

Probing normal starbursts at high-z: ALMA observations of lensed SMGs

Kirsten K. Knudsen

Chalmers University of Technology, Sweden

Collaborators: Johan Richard, Jean-Paul Kneib, Lukas Lindroos, Guillaume Drouart, Darach Watson, D Stark, B Altieri, R Neri, I Smail, et al...

Number counts - now with mm-interferometry

Number counts - now with mm-interferometry

The faint end

The faint end

Stacking results of LBGs, DRGs, EROs, BzKs: e.g. Coppin et al. 2015, Decarli et al. 2014

However, stellar masses of $< M > \sim 10^{10} - 10^{11} M_{\odot}$

The faint end

Stacking results of LBGs, DRGs, EROs, BzKs: e.g. Coppin et al. 2015, Decarli et al. 2014

However, stellar masses of $< M > \sim 10^{10} - 10^{11} M_{\odot}$

Galaxy cluster field A1689

- ◆ Differential lensing?
- ◆ Dust and molecular gas not spatially co-located?
- ◆ Large size, thus losing flux?
- ◆ Coincidence, another SMG 'blob' at the same position?

egrated CO(3-2)

226 GHz continuum

 $L_{FIR} \sim 1.0 \times 10^{11} L_{o}$

SFR $\sim 10-20 M_{\odot}/yr$

 $M_{\text{stellar}} \sim 2 \times 10^9 \, M_{\odot}$

 $M_{gas} \sim 3x10^8 M_{\odot}$

CO line width ~ 140 km/s

Reconstructed image:

Size of galaxy ~ 1-1.5 kpc

Starburst region ~ 0.3-1.5kpc

Looking below the noise:

Stacking, 80 positions $< S_{226GHz} > \sim 48\pm15 \mu Jy$

 $M_{\text{stellar}} \sim 10^9 \, \text{M}_{\text{o}}$

ALMA 226GHz of A1689:

$$<\mu>\sim 4$$

=> $\sim 10 \,\mu Jy$
 $L_{FIR}\sim 10^{10}\,L_{o}$
SFR $\sim 1-4\,M_{o}$ / yr

Stacking: using uv-stacking algorithm by Lindroos et al. 2014

Extreme or normal starbursts?

Stacking: using uv-stacking algorithm by Lindroos et al. 2014

Extreme or normal starbursts?

Stacking: using uv-stacking algorithm by Lindroos et al. 2014

Extreme or normal starbursts?

Stacking: using uv-stacking algorithm by Lindroos et al. 2014

Summary and conclusions...

- ★ Using nature's own telescopes we push to faint fluxes and 'low' SFRs
- **\star** Finding dust emission at redshift z = 7.5
- \star Finding "normal" starbursts at redshift $z \sim 2$
- ★ Statistical detection of SFR ~ 1-4 M_o /yr in $M_{stellar}$ ~ $10^9 M_o$ galaxies
- **★** Gravitational lensing essential to probe scales < few 100 pc in high-z galaxies

Registration deadline: April 3rd (Hotel block booking March 27th)