Science Drivers for the European Extremely Large Telescope

Suzanne Ramsay

E-ELT Instrumentation Project Manager

for

Michele Cirasuolo

E-ELT Programme Scientist

Outline of the talk

- From an scientific idea to scientific requirements
 - How to decide what to build
- Some recent scientific highlights
- The astronomical landscape
- How astronomers plan for an E-ELT
- A brief summary of E-ELT drivers

Where are we now?

Find evidence for Population III stars

VLT SINFONI plus X shooter spectroscopy confirms the redshift of this brightest object from the COSMOS deep field. No evidence for heavy elements: integrated light spectrum indicates Population III stars.

Check the weather on a brown dwarf

Crossfield+ 2013 VLT+CRIRES high spectral resolution monitoring observations in the NIR reconstructed to show cloud structure on Luhmann 16.

Study the formation of galaxies at

Wisnioski+ 2014: 191 galaxies of 600 in the total sample. HST imaging and KMOS spectroscopy. Kinematics from H-alpha and resolved stellar mass maps.

The case for an E-ELT

- Making progress requires
 - Opening up new parameter space: a new wavelength range?

Multi-wavelength coverage

The Square Kilometer Array

SKA will dominate radio astronomy when it comes on line, beginning with early science in 2020+

The case for an E-ELT

- Making progress requires
 - Opening up new parameter space: a new wavelength range?
 - Field of view: surveys!

Survey telescopes and instruments

- Many imaging and spectroscopic surveys are from small to medium sized ground based telescope exist or are planned
 - Imaging: VISTA, VST, CFHT, UKIRT, PANSTARRS, SDSS
 - Spectroscopic: MOONS, 4MOST, WEAVE (WHT)
- They provide a statistical picture of the universe and the detection of rare objects

The case for an E-ELT

- Making progress requires
 - Opening up new parameter space: a new wavelength range?
 - Field of view: surveys!
 - ➤ Temporal information: LSST

Time variability/the transient universe

- The Large Synoptic Survey Telescope currently under construction
- This 8.4-m telescopes will survey the visible sky every few nights for 10 years
- Millions of alerts to follow up

Image credit: LSST

The case for an E-ELT

- Making progress requires
 - Opening up new parameter space: a new wavelength range?
 - Field of view: surveys!
 - > Temporal information: LSST
 - Sensitivity

James Webb Space Telescope

A JWST deep field

Image credit: ESA

How to follow up a JWST deep-field with limiting magnitude AB~31.5?

The case for an E-ELT

- Making progress requires
 - Opening up new parameter space e.g. a new wavelength range
 - > Field of view
 - > Temporal information: LSST
 - Sensitivity
 - Angular resolution

Telescope size

Enter the ELTS!

See also the CELT (Californian Extremely Large Telescope), VLOT (the Very Large Optical Telescope), the Euro-50 Project....

Some simple scaling

The ELTs excel in collecting power and angular resolution

For an adaptive optics assisted telescope observing near the diffraction limit:

Angular resolution scales with D (5x better for E-ELT versus VLT)

And for background limited observations:

Exposure time reduces with D^4 (500_x faster for E-ELT versus VLT)

Why an ELT science case?

- It spells out in detail what the astronomy community wants to do with a new facility
- It is the basis on which the design of the facility is developed
- This is an ongoing process!

Developing ELT science cases

- All the ELTs have science teams drawn from their community
- The ELT science case was developed by
 - Expert working groups
 - ➤ The ELT Project Science Team
 - Community workshops
- Watch out for your chance to contribute!

Developing ELT science cases

Planets and Stars

Solar system comets Extrasolar-system comets (FEBs) Extrasolar planets:

- imaging
- radial velocities

Free-floating planets

Stellar clusters (inc. Galactic Centre)

Magnetic fields in star formation regions Origin of massive stars

LMC field star population

Circumstellar disks, young and debris

Stellar remnants

Asteroseismology

Stars and Galaxies

Intracluster population

- Colour-Magnitude diagrams
- Call spectroscopy of IRGB stars Planetary nebulae and galaxies Stellar clusters and the evolution of galaxies

Resolved stellar populations:

- Colour-Magnitude diagram Virgo
- abundances & kinematics Sculptor galaxies
- abundances & kinematics M31- CenA Spectral observations of star clusters:
- internal kinematics & chemical abundances
- ages and metallicities of star cluster systems

Young, massive star clusters

- imaging
- spectroscopy

The IMF throughout the Local Group Star formation history through supernovae

- search and light curves
- spectroscopy

Black holes/AGN

Galaxies and Cosmology

Dark energy: Type Ia SNe as distance indicators

- search and light curves
- spectroscopy

<u>Dynamical measurement of universal expansion</u>

Constraining fundamental constants

First light - the highest redshift galaxies

Colorida and ACN at the and of

Galaxies and AGN at the end of reionization

Probing reionization with GRBs and quasars

Metallicity of the low-density IGM

IGM tomography

- bright LBGs and quasars
- faint LBGs

Galaxy formation and evolution:

Physics of high-z galaxies

- integrated spectroscopy
- high resolution imaging
- high spatial resolution spectroscopy Gravitational lensing

Deep Galaxy Studies at z=2-5

Science cases and requirements

3.1.5.1 DETECTION FROM REFLEX VELOCITY MEASUREMENTS

If the parent Jupiter-like planet is bright enough to allow medium-to-high resolution spectroscopy, the reflex motion of the Jupiter due to a potential terrestrial moon may be detectable. For an Earth-mass moon orbiting a Jupiter-mass planet at the same distance as the moon is from Earth, the reflex velocity range is about ± -60 m/s over a period of ~1 day. At 5 pc, a 100m E-ELT could secure spectra of the parent planet at resolutions of a few times 10^4 , with S/N ~ 20, in a couple of hours. To detect the reflex motion due to the moon would require a long observing campaign (~600 hours) to acquire many such spectra. These would be analysed in phase

Notes on Design Requirements

Observing type: Reflex velocity measurements via mid- to high-resolution spectroscopy of a Jupiter-like planet

Spectral Resolution: A few x 10,000

Observing time: 20 hrs per observation. Several observations needed at different

phases. About 600 hrs total.

bins around a hypothetical orbit, after accumulating enough spectra to build up the signal-to-noise to the required level (~100 per pixel per phase bin).

Exoplanets: Are we alone?

Direct imaging of exo-Earths

Requires:

➤ Contrast ratios as high as 10⁻⁹ at 0.1arcsecs angular separation

Drives:

- Telescope diameter (for angular resolution)
- Primary mirror gaps, phasing
- Extremely high performance adaptive optics (XAO)
- Specialised instrumentation

Current start of the art: SPHERE on VLT

Galactic Centre

Galactic Centre

Galactic Centre

Requires:

- ➤ To track stars at ~100 R_s around the BH in MW centre (10x closer than currently possible).
- Astrometric precision at ~50 μarcsec (10 μarcsec would be nice)

Drives:

- High throughput and very good adaptive optics performance
- Attention to stability plus carefull calibration

Resolved stellar populations

Resolved stellar populations

Requires:

- Deep photometry in crowded fields
- R>~20000 spectroscopy of faint sources

Drives:

- Telescope diameter for sensitivity (and resolution)
- Field of view
- Diffraction limited performance (even into the optical....)

Colour-magnitude diagrams

Simulated observations of M32

High redshift Universe

The end of the dark ages and the first galaxies

From QSO spectra and CMB constrain reionisation epoch 7 < z < 12 ... but the sources are beyond current detection limits.

Goals are

- Redshift confirmation of the most distant galaxies
- line strengths, stellar populations, outflows
- Absorption-line spectra of QSOs at z>6 (isotropy & homogeneity of reionisation).
- Enrichment of IGM.

Galaxy at z=8.7 observed with VLT and and E-ELT

Simulated observations of absorption line systems towards high-z QSOs at z=9

Mass assembly of galaxies

Requires:

- Imaging and (multiobject) spectroscopy of objects to Z~10
- Near infrared sensitivity

Drives:

Telescope diameter, coating for sensitivity

Field of view > 5x5arcmin

Moderate (30% Strehl) AO performance over wide field **E-ELT CAM:** Structure from high-resolution imaging

E-ELT IFU and MOS: Dynamics and physics from spatially resolved spectroscopy

Cosmology and fundamental physics

Fundamental constants?

Requires:

Stability over decades

Drives:

- Telescope diameter, coating for sensitivity
- Wavelength coverage in the optical (Ly-alpha forest)
- Provision of a coudé focus

Fundamental Physics

- Variability of fine-structure constant (α) and electron-to-proton mass (μ): variations expected in string theory
- Sandage test: Direct measurement of the changing expansion of the universe via precise measurements of Ly- α line positions with time.

To summarise.....

- The science cases for the E-ELT drives the design of the telescope.
 - Maintains a diameter >> 30m (to detect exo-Earths)
 - Keeps our attention firmly fixed on the image quality and adaptive optics
 - Leads to prioritization of the near and mid-infrared when selecting mirror coatings
 - Informs the engineering team of the aspirations of the astronomy community
- Much more detailed to follow during the school!

To summarise.....

Some further reading

Links to ELT pages

- E-ELT: www.eso.org/sci/facilities/eelt
- > TMT: www.tmt.org
- GMT: www.gmto.org

Some science conferences

- ESO workshops page: www.eso.org/sci/meetings/conferences.html
- Shaping the E-ELT Science and Instrumentation (Feb 2013) www.eso.org/sci/meeting/2013/eelt2013.html
- Expolanet observations with E-ELT (Feb 2014) www.eso.org/sci/meeting/2014/exoelt2014.html
- Speed and Sensitivity (May 2014) astro.nuigalway.ie/speedandsensitivity
- Early E-ELT Science: Spectroscopy with HARMONI (Jul2015) harmoni2015.physics.ox.ac.uk
- Science and Technology with E-ELT (Oct 2015) www.eso,org/sci/meetings/2015/EELT_EriceSchool2015.html)

