# Galaxy properties in the infall region of groups of galaxies

Julian Martínez, Valeria Coenda Hernán Muriel

> IATE-OAC Córdoba - Argentina





#### Aim of this work

- We study the effects of the environment upon galaxies in filaments and falling into massive groups.
- The preprocessing in these environments may play an important role in transforming galaxies before they enter into the cluster/group environment.
- The goal of this study is to see how the environment that characterize the filaments and the infall region affects the star formation in galaxies.

- The environment of galaxies can strongly affect the galaxy properties: morphology, size, star formation, etc.
- The environment plays a key role in quenching the SF.
- Mechanisms: tidal interactions, ram pressure, strangulation, etc.

## The growth of Groups/Clusters

 The accretion of galaxies usually happens through filaments in a non-isotropic way

#### Two different modes:

- (i) Galaxies are reaching groups along filamentary structures, or
- (ii) They are falling isotropically

### Two particular environments

- The infall region of clusters/groups of galaxies
- The filamentary structure
- Can these environments affect differently the star formation?
- The properties of galaxies in these two environment will be compared with those of galaxies in the field and in groups

### Galaxies in filaments

- Porter et al. 2008 found that the SF in galaxies falling into a cluster along filaments, are likely to undergo an enhancement before the galaxy reaches the virial radius of the cluster.
- Similarly, Mahajan et al. (2012) reported an excess of star forming galaxies in the outskirts of dynamically unrelaxed clusters and associated this phenomenon to the infall of galaxies through straight filaments.

## The clusters infall region

- Ellingson et al. 2001 found no evidence at any radius within the clusters for an excess of SF over that seen in the field (see also Rines et al. (2005); Verdugo et al. (2008)).
- The general agreement is that the galaxy properties converge to those of field galaxies at 2-3 virial radii.
- It has also been suggested that a significant fraction of galaxies at large radii have passed through the core region of the cluster and have undergone environmental transformation within the virial radius (see Muriel & Coenda (2014) and references therein).

#### Identification of Filaments

- Filaments are visually the most dominant structures that characterize the distribution of galaxies
- Many of the implemented algorithms make use of the fact that filaments are the bridges that connects systems of galaxies (Pimbblet et al. 2004; Peimbblet 2005; Colberg et al. 2005; Gonzales & Padilla 2010; Smith et al. 2012; Zhang et al. 2013; Alpaslan et al. 2014)

### Filaments in the SDSS

- We use groups of galaxies identified in the SDSS-DR7 to detect the filamentary structures that connect massive groups.
- Groups of galaxies selected by Martinez & Zandivarez in the SDSS.
- 4679 Groups in the redshift range 0.05-0.15

#### Procedure

 We identify pairs of massive groups of galaxies and then stack the galaxy population between them.

#### Size of the filaments:

- Length: ≤ 10 Mpc
- Projected width: 2 Mpc
- Width in the line of sight: 2000 km/s

### Procedure



• We only consider as filaments those regions with  $\Delta \rho/\rho > 1$ 

Of the 3094 pairs,
2366 are "filaments"

## Stacking of galaxies



## Density of Galaxies



# Results: The luminosity function of galaxies

 Late and Early type galaxies are selected according to the concentration index C.

Schechter function:

$$n(L/L^*) = \phi^* (L/L^*)^{\alpha} e^{-L^*}$$



## Results: SSFR as a function of the stellar mass

- Data: MPA-JHU
- Galaxy properties derived from emission lines (Brinchmann et al. 2004)



## Fraction of low SSFR galaxies as a function of projected distance



- ← High mass galaxies
- ← Intermediate mass gal.
- ← Low mass gal.

### Conclusions

- Galaxies in filaments show different LF and SSFR than those that are falling isotropically
- The LF of LT galaxies depends on whether they fall isotropically or through filaments (Late type galaxies in filaments have shallower faint end slope and a brighter M\* than infalling galaxies)
- For both, ET and LT, the SSFR of galaxies in filaments is lower than in galaxies falling isotropically.
- The effect is higher for massive galaxies
- The filamentary structure of galaxies accelerates the quenching of the star formation
- We found no evidence of an excess of SF at any distance from the center of groups