Characterization of the molecular gas in local star-forming galaxies using far-IR Herschel/HIFI & sub-mm APEX data

Enrica Bellocchi

Collaborators: Jesús Martín-Pintado & the Max-Planck-Institut für Radioastronomie team (R. Güsten, M. A. Requena-Torres, A. Weiß, Philipp-May, T. Klein)

Outline

- Introduction: general context
- The objectives
- The sample and observations
- Data analysis
- Results and future work

Molecular gas emission in galaxies

Diagnostic tool to study:

- ✓ Properties of the ISM: density, temperature, kinematics...
- ✓ Conditions and processes leading to the starbursts
- ✓ Evolutionary state of starbursts
- ✓ Feeding of the nucleus
- ✓ Obscured regions (molecular emission can penetrate deeply into obscured nuclear power sources: AGN or starburst)

Main goals:

- Derivation of the main physical parameters
 Column density, T_{ex} and V_{LRS} and volume gas density
- Constraining between AGN/SB activity
 - → characterization of the chemical complexity in order to distinguish the powering source
- Studying the kinematics of the molecular gas & its properties using high spatial resolution data (ALMA)

The sample

- 4 local Star-forming galaxies
- Distance: 3.4, 3.9, 14.4, 77 Mpc
- $L_{IR} = L_{[8-1000 \ \mu m]} = 2 \times 10^{10} L_{\Theta} 1.5 \times 10^{12} L_{\Theta}$

NGC 1068

ARP 220

NGC 253

NGC 4945

The observations

Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)

- ✓ Frequency range: Far-IR 480 to 1910 GHz
- ✓ beam (HPBW): 37"-12" @ 572 1892 GHz
- \checkmark D = 3.28 m
- ✓ level 2 (fully calibrated) spectra

Atacama Pathfinder Experiment (APEX)

- ✓ Frequency range: sub-mm 200 to 360 GHz
- ✓ beam (HPBW): 21"-16" @ 272-354 GHz
- ✓ D = 12 m

The analysis of the molecular emission

Local thermodynamic equilibrum (LTE) analysis

- MADCUBAIJ (MAdrid Data CUBe Analysis in ImageJ)
 - \rightarrow Gaussian line fit to derive column density N_{mol} , T_{ex} , V_{LSR}

Non-LTE analysis

 \diamond RADEX \rightarrow estimate of the volume gas density (van der Tak+07)

Results from MADCUBA

¹²CO emission in NGC 4945

- →3 velocity components
- →2 components of temperature:

COLD emission (dominates at low J) & HOT emission (dominates at higher J)

Other molecules detected

Molecular emission lines detected: 13CO, CI, CH as well as some dense gas tracers such as HCO+, HCN, HNC, CS

HCO+ (NGC 4945)

13CO (NGC 4945)

Summary of results for NGC 4945

MADCUBA (LTE)

Molecule		J Transition (Frequency	LTE			
		Herschel	Apex	$\log N_{mol}$	T_{ex}	v_{LSR}
				$[\operatorname{cm}^{-2}]$	[K]	[km s ⁻¹]
CO		9-8; 6-5; 5-4	3-2	16.5-16.7	84-92	455; 578; 683
		(1036.91; 691.47; 576.27)	(345.79)	17.3-17.7	17-18	451; 566; 705
¹³ CO		9-8; 6-5 (991.33; 661.067)	3-2 (330.588)	16.3-16.5	22-25	446; 566; 685
HCN		12-11; 7-6; 6-5 (1062.98; 620.30; 531.72)	4-3 (354.50)	13.2-13.5	17-21	446; 574; 683
HNC		7-6; 6-5 (634.511; 543.897)	4-3; 3-2 (362.63; 271.981)	~13	17-18	448; 571; 683
нсо⁴		$J = 7-6; 6-5 \ (624.208; 535.061)$	4-3 (356.734)	13.1-13.2	18	450; 580; 685
cs		13-12; 12-11; 10-9 (636.53; 587.62; 538.69; 489.75)	7-6; 6-5 (342.883; 293.912)	13.1-13.3	28-33	444; 564; 671
CI		${}^{3}P_{2} \rightarrow {}^{3}P_{1}; {}^{3}P_{1} \rightarrow {}^{3}P_{0}$ (809.344; 492.16)	_	17.5-17.7	103-174	448; 568; 688
СН		N=2, J= $\frac{5}{2}$ - $\frac{3}{2}$; N=1, J= $\frac{3}{2}$ - $\frac{1}{2}$ (1661.14; 1656.97; 536.76; 532.72)	_	14.08-14.16	~13-14	434; 547; 684

Summary of results for NGC 4945

MADCUBA (LTE) RADEX (non-LTE)

Molecule	J Transition (Frequency	LTE			LVG		
	Herschel	Apex	$\log N_{mol}$	T_{ex}	${ m v}_{LSR}$	$n(H_2)$	$\log N_{mol}$
			$[\mathrm{cm}^{-2}]$	[K]	$[\mathrm{km} \ \mathrm{s}^{-1}]$	$[\mathrm{cm}^{-3}]$	$[\mathrm{cm}^{-2}]$
CO	9-8; 6-5; 5-4	3-2	16.5-16.7	84 - 92	455; 578; 683	$5.5 \cdot 10^{4}$	16.7
	(1036.91; 691.47; 576.27)	(345.79)	17.3-17.7	17-18	451; 566; 705	$7.2 \cdot 10^3$	17.3
¹³ CO	9-8; 6-5 (991.33; 661.067)	3-2 (330.588)	16.3-16.5	22-25	446; 566; 685	$3.8\cdot 10^3$	16.35
HCN	12-11; 7-6; 6-5 (1062.98; 620.30; 531.72)	4-3 (354.50)	13.2-13.5	17-21	446; 574; 683	$1.2\cdot 10^6$	13.40
HNC	7-6; 6-5 (634.511; 543.897)	4-3; 3-2 (362.63; 271.981)	~13	17-18	448; 571; 683	$1.4\cdot 10^6$	13.00
нсо⁴	J = 7-6; 6-5 $(624.208; 535.061)$	4-3 (356.734)	13.1-13.2	18	450; 580; 685	$3.6 \cdot 10^5$	13.24
CS	13-12; 12-11; 10-9 (636.53; 587.62; 538.69; 489.75)	7-6; 6-5 (342.883; 293.912)	13.1-13.3	28-33	444; 564; 671	$9.0\cdot10^5$	13.09
CI	$^{3}P_{2} \rightarrow ^{3}P_{1}; ^{3}P_{1} \rightarrow ^{3}P_{0}$ (809.344; 492.16)	_	17.5-17.7	103-174	448; 568; 688	1.0 · 10 ⁵	17.56
СН	N=2, J= $\frac{5}{2}$ - $\frac{3}{2}$; N=1, J= $\frac{3}{2}$ - $\frac{1}{2}$ (1661.14; 1656.97; 536.76; 532.72)	_	14.08-14.16	~13-14	434; 547; 684		_

The average volume gas density is moderate \rightarrow from low gas density tracers, like CO and CI (deriving gas density of 10^3 - 10^4 cm⁻³) to high gas density tracers as HCN, HNC, HCO+ and CS ($\leq 10^6$ cm⁻³)

CO emission in NGC 1068

2 components with different T

Lower J transitions: 5-4 up to 9-8

Cold component

Large beams: 21" - 37"

COLD emission dominates LARGE scales

CO emission in NGC 1068

2 components with different T

Higher J transitions: 9-8 up to 13-12

Hot component

Smaller beams: 14"-21"

HOT emission from the INNER region

Agreement with high angular resolution ALMA results (S. García-Burillo+14)

Several transitions (different beams) constrain the region of influence of the cold and hot CO components

Ongoing and Future works

- Analysis of the absorption molecular lines (e.g., CH+, NH, NH $_3$, OH+, H $_2$ O, HF)
- Constraining between SB/AGN activities in the highly obscured galactic nuclear regions
- → different line ratios (HCO+/HCN, HCN/CO; Krips+08) using high J transitions
- From single dish to high angular resolution → ALMA
 - ✓ Spatially resolve the gas properties (e.g., temperatures, densities, isotopic ratios)
 - ✓ Study of the kinematics of the molecular gas using the "kinemetry" method ...

Kinemetry analysis

K $(\psi, r) = A_0(r) + \sum A_i(r) \sin(i \cdot \psi) + B_i(r) \cos(i \cdot \psi)$ where Ψ is the azimuthal angle in the plane of the galaxy \rightarrow quantify the kinematic asymmetries

Previously applied to IFS data to study the kinematic asymmetries of the ionized gas of a large sample of local (U)LIRGs

→distinguish "disks/mergers" (Bellocchi+12, Bellocchi in prep.)

Kinematic characterization of the molecular gas revealed by ALMA maps (ALMA proposal preparation)

