Measuring sizes of distant faint galaxies in sub-mm and radio

Lukas Lindroos, Department of Earth and Space Sciences, Chalmers University of Technology

What is stacking?

16910 detected sources

I, J, and K image from MUSYC (Cardamone et al. 2010)

899 detected sources

VLA map at 1.4 GHz (Miller et al. 2013)

Pick target galaxies, e.g., DRG galaxies

887 DRGs

I, J, and K image from MUSYC (Cardamone et al. 2010)

VLA map at 1.4 GHz (Miller et al. 2013)

Cut out stamps from the VLA-map

And stack the stamps

VLA and ALMA are interferometers

- Interferometric telescopes produces visibilities
- Need to Fouriertransform visibilities to get actual image
- The image is only a model of the observed data

uv-stacking

$$V_{\text{stack}}(u, v, w) = V(u, v, w) \frac{\left(\sum_{k=1}^{N} w_k \frac{1}{A_N(\hat{S}_k)} e^{\frac{2\pi}{\lambda} iB \cdot (\hat{S}_0 - \hat{S}_k)}\right)}{\sum_{k=1}^{N} w_k}$$

uv-stacking

Lindroos et al. 2015

Real data, image- vs. uv-stacking 300 DRGs (Distant Red Galaxies)

Flux ~ 10.2 μ Jy, σ ~ 0.25 μ Jy

image stacking

Flux ~ $10.2\mu Jy$, σ ~ $0.40\mu Jy$

uv-stacking in the uv-plane

Lindroos et al. 2015

Do we really need to stack with ALMA?

ALMA Survey of the LABOCA ECDFS sub-mm Survey

Hodge et al. 2013

The galaxies

- Found in infrared K-band and selected using colours in B, z, J, and K
- Distant red galaxies (DRG), 22 galaxies
- BzK galaxies, 26 galaxies
- Extremely red objects (ERO), 20 galaxies
- Decarli et al. 2014

uv- and image-stacking (DRG)

Flux ~ 1.77 mJy, σ ~ 0.13 mJy

Flux ~ 2.57 mJy, σ ~ 0.14 mJy

Lindroos et al. in prep., Lindroos 2014 (lic. thesis)

Fourier transform of small sources

Sizes of the galaxies

Lindroos et al. in prep., Lindroos 2014 (lic. thesis)

Sample	Flux 345 GHz	Flux 1.4 GHz	Size 345 GHz	Size 1.4 GHz	$\Sigma_{ m SFR}(FIR)$	$\Sigma_{\rm SFR}(1.4{\rm GHz})$
					$M_{\odot}\mathrm{yr^{-1}kpc^{-2}}$	$M_{\odot}\mathrm{yr^{-1}kpc^{-2}}$
$K_{\text{Vega}} < 20$	$1.12 \pm 0.06 \mathrm{mJy}$	$22.2 \pm 2.6\mu\mathrm{Jy}$	$0.''96 \pm 0.''08$	1.16 ± 0.09	1.79	1.90
sBzK	$2.44 \pm 0.13 \mathrm{mJy}$	$37.8 \pm 5.1 \mu \mathrm{Jy}$	$1''.02 \pm 0''.08$	1.89 ± 0.15	3.10	4.56
ERO	$1.71 \pm 0.15 \mathrm{mJy}$	$34.1 \pm 5.0 \mu \mathrm{Jy}$	$1''.16 \pm 0''.12$	1.15 ± 0.09	2.60	1.82
$\overline{\mathrm{DRG}}$	$2.57 \pm 0.14\mathrm{mJy}$	$35.3 \pm 4.9 \mu \mathrm{Jy}$	$0\rlap.{''}80 \pm 0\rlap.{''}08$	1.90 ± 0.13	5.64	6.03

All samples have star-formation rate of $\sim 100 M_{\odot} {\rm yr}^{-1}$

Lindroos et al. in prep., Lindroos 2014 (lic. thesis)

1 arcsec ~ 8 kpc

blue=435, green=775, and red=850 μ m Daddi et al. (2010)

Simulations of high-redshift galaxies Daddi et al. (2010)

Stacking galaxies in MERLIN+VLA survey of HDF-N

- Frequency: 1.4GHz
- Galaxies taken from Barger et al. 2008
- Compilation of UVselected galaxies with spectroscopic follow-up
- Data:

Wrigley, N., Beswick, R.

Stack:

Lindroos et al in prep.

Average size of the galaxies 8 Average Re(V) [μJy] 6 2 200 50 100 150 $\overline{250}$ Baseline length [km]

Flux 8.7 μ Jy, Size ~ 1.4", Lindroos et al in prep.

Conclusions

- Our *uv*-stacking algorithm is a powerful method to stack interferometric data.
 - The *uv*-stacking often provides more robust results than image-stacking, and never worse
 - Combinations of multiple pointings
 - The *uv*-stacking allows for full *uv*-data after stacking to find problematic baselines and *uv*-model fitting of stacked sources.
- The stacking tools is available for general use through the nordic ARC node (nordic-alma.se)

- A significant fraction of galaxies observed with ALMA at $z\sim1-3$ will be extended (~1 ")
 - Comparable to the near infrared sizes
 - Must be considered when designing future ALMA surveys

How do the methods compare? Simulated data

Significant negative offset!

Noise vs stacking positions

Stacked flux dist. in simulation

Simulated stacked stamps

Mask over centre of source

Short baselines removed from uv-plane

Simulated data

Fitted size of simulated sources

