ADVANCED EVOLUTIONARY PHASES OF LOW- AND INTERMEDIATE-MASS STARS: CURRENT STATUS AND OPEN PROBLEMS

SHORT SUMMARY OF STELLAR EVOLUTION (All masses in units of solar masses.) Michal Protostar Gas Cloud →> and (Nebula) Pre-Main-Sequence Star Helium White Dwarf Super AGB non dea. He-core He-burning . > White Dwarf 9-11 cM < 25 initial 0 Type II. Ib/c He-C-Ne-O-Si burnings Synchrotron Redistion (Radio Pulses) Type la supernova

Pt. 1

MAURIZIO SALARIS

AGB STARS

 2^{nd} dredge up only for masses above ~4 M_{\odot}

Thermal pulses

 $M=2.0M_{\odot}$

HOT BOTTOM BURNING

In stars with $M \gtrsim 4-5 \, M_{\odot}$, the temperature at the base of the convective envelope during the interpulse period becomes so high $(T_{\rm BCE} \gtrsim 3 \times 10^7 \, {\rm K})$ that H-burning reactions take place. The CNO cycle then operates on material in the convective envelope, a process known as *hot bottom burning*. Its main effects are: (1) an increase in the surface luminosity, which breaks the core mass-luminosity relation; (2) the conversion of dredged-up $^{12}{\rm C}$ into $^{14}{\rm N}$, besides many other changes in the surface composition. Hot bottom burning thus prevents massive AGB stars from becoming carbon stars, and turns such stars into efficient producers of *nitrogen*.

The minimum mass for HBB decreases with decreasing metallicity

T_{BC} eventually decreases when the envelope mass becomes too small

HBB signature

MAIN UNCERTAINTIES

Mass loss, boundaries of convection

UNCERTAIN !!!!!

Dredge-up efficiency

Four different prescriptions for mass loss before the TPs (1 and 2 M_{\odot} models) (Z=0.001)

Rosenfield et al (2014)

Weiss & Ferguson (2009)

Importance of mass loss choice

Importance of 3rd dredge up efficiency

Importance of hot bottom burning efficiency

Marigo & Girardi (2007)

Different HBB efficiencies

Doherty et al. (2014)

s-process nucleosynthesis

Nuclei with atomic mass, A > 56 (e.g. Zr, Sr, Ba, Eu, Pb, La) formed by neutron addition onto Fe peak elements

Neutrons are added slowly, so that unstable nuclei generally have time to β -decay before capturing another neutron

$^{12}\text{C}(p, \gamma)^{13}\text{N}(\beta^+ v)^{13}\text{C}(\alpha, n)^{16}\text{O}$

- Requires the presence of both H and He in a He-burning region when normally there is no hydrogen
- Occurs at T \sim 10 8 K, in between thermal pulses, and in radiative layers. But needs protons to be injected in some way in the intershell region Timescales \sim 10000 yr, maximum neutron densities 10^8 n/cm 3
- Dominant neutron source in low-mass AGB stars (1 to 3M_☉ stars)

$$^{14}N(\alpha,\gamma)^{18}F(\beta^+v)^{18}O(\alpha,\gamma)^{22}Ne(\alpha,n)^{25}Mg$$

- Plenty of ¹⁴N left over at the top of the intershell region from CNO cycling to produce the ²²Ne
- Occurs during thermal pulses when the temperature exceeds ~3 x 10⁸ K, in convective layers
- These temperatures are not reached in the He-shells of low-mass AGB stars, except perhaps in the last few TPs, but are reached in massive AGB stars (~3 to $8M_{\odot}$) during He-shell flashes

Timescales ~ 10 yr, maximum neutron densities 10¹³ n/cm³

How do you create the ¹³C pocket?

EVOLUTION OF HIGH MASS STARS WITH $7 < M/M_{\odot} < 9 - 11$

These stars ignite the fusion of carbon in a non degenerate core, when $T \sim 5-6 \times 10^8 \,\mathrm{K}$.

$$^{12}C + ^{12}C \longrightarrow ^{24}Mg \longrightarrow ^{20}Ne + ^{4}He$$

$$\longrightarrow ^{23}Na + p$$

$$\longrightarrow ^{23}Mg + n$$

During carbon burning and more advanced nuclear burnings, a lot of energy is lost in form of neutrinos. This means that from now on nuclear burning is not able to provide all the energy required by the star. As a consequence, the star rapidly contracts to produce the missing energy through the work of gravitation (virial theorem).

At the end of central C burning the core (made mainly of oxygen from the previous He burning, and Ne produced by the C burning) becomes electron degenerate, and the stars evolve as an ONe WD.

(Probably)

Green → maximum H-burning

Blue → maximum Heburning

Red→maximum C-burning

After the 2nd dredge-up thermal pulses starts (with associated 3rd dredge-up and

The so-called super-AGB (SAGB) phase starts

If after the carbon burning phase the degenerate core mass grows to the Chandrasekhar mass electron-capture reactions are activated at the centre and induce core collapse, leading to the formation of a neutron star.

Whether or not the SAGB core mass reaches this critical value depends on the interplay between mass loss and core growth.

If during the post-C burning evolution the mass loss rate is high enough, the envelope is lost before the core mass reaches the Chandrasekhar mass and the remnant is a ONe white dwarf (WD). On the contrary, if the mass loss rate is not large enough, the endpoint of SAGB evolution is probably the explosion as electron-capture supernova and the formation of a neutron star remnant.

KEEP

AND

COME TO
LAST LECTURE

ADVANCED EVOLUTIONARY PHASES OF LOW- AND INTERMEDIATE-MASS STARS: CURRENT STATUS AND OPEN PROBLEMS

Pt. 2

MAURIZIO SALARIS

Post-AGB stars

- Once the envelope mass drops below ~0.01Msun, the star leaves the AGB
- Evolves at almost constant luminosity toward hotter Teff
- Transition times very rapid (~100 years) for most massive objects → No PN
- Transition times ~10⁴ years for low-mass objects
- Mass loss rates are low (~10⁻⁸ Msun yr⁻¹)

Larger envelope mass slower evolution

H- or He-burners, depending on the moment they leave the AGB during the TP cycle. He-burners evolve more slowly for a given core mass

Transition times at fixed post-AGB mass depend on progenitor history (Bloecker 1995), because of the different T-P stratification.

Lower mass progenitor, faster transition

Post-AGB timescale and third dredge up on the AGB

From a talk by Miller Bertolami (2014)

Post-AGB crossing time (T_{eff} from 10⁴ to 10⁵ K)

More dredge-up, shorter transition times

Contribution of post-AGB stars to integrated spectra of unresolved stellar populations

Late Thermal Pulse

Late-TP

No dredge-up expected unless high mass loss and/or some overshooting. At most some dilution of H

Very late TP

Surface H depletion, enrichment of C and O

WHITE DWARFS

 Isothermal core (because of very high conductivity of degenerate electrons) that contains about 99% of the WD mass, surrounded by a largely non degenerate thin envelope

 The degenerate layers act as a reservoir of energy (internal energy of the ions), while the outer layers control the energy outflow

To a first approximation the cooling time t down to luminosity L of a WD with mass M, core atomic weight A and envelope molecular weight μ is given by the Mestel law:

 $t \approx A^{-1} \mu^{-2/7} M^{5/7} L^{-5/7}$

Mass-radius relationship

Actually radius depends also on T_{eff} and envelope composition

MESTEL LAW

Core (isothermal) made of a perfect gas of ions and zero-temperature degenerate electrons. Thin envelope made of a perfect gas of electrons and ions in radiative equilibrium

The energy radiated by the WD is the internal energy of the ions in the core

 C_v =3/2 K per ion E=3/2KT per ion

Cooling times (yr) are given by

$$\Delta t(yr) \propto \left(\frac{L}{M}\right)^{-5/7} \approx \frac{4.5 \; 10^7}{\mu_i} \left(\frac{L M_{\odot}}{M L_{\odot}}\right)^{-5/7}$$

 μ_i is the mean molecular weight of the core

$$\begin{split} L + L_{v} &= -\int_{0}^{M_{\text{WD}}} C_{v} \, \frac{dT}{dt} \, dm - \int_{0}^{M_{\text{WD}}} T \! \left(\frac{\partial P}{\partial T} \right)_{V,X_{0}} \frac{dV}{dt} \, dm \\ &+ l_{s} \, \frac{dM_{s}}{dt} - \int_{0}^{M_{\text{WD}}} \! \left(\frac{\partial E}{\partial X_{0}} \right)_{T,V} \frac{dX_{0}}{dt} \, dm \end{split}$$

i) $Log(L/L_o) > -1.5$ Neutrino cooling

Different thermal structures due to different initial conditions tend to converge to a unique one.

ii)
$$-1.5 < log(L/L_o) < -3$$
 Fluid cooling

$$(1<\Gamma < 180)$$

iii) $Log(L/L_o) < -3$ Crystallization

$$(\Gamma > 180)$$

$$\Gamma = \frac{E_C}{kT_e}$$

- -Latent heat release
- -Chemical separation
- iv) Debye cooling (c_V drops as T³)

The complete energy budget for a two-component mixture like C/O

$$\frac{dL_{r}}{dm} = -\epsilon_{v} - P \frac{dV}{dt} - \frac{dE}{dt},$$

V = 1/ρ E=internal energy per unit mass

$$\frac{dE}{dt} = \left(\frac{\partial E}{\partial T}\right)_{V,X_0} \frac{dT}{dt} + \left(\frac{\partial E}{\partial V}\right)_{T,X_0} \frac{dV}{dt} + \left(\frac{\partial E}{\partial X_0}\right)_{T,V} \frac{dX_0}{dt}$$

$$\left(\frac{\partial E}{\partial V}\right)_{T,X_0} = -P + T\left(\frac{\partial P}{\partial T}\right)_{V,X_0},$$

from thermodynamics

$$-\left(\frac{dL_{r}}{dm} + \epsilon_{v}\right) = C_{v} \frac{dT}{dt} + T\left(\frac{\partial P}{\partial T}\right)_{V,X_{0}} \frac{dV}{dt} - l_{s}$$

$$\times \frac{dM_{s}}{dt} \delta(m - M_{s}) + \left(\frac{\partial E}{\partial X_{0}}\right)_{T,V} \frac{dX_{0}}{dt}$$

Crystallization $\rightarrow \mu$ decreases locally in the liquid phase \rightarrow instability \rightarrow mixing \rightarrow as a result the overall profile changes

Phase diagram CO binary mixture

Initial and final oxygen profiles inside a $0.6 M_{\odot}$ WD

Salaris (2009)

Time-delay caused by phase separation depends on the envelope composition

Age delay due to separation

H-envelopes (solid)

He-envelopes (dashed)

Convective coupling

²²Ne diffusion in the liquid phase of WD cores

(Bravo et al. 1992, Deloye & Bildsten 2002, Garcia Berro et al.2010)

The 22 Ne is produced by helium captures on 14 N left from hydrogen burning via the CNO cycle. By virtue of its two excess neutrons (relative to the predominant A = 2Z nuclei), a downward force of $\approx 2m_p g$ is exerted on 22 Ne in the WD interior. This biases its diffusive equilibrium, forcing 22 Ne to settle toward the centre of the WD.

Ne sinks towards the centre of the core during the liquid phase. Sinking is stopped at the crystallization boundary

$$\begin{split} L + L_{\rm v} &= - \int_0^{M_{\rm WD}} \!\! C_v \, \frac{dT}{dt} \, dm - \int_0^{M_{\rm WD}} \!\! T \! \left(\frac{\partial P}{\partial T} \right)_{V,X_0} \!\! \frac{dV}{dt} \, dm \\ &+ l_s \, \frac{dM_s}{dt} - \int_0^{M_{\rm WD}} \! \left(\frac{\partial E}{\partial X_0} \right)_{T,V} \!\! \frac{dX_0}{dt} \, dm \end{split}$$

Uncertainties in core stratification

- 1 old ¹²C+α estimate
- 2 breathing pulses suppression
- 4 Initial mass lower by 1M_o
- 5-6 variation Z (x2 /10)
- 3-7 current uncertainties ¹²C+α

Dashed no core overshooting

Thickness and chemical composition of the envelope

There are two major classes of WDs according to their spectra:

DA → H spectra

Non-DA → no H in the spectra

Among non-DA objects there are various subclasses.

DB is the subclass of pure He spectra

Do DA objects transform into non-DA? This occurrence would put constraints on the Henvelope thickness

If so, what about their cooling timescales?

Tremblay & Bergeron (2008)

Towards a WD cosmochronology

Ingredients: WD cooling models – Initial-final mass relationship – progenitor ages – bolometric corrections

Salaris et al. (2010)

Bono, Salaris

& Gilmozzi

(2013)

Resolved distant galaxies with ELT Virgo cluster distance (m-M)₀=31

Evolved stellar populations provide clues on SFR for young and intermediate-age stellar populations

WDs in globular clusters

Maximum distance modulus (m-M)₀≈14.0

