinite SNR, reload new IM as soon system conditions are changed
- Drawbacks: model dependent, accuracy of the physical quantities



### Pseudo-synthetic IM



1170 Influence Functions (FEA) or stiffness modes, or System modes



Shack-Hartmann model (geometric or diffractive, with or without noise) 40x40 subapertures (1240 valid)



Mis-registrations: x & y shifts, rotation, x & y stretches of WFS w.r.t. DM





### IM from closed loop data

**Estimatin** observati

IM





### Validation

### **AOF**





## Calibration on sky

- Atmospheric turbulence injects noise on IM measurement
- "Freeze" the turbulence during IM measurement
- Even shorter integration with push-and-pull technique
- Closed loop IM



### Closed loop IM

- 1. Close AO loop with preliminary IM (synthetic), not needed to be perfect
- 2. Send additional delta-command
- 3. The AO loop will compensate for the delta-command within one loop cycle
- 4. Synchronized WFS measurement and filter out the slope response at that cycle
- 5. Repeat until desired SNR is achieved
- 6. Build up IM



### Closed loop IM

On-sky validation with FLAO system (2012), 400 modes







## Laser guide stars





#### LGS the good and the bad

- Aiming at increasing sky coverage with AO
  - Placing anywhere in sky
  - Multi-LGS constellation for GL/MC/MO-AO configurations
  - Reliable and performing technology exists today
- LGSs hardly resemble NGSs
  - Not providing tip-tilt information → NGS WFS for tip-tilt
  - Cone effect
  - Strongly impaired focus information: Sodium vertical profile changes with time, even very fast → NGS WFS for focus
  - Extended sources (Sodium layer thickness)
  - Sodium abundance changes with time
  - Return flux depending on geomagnetic latitude



#### Cone effect



$$\sigma^2 = \left(\frac{D}{d_0}\right)^{5/3}$$

 $d_0$  diameter of telescope for  $\sigma^2 = 1 \text{ rad}^2$ 

Median seeing:

 $d_0(0.5 \mu \text{m}) \sim 4 \text{ m}$ 

 $d_0(2.2 \mu \text{m}) \sim 24 \text{ m}$ 

 $\sigma^2_{VLT}$  = 55 nm → SR(2.2 μm) = 0.85  $\sigma^2_{E\text{-}ELT}$  = 720 nm → SR(2.2 μm) = 0.13

Single LGS AO not viable for ELTs → Laser Tomography Adaptive Optics



### Sodium layer profile







## Sodium layer profile

















#### Mean altitude variation





#### Mean altitude power spectrum





### Expect the unexpected: meteors





#### Horizontal focus error

Multi LGS systems look at different positions in the Sodium layer: larger apertures require large LGS spatial separation





#### Compensating for Sodium altitude

Focus error strongly dependent from telescope diameter

$$\sigma_{WFE} = \frac{D^2 \sin z}{16\sqrt{3}(a-h)^2} \Delta a$$

- For 1m Sodium altitude variation:
  - $\blacksquare$  VLT:  $\sigma_{WFF} = 0.3 \text{ nm}$
  - E-ELT:  $\sigma_{WFF} = 6.4 \text{ nm} \rightarrow \times 20!$
- In ELTs the focus must be sensed at higher frame rate (~1Hz)
- Several focus NGS WFS are likely needed



## Spot elongation





## Spot truncation and linearity

- Sampling requirements impose the number of pixels to be used to avoid LGS image truncation
- Linearity to centroid motion is affected by truncation
- Large format detectors not existing (yet)

) Se

#### Workaround:

Dedicated centroid algorithms (Matching Filter...)
Larger detectors (more pixels)
Change sensor type?

Real SIIII



# Thank you for listening! (again)